1
|
Chen Y, Zheng J, Mo L, Chen F, Li R, Wang Y, Liang Q, Chen Z, Dai W, Chen L, Yan P, Zhou H, Li X. Oroxylin A suppresses breast cancer-induced osteoclastogenesis and osteolysis as a natural RON inhibitor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155688. [PMID: 38728920 DOI: 10.1016/j.phymed.2024.155688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/09/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Malignant breast cancer cells trigger the over-activation of osteoclast precursor cells, leading to bone loss and severe pain. Targeted inhibition of osteoclast differentiation has emerged as an important strategy for treating bone syndromes induced by breast cancer. PURPOSE The objective is to discover natural osteoclast inhibitor to treat osteoclastogenesis and bone destruction induced by breast cancer, and clarify the specific mechanisms. METHODS Recepteur d'origine Nantais (RON) protein was employed to search the natural osteoclast inhibitor for breast cancer-induced osteoclastogenesis by molecular docking, molecular dynamics simulation and cellular thermal shift assay (CETSA). In the in vitro experiment, breast cancer MDA-MB-231 cell-conditioned medium (MDA-MB-231 CM) was used to induce osteoclastogenesis in murine bone marrow-derived macrophages (BMMs), aiming to elucidate the effects and mechanisms of the natural osteoclast inhibitor. In the in vivo model, MDA-MB-231 cells was injected into the mouse tibia to evaluate the therapeutic effect of drug on breast cancer-induced bone destruction. RESULTS We discovered a significant increase in the expression of RON during MDA-MB-231 CM-induced osteoclast differentiation in vitro. Molecular docking analysis found that oroxylin A (OA), a flavonoid derived from the Chinese medicine Scutellaria baicalensis Georgi, showed binding ability with RON, while its impact and mechanism on breast cancer-induced osteoclastogenesis and osteolysis remains unclear. Molecular dynamics simulation and CETSA further revealed that OA bound directly to the RON protein, and it also decreased RON expression in breast cancer CM-induced osteoclastogenesis. Correspondingly, OA suppressed the MDA-MB-231 CM-induced osteoclastogenesis and bone resorption in vitro. The downstream signals of RON including Src and NFATc1, as well as the osteoclast-specific genes, were downregulated by OA. Of interesting, the suppressive effect of OA on osteoclastogenesis induced by MDA-MB-231 CM was abolished after RON was knocked down by the specific RON-siRNA, this further confirmed that OA showed inhibitory effects on osteoclasts through targeting RON. In addition, we found that OA attenuated MDA-MB-231 cell-induced osteolysis and reduced the number of osteoclasts in vivo. CONCLUSION Our results indicate that OA acts as a natural RON inhibitor to suppress breast cancer-induced osteoclastogenesis and osteolysis. This provides new strategy for treating breast cancer-induced bone destruction and related syndromes.
Collapse
Affiliation(s)
- Yan Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiehuang Zheng
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lixia Mo
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fengsheng Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ruopeng Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yiyuan Wang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qinghe Liang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ziye Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenqi Dai
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lishan Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peiyu Yan
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Hunt BG, Fox LH, Davis JC, Jones A, Lu Z, Waltz SE. An Introduction and Overview of RON Receptor Tyrosine Kinase Signaling. Genes (Basel) 2023; 14:517. [PMID: 36833444 PMCID: PMC9956929 DOI: 10.3390/genes14020517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
RON is a receptor tyrosine kinase (RTK) of the MET receptor family that is canonically involved in mediating growth and inflammatory signaling. RON is expressed at low levels in a variety of tissues, but its overexpression and activation have been associated with malignancies in multiple tissue types and worse patient outcomes. RON and its ligand HGFL demonstrate cross-talk with other growth receptors and, consequentially, positions RON at the intersection of numerous tumorigenic signaling programs. For this reason, RON is an attractive therapeutic target in cancer research. A better understanding of homeostatic and oncogenic RON activity serves to enhance clinical insights in treating RON-expressing cancers.
Collapse
Affiliation(s)
- Brian G. Hunt
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Levi H. Fox
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - James C. Davis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Angelle Jones
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Zhixin Lu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
- Research Service, Cincinnati Veterans Affairs Hospital Medical Center, Cincinnati, OH 45220, USA
| |
Collapse
|
3
|
Patasova K, Lundberg IE, Holmqvist M. Genetic Influences in Cancer-Associated Myositis. Arthritis Rheumatol 2023; 75:153-163. [PMID: 36053262 PMCID: PMC10107284 DOI: 10.1002/art.42345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 02/02/2023]
Abstract
Idiopathic inflammatory myopathies (IIMs) comprise a heterogeneous group of rare immune-mediated disorders that primarily affect muscles but also lead to dysfunction in other organs. Five different clinical subphenotypes of IIM have been distinguished: dermatomyositis, polymyositis, inclusion body myositis, antisynthetase syndrome, and immune-mediated necrotizing myopathy. Excess mortality and morbidity associated with IIM are largely attributed to comorbidities, particularly cancer. The risk of malignancy is not equally distributed among IIM groups and is particularly high among patients with dermatomyositis. The cancer risk peaks around 3 years on either side of the IIM diagnosis and remains elevated even 10 years after the onset of the disease. Lung, colorectal, and ovarian neoplasms typically arise before the onset of IIM, whereas melanoma, cervical, oropharyngeal, and nonmelanoma skin cancers usually develop after IIM diagnosis. Given the close temporal proximity between IIM diagnosis and the emergence of malignancy, it has been proposed that IIM could be a consequence rather than a cause of cancer, a process known as a paramalignant phenomenon. Thus, a separate group of IIMs related to paramalignant phenomenon has been distinguished, known as cancer-associated myositis (CAM). Although the relationship between IIM and cancer is widely recognized, the pathophysiology of CAM remains elusive. Given that genetic factors play a role in the development of IIM, dissection of the molecular mechanisms shared between IIM and cancer presents an opportunity to examine the role of autoimmunity in cancer development and progression. In this review, the evidence supporting the contribution of genetics to CAM will be discussed.
Collapse
Affiliation(s)
- Karina Patasova
- Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid E Lundberg
- Rheumatology Division, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marie Holmqvist
- Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Koivusalo S, Schmidt A, Manninen A, Wenta T. Regulation of Kinase Signaling Pathways by α6β4-Integrins and Plectin in Prostate Cancer. Cancers (Basel) 2022; 15:149. [PMID: 36612146 PMCID: PMC9818203 DOI: 10.3390/cancers15010149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Hemidesmosomes (HDs) are adhesive structures that ensure stable anchorage of cells to the basement membrane. They are formed by α6β4-integrin heterodimers and linked to intermediate filaments via plectin. It has been reported that one of the most common events during the pathogenesis of prostate cancer (PCa) is the loss of HD organization. While the expression levels of β4-integrins are strongly reduced, the expression levels of α6-integrins and plectin are maintained or even elevated, and seem to promote tumorigenic properties of PCa cells, such as proliferation, invasion, metastasis, apoptosis- and drug-resistance. In this review, we discuss the potential mechanisms of how HD components might contribute to various cellular signaling pathways to promote prostate carcinogenesis. Moreover, we summarize the current knowledge on the involvement of α6β4-integrins and plectin in PCa initiation and progression.
