1
|
Wang Y, Huang M, Zhou X, Li H, Ma X, Sun C. Potential of natural flavonoids to target breast cancer angiogenesis (review). Br J Pharmacol 2023. [PMID: 37940117 DOI: 10.1111/bph.16275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
Angiogenesis is the process by which new blood vessels form and is required for tumour growth and metastasis. It helps in supplying oxygen and nutrients to tumour cells and plays a crucial role in the local progression and distant metastasis of, and development of treatment resistance in, breast cancer. Tumour angiogenesis is currently regarded as a critical therapeutic target; however, anti-angiogenic therapy for breast cancer fails to produce satisfactory results, owing to issues such as inconsistent efficacy and significant adverse reactions. As a result, new anti-angiogenic drugs are urgently needed. Flavonoids, a class of natural compounds found in many foods, are inexpensive, widely available, and exhibit a broad range of biological activities, low toxicity, and favourable safety profiles. Several studies find that various flavonoids inhibit angiogenesis in breast cancer, indicating great therapeutic potential. In this review, we summarize the role of angiogenesis in breast cancer and the potential of natural flavonoids as anti-angiogenic agents for breast cancer treatment. We discuss the value and significance of nanotechnology for improving flavonoid absorption and utilization and anti-angiogenic effects, as well as the challenges of using natural flavonoids as drugs.
Collapse
Affiliation(s)
- Yuetong Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengge Huang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xintong Zhou
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Xiaoran Ma
- Department of Oncology, Linyi People's Hospital, Linyi, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
2
|
Sinha S, Medhi B, Radotra BD, Batovska DI, Markova N, Bhalla A, Sehgal R. Antimalarial and immunomodulatory potential of chalcone derivatives in experimental model of malaria. BMC Complement Med Ther 2022; 22:330. [PMID: 36510199 PMCID: PMC9743746 DOI: 10.1186/s12906-022-03777-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/03/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Malaria is a complex issue due to the availability of few therapies and chemical families against Plasmodium and mosquitoes. There is increasing resistance to various drugs and insecticides in Plasmodium and in the vector. Additionally, human behaviors are responsible for promoting resistance as well as increasing the risk of exposure to infections. Chalcones and their derivatives have been widely explored for their antimalarial effects. In this context, new derivatives of chalcones have been evaluated for their antimalarial efficacy. METHODS BALB/c mice were infected with P. berghei NK-65. The efficacy of the three most potent chalcone derivations (1, 2, and 3) identified after an in vitro compound screening test was tested. The selected doses of 10 mg/kg, 20 mg/kg, and 10 mg/kg were studied by evaluating parasitemia, changes in temperature, body weights, organ weights, histopathological features, nitric oxide, cytokines, and ICAM-1 expression. Also, localization of parasites inside the two vital tissues involved during malaria infections was done through a transmission electron microscope. RESULTS All three chalcone derivative treated groups showed significant (p < 0.001) reductions in parasitemia levels on the fifth and eighth days of post-infection compared to the infected control. These derivatives were found to modulate the immune response in a P. berghei infected malaria mouse model with a significant reduction in IL-12 levels. CONCLUSIONS The present study indicates the potential inhibitory and immunomodulatory actions of chalcones against the rodent malarial parasite P. berghei.
Collapse
Affiliation(s)
- Shweta Sinha
- grid.415131.30000 0004 1767 2903Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Bikash Medhi
- grid.415131.30000 0004 1767 2903Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - B. D. Radotra
- grid.415131.30000 0004 1767 2903Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Daniela I. Batovska
- grid.410344.60000 0001 2097 3094Institute of Organic Chemistry With Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nadezhda Markova
- grid.410344.60000 0001 2097 3094Institute of Organic Chemistry With Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ashish Bhalla
- grid.415131.30000 0004 1767 2903Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Sehgal
- grid.415131.30000 0004 1767 2903Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012 India
| |
Collapse
|
3
|
Song L, Luo Y, Li S, Hong M, Wang Q, Chi X, Yang C. ISL Induces Apoptosis and Autophagy in Hepatocellular Carcinoma via Downregulation of PI3K/AKT/mTOR Pathway in vivo and in vitro. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4363-4376. [PMID: 33116421 PMCID: PMC7585813 DOI: 10.2147/dddt.s270124] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
Aims Isoliquiritigenin (ISL), a flavonoid from Glycyrrhiza glabra, has