Collapse
Affiliation(s)
- Saara Koivusalo
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Anette Schmidt
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Tomasz Wenta
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
| |
Collapse
|
5
|
Zarei O, Raeppel SL, Hamzeh-Mivehroud M. An alignment-independent three-dimensional quantitative structure-activity relationship study on ron receptor tyrosine kinase inhibitors. J Bioinform Comput Biol 2022; 20:2250015. [PMID: 35880255 DOI: 10.1142/s0219720022500159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recepteur d'Origine Nantais known as RON is a member of the receptor tyrosine kinase (RTK) superfamily which has recently gained increasing attention as cancer target for therapeutic intervention. The aim of this work was to perform an alignment-independent three-dimensional quantitative structure-activity relationship (3D QSAR) study for a series of RON inhibitors. A 3D QSAR model based on GRid-INdependent Descriptors (GRIND) methodology was generated using a set of 19 compounds with RON inhibitory activities. The generated 3D QSAR model revealed the main structural features important in the potency of RON inhibitors. The results obtained from the presented study can be used in lead optimization projects for designing of novel compounds where inhibition of RON is needed.
Collapse
Affiliation(s)
- Omid Zarei
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Stéphane L Raeppel
- ChemRF Laboratories Inc., 3194, rue Claude-Jodoin, Montréal, QC, Canada H1Y 3M2, Canada
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Ruiz-Torres SJ, Bourn JR, Benight NM, Hunt BG, Lester C, Waltz SE. Macrophage-mediated RON signaling supports breast cancer growth and progression through modulation of IL-35. Oncogene 2022; 41:321-333. [PMID: 34743208 PMCID: PMC8758553 DOI: 10.1038/s41388-021-02091-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 01/20/2023]
Abstract
Tumor associated macrophages (TAMs) play a major role in regulating mammary tumor growth and in directing the responses of tumor infiltrating leukocytes in the microenvironment. However, macrophage-specific mechanisms regulating the interactions of macrophages with tumor cells and other leukocytes that support tumor progression have not been extensively studied. In this study, we show that the activation of the RON receptor tyrosine kinase signaling pathway specifically in macrophages supports breast cancer growth and metastasis. Using clinically relevant murine models of breast cancer, we demonstrate that loss of macrophage RON expression results in decreases in mammary tumor cell proliferation, survival, cancer stem cell self-renewal, and metastasis. Macrophage RON signaling modulates these phenotypes via direct effects on the tumor proper and indirectly by regulating leukocyte recruitment including macrophages, T-cells, and B-cells in the mammary tumor microenvironment. We further show that macrophage RON expression regulates the macrophage secretome including IL-35 and other immunosuppressive factors. Overall, our studies implicate activation of RON signaling in macrophages as a key player in supporting a thriving mammary pro-tumor microenvironment through novel mechanisms including the augmentation of tumor cell properties through IL-35.
Collapse
Affiliation(s)
- Sasha J. Ruiz-Torres
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Jennifer R. Bourn
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Nancy M. Benight
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Brian G. Hunt
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Carissa Lester
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA,Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45267, USA,Address correspondence to: Susan E. Waltz, PhD, Department of Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, 3125 Eden Ave, Cincinnati, OH 45267-0521, Tel: 513.558.8675,
| |
Collapse
|
7
|
Lin W, Wan X, Sun A, Zhou M, Chen X, Li Y, Wang Z, Huang H, Li H, Chen X, Hua J, Zha X. RUNX1/EGFR pathway contributes to STAT3 activation and tumor growth caused by hyperactivated mTORC1. Mol Ther Oncolytics 2021; 23:387-401. [PMID: 34853810 PMCID: PMC8605091 DOI: 10.1016/j.omto.2021.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/10/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022] Open
Abstract
Loss of function of tuberous sclerosis complex 1 or 2 (TSC1 or TSC2) leads to the activation of mammalian target of rapamycin complex 1 (mTORC1). Hyperactivated mTORC1 plays a critical role in tumor growth, but the underlying mechanism is still not completely elucidated. Here, by analyzing Tsc1- or Tsc2-null mouse embryonic fibroblasts, rat Tsc2-null ELT3 cells, and human cancer cells, we present evidence for the involvement of epidermal growth factor receptor (EGFR) as a downstream target of mTORC1 in tumor growth. We show that mTORC1 leads to increased EGFR expression through upregulation of runt-related transcriptional factor 1 (RUNX1). Knockdown of EGFR impairs proliferation and tumoral growth of Tsc-deficient cells, while overexpression of EGFR promotes the proliferation of the control cells. Moreover, the mTOR signaling pathway has been shown to be positively correlated with EGFR in human cancers. In addition, we demonstrated that EGFR enhances cell growth through activation of signal transducer and activator of transcription 3 (STAT3). We conclude that activation of the RUNX1/EGFR/STAT3 signaling pathway contributes to tumorigenesis caused by hyperactivated mTORC1 and should be targeted for the treatment of mTORC1-related tumors, particularly TSC.
Collapse
Affiliation(s)
- Wei Lin
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei 230031, China.,Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230031, China
| | - Xiaofeng Wan
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230031, China.,Department of Laboratory, Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Anjiang Sun
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230031, China
| | - Meng Zhou
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230031, China
| | - Xu Chen
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230031, China
| | - Yanling Li
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230031, China
| | - Zixi Wang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230031, China
| | - Hailiang Huang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230031, China
| | - Hongwu Li
- Department of Otorhinolaryngology, Head & Neck Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230031, China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230031, China
| | - Juan Hua
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230031, China
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230031, China
| |
Collapse
|
8
|
Chen SL, Wang GP, Shi DR, Yao SH, Chen KD, Yao HP. RON in hepatobiliary and pancreatic cancers: Pathogenesis and potential therapeutic targets. World J Gastroenterol 2021; 27:2507-2520. [PMID: 34092972 PMCID: PMC8160627 DOI: 10.3748/wjg.v27.i20.2507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/04/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
The receptor protein tyrosine kinase RON belongs to the c-MET proto-oncogene family. Research has shown that RON has a role in cancer pathogenesis, which places RON on the frontline of the development of novel cancer therapeutic strategies. Hepatobiliary and pancreatic (HBP) cancers have a poor prognosis, being reported as having higher rates of cancer-related death. Therefore, to combat these malignant diseases, the mechanism underlying the aberrant expression and signaling of RON in HBP cancer pathogenesis, and the development of RON as a drug target for therapeutic intervention should be investigated. Abnormal RON expression and signaling have been identified in HBP cancers, and also act as tumorigenic determinants for HBP cancer malignant behaviors. In addition, RON is emerging as an important mediator of the clinical prognosis of HBP cancers. Thus, not only is RON significant in HBP cancers, but also RON-targeted therapeutics could be developed to treat these cancers, for example, therapeutic monoclonal antibodies and small-molecule inhibitors. Among them, antibody-drug conjugates have become increasingly popular in current research and their potential as novel anti-cancer biotherapeutics will be determined in future clinical trials.
Collapse
Affiliation(s)
- Shao-Long Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310000, Zhejiang Province, China
| | - Guo-Ping Wang
- Department of Surgical Oncology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang Province, China
| | - Dan-Rong Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Shu-Hao Yao
- Department of Stomatology, Wenzhou Medical University Renji College, Wenzhou 325035, Zhejiang Province, China
| | - Ke-Da Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310000, Zhejiang Province, China
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
9
|
Preusse C, Eede P, Heinzeling L, Freitag K, Koll R, Froehlich W, Schneider U, Allenbach Y, Benveniste O, Schänzer A, Goebel HH, Stenzel W, Radke J. NanoString technology distinguishes anti-TIF-1γ + from anti-Mi-2 + dermatomyositis patients. Brain Pathol 2021; 31:e12957. [PMID: 34043263 PMCID: PMC8412076 DOI: 10.1111/bpa.12957] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Dermatomyositis (DM) is a systemic idiopathic inflammatory disease affecting skeletal muscle and skin, clinically characterized by symmetrical proximal muscle weakness and typical skin lesions. Recently, myositis-specific autoantibodies (MSA) became of utmost importance because they strongly correlate with distinct clinical manifestations and prognosis. Antibodies against transcription intermediary factor 1γ (TIF-1γ) are frequently associated with increased risk of malignancy, a specific cutaneous phenotype and limited response to therapy in adult DM patients. Anti-Mi-2 autoantibodies, in contrast, are typically associated with classic DM rashes, prominent skeletal muscle weakness, better therapeutic response and prognosis, and less frequently with cancer. Nevertheless, the sensitivity of autoantibody testing is only moderate, and alternative reliable methods for DM patient stratification and prediction of cancer risk are needed. To further investigate these clinically distinct DM subgroups, we herein analyzed 30 DM patients (n = 15 Mi-2+ and n = 15 TIF-1 γ+ ) and n = 8 non-disease controls (NDC). We demonstrate that the NanoString technology can be used as a very sensitive method to clearly differentiate these two clinically distinct DM subgroups. Using the nCounter PanCancer Immune Profiling Panel™, we identified a set of significantly dysregulated genes in anti-TIF-1γ+ patient muscle biopsies including VEGFA, DDX58, IFNB1, CCL5, IL12RB2, and CD84. Investigation of type I IFN-regulated transcripts revealed a striking type I interferon signature in anti-Mi-2+ patient biopsies. Our results help to stratify both subgroups and predict, which DM patients require an intensified diagnostic procedure and might have a poorer outcome. Potentially, this could also have implications for the therapeutic approach.
Collapse
Affiliation(s)
- Corinna Preusse
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Neurology with Institute for Translational Neurology, Münster University Hospital (UKM), Münster, Germany
| | - Pascale Eede
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Lucie Heinzeling
- Department of Dermatology, University Hospital of Erlangen, Erlangen, Germany.,Department of Dermatology, LMU, Munich, Germany
| | - Kiara Freitag
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Berlin, Germany
| | - Randi Koll
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany
| | - Waltraud Froehlich
- Department of Dermatology, University Hospital of Erlangen, Erlangen, Germany
| | - Udo Schneider
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Yves Allenbach
- Department of Internal Medicine and Clinical Immunology, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
| | - Olivier Benveniste
- Department of Internal Medicine and Clinical Immunology, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
| | - Anne Schänzer
- Department of Neuropathology, Justus Liebig Universität Giessen, Giessen, Germany
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Josefine Radke
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
10
|
The HNRNPA2B1-MST1R-Akt axis contributes to epithelial-to-mesenchymal transition in head and neck cancer. J Transl Med 2020; 100:1589-1601. [PMID: 32669614 DOI: 10.1038/s41374-020-0466-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
The deregulation of splicing factors and alternative splicing are increasingly viewed as major contributory factors in tumorigenesis. In this study, we report overexpression of a key splicing factor, heterogeneous nuclear ribonucleoprotein A2B1 (HNRNPA2B1), and thereby misregulation of alternative splicing, which is associated with the poor prognosis of head and neck cancer (HNC). The role of HNRNPA2B1 in HNC tumorigenesis via deregulation of alternative splicing is not well understood. Here, we found that the CRISPR/Cas9-mediated knockout of HNRNPA2B1 results in inhibition of HNC cells growth via the misregulation of alternative splicing of MST1R, WWOX, and CFLAR. We investigated the mechanism of HNRNPA2B1-mediated HNC cells growth and found that HNRNPA2B1 plays an important role in the alternative splicing of a proto-oncogene, macrophage stimulating 1 receptor (MST1R), which encodes for the recepteur d'origine nantais (RON), a receptor tyrosine kinase. Our results indicate that HNRNPA2B1 mediates the exclusion of cassette exon 11 from MST1R, resulting in the generation of RON∆165 isoform, which was found to be associated with the activation of Akt/PKB signaling in HNC cells. Using the MST1R-minigene model, we validated the role of HNRNPA2B1 in the generation of RON∆165 isoform. The depletion of HNRNPA2B1 results in the inclusion of exon 11, thereby reduction of RON∆165 isoform. The decrease of RON∆165 isoform causes inhibition of Akt/PKB signaling, which results in the upregulation of E-cadherin and downregulation of vimentin leading to the reduced epithelial-to-mesenchymal transition. The overexpression of HNRNPA2B1 in HNRNPA2B1 knockout cells rescues the expression of the RON∆165 isoform and leads to activation of Akt/PKB signaling and induces epithelial-to-mesenchymal transition in HNC cells. In summary, our study identifies HNRNPA2B1 as a putative oncogene in HNC that promotes Akt/PKB signaling via upregulation of RON∆165 isoform and promotes epithelial to mesenchymal transition in head and neck cancer cells.
Collapse
|
11
|
Zhou Y, Xu X, Wang F, He H, Qi B. Discovery of 4-((4-(4-(3-(2-(2,6-difluorophenyl)-4-oxothiazolidin-3-yl)ureido)-2-fluorophenoxy)-6-methoxyquinolin-7-yl)oxy)-N,N-diethylpiperidine-1-carboxamide as kinase inhibitor for the treatment of colorectal cancer. Bioorg Chem 2020; 106:104511. [PMID: 33272707 DOI: 10.1016/j.bioorg.2020.104511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/01/2020] [Accepted: 11/19/2020] [Indexed: 11/18/2022]
Abstract
In this study, a novel series of 4,6,7-trisubstituted quinoline analogues bearing thiazolidinones were designed and synthesized based on our previous study. Among them, the most potent compound 15i, 4-((4-(4-(3-(2-(2,6-difluorophenyl)-4-oxothiazolidin-3-yl)ureido)-2-fluorophenoxy)-6-methoxyquinolin-7-yl)oxy)-N,N-diethylpiperidine-1-carboxamide was identified as a multi-kinase inhibitor. The results of MTT assay revealed in vitro antitumor activities against HT-29 cells of compound 15i with an IC50 value of 0.19 μM which was 14.5-fold more potent than that of Regorafenib. In the cellular context, significant antiproliferation, cytotoxicity and induction of apoptosis on HT-29 cells in a dose- and time-dependent manner were confirmed by IncuCyte live-cell imaging assays. Moreover, compound 15i strongly induced apoptosis by arresting cell cycle into the G2/M phase. No antiproliferation and cytotoxicity against human normal colorectal mucosa epithelial cell FHC was observed at 10.0 μg/mL or lower concentrations which indicated that the toxicity to normal cells of compound 15i was much lower than that of Regorafenib. Based on the above findings, further structural modification will be conducted for the development of more potent kinase inhibitors as anticancer agents.
Collapse
Affiliation(s)
- Yuting Zhou
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, Guangdong Province, China
| | - Xingwei Xu
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, Guangdong Province, China
| | - Fei Wang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, Guangdong Province, China
| | - Huan He
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, Guangdong Province, China.
| | - Baohui Qi
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, Guangdong Province, China.
| |
Collapse
|
12
|
Identification of novel quinoline analogues bearing thiazolidinones as potent kinase inhibitors for the treatment of colorectal cancer. Eur J Med Chem 2020; 204:112643. [PMID: 32731184 DOI: 10.1016/j.ejmech.2020.112643] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 11/20/2022]
Abstract
In this investigation, a novel series of quinoline analogues bearing thiazolidinones were designed and synthesized based on our previous study. Among them, the most potent compound 11k, 4-((4-(4-(3-(2-(2,6-difluorophenyl)-4-oxothiazolidin-3-yl)ureido)phenoxy)-6-methoxyquinolin-7-yl)oxy)-N-isopropylpiperidine-1-carboxamide, possessed submicromolar c-Met and Ron inhibitory activities. In addition, enzymatic assays against a mini-panel of kinases (c-Kit, B-Raf, c-Src, IGF1R, PDGFRα and AXL) were performed, the results showed that compound 11k exhibited moderate inhibitory activity against PDGFRα, c-Src and AXL. MTT assay revealed in vitro antitumor activities against HT-29 cells of compound 11k with an IC50 value of 0.31 μM which was 9.3- and 34.2-fold more potent than that of Regorafenib (IC50 = 2.87 μM) and Cabozantinib (IC50 = 10.6 μM). Preliminary antitumor mechanisms were also investigated by cellular assays. Considerable cytotoxicity, antiproliferation and induction of apoptosis of compound 11k in a dose- and time-dependent manner were confirmed by IncuCyte live-cell imaging assays. Treatment with compound 11k caused slight G2-or M-phase arrest in HT-29 cells. Further cell selectivity of compound 11k showed that it was not active against human normal colorectal mucosa epithelial cell FHC at 10.0 μg/mL. The above results support further structural modification of compound 11k to improve its inhibitory activity, which will lead to more potent anticancer agents.
Collapse
|
13
|
MST1R (RON) expression is a novel prognostic biomarker for metastatic progression in breast cancer patients. Breast Cancer Res Treat 2020; 181:529-540. [PMID: 32342233 DOI: 10.1007/s10549-020-05653-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE This study evaluates the prognostic significance of MST1R (RON) expression in breast cancer with respect to disease progression, long-term survival, subtype, and association with conventional prognostic factors. METHODS The approach includes interrogation of survival and tumor staging with paired MST1R RNA expression from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Protein expression evaluation was performed using immunohistochemistry (IHC) staining of MST1R on breast cancer tissue samples from the Cancer Diagnosis Program Breast Cancer Progression tissue microarray and locally obtained breast tumor tissue samples analyzed with paired survival, metastasis, and subtype. RESULTS Data from TCGA (n = 774) show poorer relapse-free survival (RFS) in patients with high MST1R expression (P = 0.32) and no difference in MST1R expression based on tumor stage (P = 0.77) or nodal status (P = 0.94). Patients in the GEO-derived Kaplan-Meier Plotter microarray dataset demonstrate the association of MST1R and poorer overall survival (n = 1402, P = 0.018) and RFS in patients receiving chemotherapy (n = 798, P = 0.041). Patients with high MST1R expression display worse overall survival (P = 0.01) and receiver operator characteristic (ROC) analysis demonstrate the predictive capacity of increased MST1R with early death (P = 0.0017) in IHC-stained samples. Paired IHC-stained breast tumor samples from the primary versus metastatic site show MST1R expression is associated with metastatic progression (P = 0.032), and ROC analysis supports the predictive capacity of MST1R in metastatic progression (P = 0.031). No associations of MST1R with estrogen receptor (ER), progesterone receptor (PR), both ER and PR, HER2 positivity, or triple-negativity were found (P = 0.386, P = 0.766, P = 0.746, P = 0.457, P = 0.947, respectively). CONCLUSIONS MST1R expression has prognostic value in breast cancer with respect to survival and metastatic progression. MST1R expression is not associated with tumor stage, nodal status, or subtype.
Collapse
|
14
|
Berning P, Hennemann C, Tulotta C, Schaefer C, Lechtape B, Hotfilder M, El Gourari Y, Jürgens H, Snaar-Jagalska E, Hempel G, Dirksen U, Potratz J. The Receptor Tyrosine Kinase RON and Its Isoforms as Therapeutic Targets in Ewing Sarcoma. Cancers (Basel) 2020; 12:cancers12040904. [PMID: 32272784 PMCID: PMC7226494 DOI: 10.3390/cancers12040904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/29/2020] [Accepted: 04/04/2020] [Indexed: 11/16/2022] Open
Abstract
The receptor tyrosine kinase (RTK) RON is linked to an aggressive metastatic phenotype of carcinomas. While gaining interest as a therapeutic target, RON remains unstudied in sarcomas. In Ewing sarcoma, we identified RON among RTKs conferring resistance to insulin-like growth factor-1 receptor (IGF1R) targeting. Therefore, we explored RON in pediatric sarcoma cell lines and an embryonic Tg(kdrl:mCherry) zebrafish model, using an shRNA-based approach. To examine RON–IGF1R crosstalk, we employed the clinical-grade monoclonal antibody IMC-RON8, alone and together with the IGF1R-antibody IMC-A12. RON silencing demonstrated functions in vitro and in vivo, particularly within micrometastatic cellular capacities. Signaling studies revealed a unidirectional IGF1-mediated cross-activation of RON. Yet, IMC-A12 failed to sensitize cells to IMC-RON8, suggesting additional mechanisms of RON activation. Here, RT-PCR revealed that childhood sarcomas express short-form RON, an isoform resistant to antibody-mediated targeting. Interestingly, in contrast to carcinomas, treatment with DNA methyltransferase inhibitor did not diminish but increased short-form RON expression. Thus, this first report supports a role for RON in the metastatic progression of Ewing sarcoma. While principal molecular functions appear transferrable between carcinomas, Ewing sarcoma and possibly more common sarcoma subtypes, RON highlights that specific regulations of cellular networks and isoforms require better understanding to successfully transfer targeting strategies.
Collapse
Affiliation(s)
- Philipp Berning
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Carolin Hennemann
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Department of General Pediatrics, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Claudia Tulotta
- Institute of Biology, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Christiane Schaefer
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Birgit Lechtape
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Marc Hotfilder
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Yassmine El Gourari
- Department of General Pediatrics, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Heribert Jürgens
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Ewa Snaar-Jagalska
- Institute of Biology, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Georg Hempel
- Institute of Pharmaceutical and Medical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Uta Dirksen
- Division of Hematology and Oncology, Department of Pediatrics III, West German Cancer Centre, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Jenny Potratz
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Department of General Pediatrics, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Correspondence:
| |
Collapse
|
15
|
Hu CY, Xu XM, Hong B, Wu ZG, Qian Y, Weng TH, Liu YZ, Tang TM, Wang MH, Yao HP. Aberrant RON and MET Co-overexpression as Novel Prognostic Biomarkers of Shortened Patient Survival and Therapeutic Targets of Tyrosine Kinase Inhibitors in Pancreatic Cancer. Front Oncol 2019; 9:1377. [PMID: 31867280 PMCID: PMC6906148 DOI: 10.3389/fonc.2019.01377] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022] Open
Abstract
RON (recepteur d'origine nantais) and MET (hepatocyte growth factor receptor) are tyrosine kinase receptors. Various cancers have aberrant RON and MET expression and activation, which contribute to cancer cell proliferation, invasiveness, and metastasis. Here, we explored RON and MET expression in pancreatic cancer and their relationship with overall survival (OS) time, and evaluated their significance as therapeutic targets of tyrosine kinase inhibitors in pancreatic cancer. We enrolled 227 patients with pancreatic cancer in the study. RON and MET expression was analyzed by immunohistochemical staining. Four human pancreatic cancer cell lines expressing variable levels of RON or MET and four MET superfamily inhibitors (BMS777607, PHA665752, INCB28060, Tivantinib) were used. The effect of the four tyrosine kinase inhibitors on cell viability, migration, and apoptosis were determined using cell viability, scratch wound healing, and Caspase-Glo 3/7 assays. Cellular signaling was analyzed by immunoprecipitation and western blotting. The therapeutic efficacy of the tyrosine kinase inhibitors was determined with mouse xenograft pancreatic cancer models in vivo. There was wide aberrant RON and MET expression in the cancer tissues. In 227 pancreatic cancer samples, 33% had RON overexpression, 41% had MET overexpression, and 15.4% had RON and MET co-overexpression. RON and MET expression were highly correlated. RON and MET expression levels were significantly related to OS. Patients with RON and MET co-overexpression had poorer OS. BMS777607 and PHA665752 inhibited pancreatic cancer cell viability and migration, and promoted apoptosis by inhibiting RON and MET phosphorylation and further inhibiting the downstream signaling pathways in vitro. They also inhibited tumor growth and further inhibited phosphorylated (phosphor)-RON and phospho-MET expression in the mouse xenograft models in vivo effectively. INCB28060, which inhibits the MET signaling pathway alone, was not effective. RON and MET can be important indicators of prognosis in pancreatic cancer. Tyrosine kinase inhibitors targeting RON and MET in pancreatic cancer are a novel and potential approach for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Chen-Yu Hu
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang-Ming Xu
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Hong
- Department of Pathology, The Second Affiliated Hospital, Hangzhou, China
| | - Zhi-Gang Wu
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Qian
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian-Hao Weng
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi-Zhi Liu
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao-Ming Tang
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming-Hai Wang
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Biology Research Center, Amarillo, TX, United States.,Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Park JS, Choi HI, Kim DH, Kim CS, Bae EH, Ma SK, Kim SW. RON Receptor Tyrosine Kinase Regulates Epithelial Mesenchymal Transition and the Expression of Pro-Fibrotic Markers via Src/Smad Signaling in HK-2 and NRK49F Cells. Int J Mol Sci 2019; 20:ijms20215489. [PMID: 31690042 PMCID: PMC6862011 DOI: 10.3390/ijms20215489] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) play important roles in the pathogenic processes of kidney fibrosis. However, the pathophysiological roles of recepteur d’origine nantais (RON), one of the receptor tyrosine kinases, have not yet been defined. We investigated whether the activation or sequence-specific small interfering RNA (siRNA) suppression of RON could regulate epithelial mesenchymal transition (EMT) and the expression of pro-fibrotic markers, and its underlying molecular mechanisms. Stable cell lines and transient transfection for RON and the transfected cells of siRNA for RON were developed to investigate the molecular mechanisms in human kidney proximal tubular epithelial (HK-2) and interstitial fibroblasts (NRK49F) cells. RON overexpression induced EMT and increased expression of fibrosis-related proteins such as N-cadherin, vimentin, transforming growth factor-β (TGFβ), αSMA, and fibronectin in HK-2 and NRK49F cells. RON overexpression increased various RTKs and the phosphorylation of Src (Y416) and Smad, while inhibition of RON by siRNA attenuated the expression of EMT- and fibrosis-related proteins and decreased RTKs such as insulin-like growth factor receptor (IGFR), fibroblast growth factor receptor 1 (FGFR1), vascular endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR), as well as the phosphorylation of Src and Smad pathways. siRNA silencing of Src also attenuated the expression of IGFR, FGFR1, VEGFR, and PDGFR. Inhibition of RON can exert an anti-fibrotic effect by the inhibition of EMT and other RTKs through control of Src and Smad pathways in HK-2 and NRK49F cells.
Collapse
Affiliation(s)
- Jung Sun Park
- Department of Internal Medicine, Chonnam National University Medical School, 42 Jebongro, Gwangju 61469, Korea.
| | - Hoon-In Choi
- Department of Internal Medicine, Chonnam National University Medical School, 42 Jebongro, Gwangju 61469, Korea.
| | - Dong-Hyun Kim
- Department of Internal Medicine, Chonnam National University Medical School, 42 Jebongro, Gwangju 61469, Korea.
| | - Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School, 42 Jebongro, Gwangju 61469, Korea.
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, 42 Jebongro, Gwangju 61469, Korea.
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, 42 Jebongro, Gwangju 61469, Korea.
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, 42 Jebongro, Gwangju 61469, Korea.
| |
Collapse
|
17
|
Brown NE, Paluch AM, Nashu MA, Komurov K, Waltz SE. Tumor Cell Autonomous RON Receptor Expression Promotes Prostate Cancer Growth Under Conditions of Androgen Deprivation. Neoplasia 2018; 20:917-929. [PMID: 30121008 PMCID: PMC6098205 DOI: 10.1016/j.neo.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Current treatment strategies provide minimal results for patients with castration-resistant prostate cancer (CRPC). Attempts to target the androgen receptor have shown promise, but resistance ultimately develops, often due to androgen receptor reactivation. Understanding mechanisms of resistance, including androgen receptor reactivation, is crucial for development of more efficacious CRPC therapies. Here, we report that the RON receptor tyrosine kinase is highly expressed in the majority of human hormone-refractory prostate cancers. Further, we show that exogenous expression of RON in human and murine prostate cancer cells circumvents sensitivity to androgen deprivation and promotes prostate cancer cell growth in both in vivo and in vitro settings. Conversely, RON loss induces sensitivity of CRPC cells to androgen deprivation. Mechanistically, we demonstrate that RON overexpression leads to activation of multiple oncogenic transcription factors (namely, β-catenin and NF-κB), which are sufficient to drive androgen receptor nuclear localization and activation of AR responsive genes under conditions of androgen deprivation and support castration-resistant growth. In total, this study demonstrates the functional significance of RON during prostate cancer progression and provides a strong rationale for targeting RON signaling in prostate cancer as a means to limit resistance to androgen deprivation therapy.
Collapse
Affiliation(s)
- Nicholas E Brown
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Andrew M Paluch
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Madison A Nashu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kakajan Komurov
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Susan E Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45267, USA.
| |
Collapse
|
18
|
Brown NE, Sullivan C, Waltz SE. Therapeutic Considerations for Ron Receptor Expression in Prostate Cancer. EMS CANCER SCIENCE JOURNAL 2018; 1:003. [PMID: 30775725 PMCID: PMC6377156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
INTRODUCTION The Ron receptor tyrosine kinase was initially discovered as a protein which played a critical role in regulating inflammatory responses. This effect was primarily determined through studies in various macrophage populations. Since its initial discovery, a role has emerged for Ron as a driver of cancer within epithelial cells. After numerous publications have detailed a role for Ron in promoting tumor initiation, growth, and metastasis, Ron has been designated as an emerging therapeutic option in a variety of cancers. AREAS COVERED This review discusses the current literature regarding the role of Ron in prostate cancer and places special emphasis on the role of Ron in both epithelial cells and macrophages. Whole body loss of Ron signaling initially exposed a variety of prostate cancer growth mechanisms regulated by Ron. With the knowledge that Ron plays an integral part in regulating the function of epithelial cells and macrophages, studies commenced to discern the cell type specific functions for Ron in prostate cancer. A novel role for Ron in promoting Castration Resistant Prostate Cancer has recently been uncovered, and the results of these studies are summarized herein. Furthermore, this review gives a summary of several currently available compounds which show promise at targeting Ron in both epithelial and macrophage populations. OUTLOOK Sufficient evidence has been provided for the initiation of clinical trials focused on targeting Ron in both macrophage and epithelial compartments for the treatment of prostate cancer. A number of therapeutic avenues for targeting Ron in prostate cancer are currently available; however, special consideration will need to take place knowing that Ron signaling impacts multiple cell types. Further understanding of the cell type specific functions of Ron in prostate cancer will help inform and shape future clinical research and therapeutic strategies.
Collapse
Affiliation(s)
- Nicholas E. Brown
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Camille Sullivan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45267, USA
| |
Collapse
|
19
|
Ruiz-Torres SJ, Benight NM, Karns RA, Lower EE, Guan JL, Waltz SE. HGFL-mediated RON signaling supports breast cancer stem cell phenotypes via activation of non-canonical β-catenin signaling. Oncotarget 2017; 8:58918-58933. [PMID: 28938607 PMCID: PMC5601703 DOI: 10.18632/oncotarget.19441] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/11/2017] [Indexed: 12/16/2022] Open
Abstract
Breast cancer stem cells (BCSCs), which drive tumor progression, recurrence, and metastasis, are considered a major challenge for breast cancer treatments, thus the discovery of novel pathways regulating BCSC maintenance remains essential to develop new strategies to effectively target this population and combat disease mortality. The HGFL-RON signaling is overexpressed in human breast cancers and is associated with increased breast cancer progression, metastasis, and poor prognosis. Here, we report that overexpression of RON/MST1R and HGFL/MST1 in cell lines and primary tumors increases BCSC self-renewal, numbers, and tumorigenic potential after syngeneic transplantation. Transcriptome analyses also reveal that the HGFL-RON signaling pathway regulates additional BCSC functions and supports an immunosuppressive microenvironment to stimulate tumor formation and progression. Moreover, we show that genetic and chemical downregulation of HGFL-RON signaling disrupts BCSC phenotypes and tumor growth by suppressing the RON-mediated phosphorylation/activation of β-CATENIN/CTNNB1 and its effector NF-κB/RELA. These studies indicate that HGFL-RON signaling regulates BCSC phenotypes and the tumor microenvironment to drive tumorigenesis and present HGFL/RON as novel therapeutic targets to effectively eradicate BCSCs in patients.
Collapse
Affiliation(s)
- Sasha J Ruiz-Torres
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Nancy M Benight
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rebekah A Karns
- Division of Bioinformatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Elyse E Lower
- Department of Internal Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Susan E Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.,Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45267, USA
| |
Collapse
|
20
|
Faham N, Welm AL. RON Signaling Is a Key Mediator of Tumor Progression in Many Human Cancers. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 81:177-188. [PMID: 28057847 DOI: 10.1101/sqb.2016.81.031377] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With an increasing body of literature covering RON receptor tyrosine kinase function in different types of human cancers, it is becoming clear that RON has prominent roles in both cancer cells and in the tumor-associated microenvironment. RON not only activates several oncogenic signaling pathways in cancer cells, leading to more aggressive behavior, but also promotes an immunosuppressive, alternatively activated phenotype in macrophages and limits the antitumor immune response. These two unique functions of this oncogene, the strong correlation between RON expression and poor outcomes in cancer, and the high tolerability of a new RON inhibitor make it an exciting therapeutic target, the blocking of which offers an advantage toward improving the survival of cancer patients. Here, we discuss recent findings on the role of RON signaling in cancer progression and its potential in cancer therapy.
Collapse
Affiliation(s)
- Najme Faham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
21
|
Chakedis J, French R, Babicky M, Jaquish D, Howard H, Mose E, Lam R, Holman P, Miyamoto J, Walterscheid Z, Lowy AM. A novel protein isoform of the RON tyrosine kinase receptor transforms human pancreatic duct epithelial cells. Oncogene 2016; 35:3249-59. [PMID: 26477314 PMCID: PMC4837108 DOI: 10.1038/onc.2015.384] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 07/27/2015] [Accepted: 08/28/2015] [Indexed: 02/04/2023]
Abstract
The MST1R gene is overexpressed in pancreatic cancer producing elevated levels of the RON tyrosine kinase receptor protein. While mutations in MST1R are rare, alternative splice variants have been previously reported in epithelial cancers. We report the discovery of a novel RON isoform discovered in human pancreatic cancer. Partial splicing of exons 5 and 6 (P5P6) produces a RON isoform that lacks the first extracellular immunoglobulin-plexin-transcription domain. The splice variant is detected in 73% of xenografts derived from pancreatic adenocarcinoma patients and 71% of pancreatic cancer cell lines. Peptides specific to RON P5P6 detected in human pancreatic cancer specimens by mass spectrometry confirm translation of the protein isoform. The P5P6 isoform is found to be constitutively phosphorylated, present in the cytoplasm, and it traffics to the plasma membrane. Expression of P5P6 in immortalized human pancreatic duct epithelial (HPDE) cells activates downstream AKT, and in human pancreatic epithelial nestin-expressing cells, activates both the AKT and MAPK pathways. Inhibiting RON P5P6 in HPDE cells using a small molecule inhibitor BMS-777607 blocked constitutive activation and decreased AKT signaling. P5P6 transforms NIH3T3 cells and induces tumorigenicity in HPDE cells. Resultant HPDE-P5P6 tumors develop a dense stromal compartment similar to that seen in pancreatic cancer. In summary, we have identified a novel and constitutively active isoform of the RON tyrosine kinase receptor that has transforming activity and is expressed in human pancreatic cancer. These findings provide additional insight into the biology of the RON receptor in pancreatic cancer and are clinically relevant to the study of RON as a potential therapeutic target.
Collapse
Affiliation(s)
- J Chakedis
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - R French
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - M Babicky
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - D Jaquish
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - H Howard
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - E Mose
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - R Lam
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - P Holman
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - J Miyamoto
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Z Walterscheid
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - A M Lowy
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
22
|
Raeppel F, Raeppel SL, Therrien E. Design, synthesis and RON receptor tyrosine kinase inhibitory activity of new head groups analogs of LCRF-0004. Bioorg Med Chem Lett 2015; 25:3810-5. [PMID: 26243370 DOI: 10.1016/j.bmcl.2015.07.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 12/31/2022]
Abstract
New heteroarylcarboxamide head groups substituted with two aromatic rings analogs of thieno[3,2-b]pyridine-based kinase inhibitor LCRF-0004 were designed and synthesized. Potent inhibitors of RON tyrosine kinase with various level of selectivity for c-Met RTK were obtained.
Collapse
Affiliation(s)
- Franck Raeppel
- Laboratoires ChemRF Inc./ChemRF Laboratories Inc., 3194 rue Claude-Jodoin, Montréal, QC H1Y 3M2, Canada
| | - Stéphane L Raeppel
- Laboratoires ChemRF Inc./ChemRF Laboratories Inc., 3194 rue Claude-Jodoin, Montréal, QC H1Y 3M2, Canada.
| | - Eric Therrien
- Laboratoires ChemRF Inc./ChemRF Laboratories Inc., 3194 rue Claude-Jodoin, Montréal, QC H1Y 3M2, Canada
| |
Collapse
|
23
|
Design and synthesis of constrained analogs of LCRF-0004 as potent RON tyrosine kinase inhibitors. Bioorg Med Chem Lett 2015; 25:3706-10. [PMID: 26112445 DOI: 10.1016/j.bmcl.2015.06.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/08/2015] [Indexed: 01/09/2023]
Abstract
New fused bicyclic lactam head groups as rigidified analogs of thieno[3,2-b]pyridine-based kinase inhibitor LCRF-0004 were designed and synthesized. Depending on the functionalities and the size of these bicyclic head groups, potent inhibitors of RON tyrosine kinase with various level of selectivity against c-Met tyrosine kinase were obtained.
Collapse
|
24
|
Raeppel SL, Raeppel F, Therrien E. Design and synthesis of close analogs of LCRF-0004, a potent and selective RON receptor tyrosine kinase inhibitor. Bioorg Med Chem Lett 2015; 25:2527-31. [PMID: 25953155 DOI: 10.1016/j.bmcl.2015.04.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/14/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022]
Abstract
New carboxamide head group analogs of thieno[3,2-b]pyridine-based kinase inhibitor LCRF-0004 were designed and synthesized. Potent and selective inhibitors of RON enzyme versus c-Met RTK were obtained.
Collapse
Affiliation(s)
- Stéphane L Raeppel
- ChemRF Laboratories, 3194 rue Claude-Jodoin, Montréal, QC H1Y 3M2, Canada.
| | - Franck Raeppel
- ChemRF Laboratories, 3194 rue Claude-Jodoin, Montréal, QC H1Y 3M2, Canada
| | - Eric Therrien
- ChemRF Laboratories, 3194 rue Claude-Jodoin, Montréal, QC H1Y 3M2, Canada
| |
Collapse
|
25
|
Stuart WD, Brown NE, Paluch AM, Waltz SE. Loss of Ron receptor signaling leads to reduced obesity, diabetic phenotypes and hepatic steatosis in response to high-fat diet in mice. Am J Physiol Endocrinol Metab 2015; 308:E562-72. [PMID: 25648832 PMCID: PMC4385874 DOI: 10.1152/ajpendo.00467.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/01/2015] [Indexed: 02/06/2023]
Abstract
The Ron receptor tyrosine kinase is a heterodimeric, membrane-spanning glycoprotein that participates in divergent processes, including proliferation, motility, and modulation of inflammatory responses. We observed male C57BL/6 mice with a global deletion of the Ron tyrosine kinase signaling domain (TK(-/-)) to be leaner compared with control (TK(+/+)) mice under a standard diet. When fed a high-fat diet (HFD), TK(-/-) mice gained 50% less weight and were more insulin sensitive and glucose tolerant than controls. Livers from HFD TK(-/-) mice were considerably less steatotic and weighed significantly less than TK(+/+) livers. Serum cytokine levels of HFD TK(-/-) mice were also significantly altered compared with TK(+/+) mice. Fewer and smaller adipocytes were present in the TK(-/-) mice on both control and HFD and were accompanied by diminished adiponectin and peroxisome proliferator-activated receptor-γ expression. In vitro adipogenesis experiments suggested reduced differentiation in TK(-/-) embryonic fibroblasts (MEFs) that was rescued by Ron reconstitution. Likewise, signal transducer and activator of transcription (STAT)-3 phosphorylation was diminished in TK(-/-) MEFs but was increased after Ron reconstitution. The adipogenic inhibitors, preadipocyte factor 1 and Sox9, were elevated in TK(-/-) MEFs and increased in both groups after STAT3 silencing. In total, these studies document a previously unknown function for the Ron receptor in mediating HFD-induced obesity and metabolic dysregulation.
Collapse
Affiliation(s)
- William D Stuart
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Nicholas E Brown
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Andrew M Paluch
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Susan E Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio; and Department of Research, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio
| |
Collapse
|
26
|
Landgraf KE, Steffek M, Quan C, Tom J, Yu C, Santell L, Maun HR, Eigenbrot C, Lazarus RA. An allosteric switch for pro-HGF/Met signaling using zymogen activator peptides. Nat Chem Biol 2014; 10:567-73. [DOI: 10.1038/nchembio.1533] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 04/17/2014] [Indexed: 12/17/2022]
|
27
|
Wang X, Yennawar N, Hankey PA. Autoinhibition of the Ron receptor tyrosine kinase by the juxtamembrane domain. Cell Commun Signal 2014; 12:28. [PMID: 24739671 PMCID: PMC4021555 DOI: 10.1186/1478-811x-12-28] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 02/05/2014] [Indexed: 01/21/2023] Open
Abstract
Background The Ron receptor tyrosine kinase (RTK) has been implicated in the progression of a number of carcinomas, thus understanding the regulatory mechanisms governing its activity is of potential therapeutic significance. A critical role for the juxtamembrane domain in regulating RTK activity is emerging, however the mechanism by which this regulation occurs varies considerably from receptor to receptor. Results Unlike other RTKs described to date, tyrosines in the juxtamembrane domain of Ron are inconsequential for receptor activation. Rather, we have identified an acidic region in the juxtamembrane domain of Ron that plays a central role in promoting receptor autoinhibition. Furthermore, our studies demonstrate that phosphorylation of Y1198 in the kinase domain promotes Ron activation, likely by relieving the inhibitory constraints imposed by the juxtamembrane domain. Conclusions Taken together, our experimental data and molecular modeling provide a better understanding of the mechanisms governing Ron activation, which will lay the groundwork for the development of novel therapeutic approaches for targeting Ron in human malignancies.
Collapse
Affiliation(s)
| | | | - Pamela A Hankey
- Graduate Program in Cell and Developmental Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
28
|
Wang SC. PCNA: a silent housekeeper or a potential therapeutic target? Trends Pharmacol Sci 2014; 35:178-86. [PMID: 24655521 DOI: 10.1016/j.tips.2014.02.004] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 11/18/2022]
Abstract
Proliferating cell nuclear antigen (PCNA) is known as a molecular marker for proliferation given its role in replication. Three identical molecules of PCNA form a molecular sliding clamp around the DNA double helix. This provides an essential platform on which multiple proteins are dynamically recruited and coordinately regulated. Over the past decade, new research has provided a deeper comprehension of PCNA as a coordinator of essential cellular functions for cell growth, death, and maintenance. Although the biology of PCNA in proliferation has been comprehensively reviewed, research progress in unveiling the potential of targeting PCNA for disease treatment has not been systematically discussed. Here we briefly summarize the basic structural and functional characteristics of PCNA, and then discuss new developments in its protein interactions, trimer formation, and signaling regulation that open the door to possible therapeutic targeting of PCNA.
Collapse
Affiliation(s)
- Shao-Chun Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
29
|
Kauder SE, Santell L, Mai E, Wright LY, Luis E, N'Diaye EN, Lutman J, Ratti N, Sa SM, Maun HR, Stefanich E, Gonzalez LC, Graham RR, Diehl L, Faubion WA, Keir ME, Young J, Chaudhuri A, Lazarus RA, Egen JG. Functional consequences of the macrophage stimulating protein 689C inflammatory bowel disease risk allele. PLoS One 2013; 8:e83958. [PMID: 24409221 PMCID: PMC3884107 DOI: 10.1371/journal.pone.0083958] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 11/09/2013] [Indexed: 12/19/2022] Open
Abstract
Background Macrophage stimulating protein (MSP) is a serum growth factor that binds to and activates the receptor tyrosine kinase, Recepteur d'Origine Nantais (RON). A non-synonymous coding variant in MSP (689C) has been associated with genetic susceptibility to both Crohn's disease and ulcerative colitis, two major types of inflammatory bowel disease (IBD) characterized by chronic inflammation of the digestive tract. We investigated the consequences of this polymorphism for MSP-RON pathway activity and IBD pathogenesis. Methods RON expression patterns were examined on mouse and human cells and tissues under normal and disease conditions to identify cell types regulated by MSP-RON. Recombinant MSP variants were tested for their ability to bind and stimulate RON and undergo proteolytic activation. MSP concentrations were quantified in the serum of individuals carrying the MSP 689R and 689C alleles. Results In intestinal tissue, RON was primarily expressed by epithelial cells under normal and disease conditions. The 689C polymorphism had no impact on the ability of MSP to bind to or signal through RON. In a cohort of normal individuals and IBD patients, carriers of the 689C polymorphism had lower concentrations of MSP in their serum. Conclusions By reducing the quantities of circulating MSP, the 689C polymorphism, or a variant in linkage disequilibrium with this polymorphism, may impact RON ligand availability and thus receptor activity. Given the known functions of RON in regulating wound healing and our analysis of RON expression patterns in human intestinal tissue, these data suggest that decreased RON activity may impact the efficiency of epithelial repair and thus underlie the increased IBD susceptibility associated with the MSP 689C allele.
Collapse
Affiliation(s)
- Steven E. Kauder
- Discovery Immunology, Genentech Inc., South San Francisco, California, United States of America
| | - Lydia Santell
- Early Discovery Biochemistry, Genentech Inc., South San Francisco, California, United States of America
| | - Elaine Mai
- Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, United States of America
| | - Lilyan Y. Wright
- Immunology, Tissue Growth and Repair- Diagnostics Discovery, Genentech Inc., South San Francisco, California, United States of America
| | - Elizabeth Luis
- Protein Chemistry, Genentech Inc., South San Francisco, California, United States of America
| | - Elsa N. N'Diaye
- Discovery Immunology, Genentech Inc., South San Francisco, California, United States of America
| | - Jeff Lutman
- Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, California, United States of America
| | - Navneet Ratti
- Pathology, Genentech Inc., South San Francisco, California, United States of America
| | - Susan M. Sa
- Pathology, Genentech Inc., South San Francisco, California, United States of America
| | - Henry R. Maun
- Early Discovery Biochemistry, Genentech Inc., South San Francisco, California, United States of America
| | - Eric Stefanich
- Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, California, United States of America
| | - Lino C. Gonzalez
- Protein Chemistry, Genentech Inc., South San Francisco, California, United States of America
| | - Robert R. Graham
- Immunology, Tissue Growth and Repair -Human Genetics, Genentech Inc., South San Francisco, California, United States of America
| | - Lauri Diehl
- Pathology, Genentech Inc., South San Francisco, California, United States of America
| | - William A. Faubion
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Mary E. Keir
- Immunology, Tissue Growth and Repair- Diagnostics Discovery, Genentech Inc., South San Francisco, California, United States of America
| | - Judy Young
- Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, United States of America
| | - Amitabha Chaudhuri
- Molecular Oncology, Genentech Inc., South San Francisco, California, United States of America
| | - Robert A. Lazarus
- Early Discovery Biochemistry, Genentech Inc., South San Francisco, California, United States of America
| | - Jackson G. Egen
- Discovery Immunology, Genentech Inc., South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Sharma S, Zeng JY, Zhuang CM, Zhou YQ, Yao HP, Hu X, Zhang R, Wang MH. Small-molecule inhibitor BMS-777607 induces breast cancer cell polyploidy with increased resistance to cytotoxic chemotherapy agents. Mol Cancer Ther 2013; 12:725-36. [PMID: 23468529 DOI: 10.1158/1535-7163.mct-12-1079] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The RON receptor tyrosine kinase is a therapeutic target for cancer treatment. Here, we report therapeutic effect and phenotypic change of breast cancer cells in response to BMS-777607, a RON tyrosine kinase inhibitor. Treatment of breast cancer cells with BMS-777607 at therapeutic doses inhibited cancerous clonogenic growth but had only minimal effect on cell apoptosis. Significantly, BMS-777607 induced extensive polyploidy with multiple sets of chromosomes in cancer cells. This effect is independent of RON expression. Knockdown of RON in T-47D and ZR-75-1 cells by specific siRNA did not prevent polyploid formation. Immunofluorescent analysis of α-tubulin and γ-tubulin expression in polyploid cells revealed that BMS-777607 disrupts bipolar spindle formation and causes multipolar-like microtubule assembly. Also, both metaphase equatorial alignment and chromosomal segregation were absent in polyploid cells. These results suggest that cellular mitosis arrests at prophase/pro-metaphase and fails to undergo cytokinesis. By analyzing kinase-inhibitory profiles, aurora kinase B was identified as the target molecule inhibited by BMS-777607. In BMS-777607-treated cells, aurora kinase B was inhibited followed by protein degradation. Moreover, BMS-777607 inhibited Ser10 phosphorylation of histone H3, a substrate of aurora kinase B. Chemosensitivity analysis indicated the resistance of polyploid cells toward chemotherapeutics. Treatment with doxorubicin, bleomycin, methotrexate, and paclitaxel significantly increased cellular IC50 values. These findings highlight the theory that BMS-777607 acts as a multikinase inhibitor at therapeutic doses and is capable of inducing polyploidy by inhibiting aurora kinase B. Increased resistance of polyploid cells to cytotoxic chemotherapeutics could have a negative impact on targeted cancer therapy using BMS-777607.
Collapse
Affiliation(s)
- Sharad Sharma
- Cancer Biology Research Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | | | | | | | | | | | | | |
Collapse
|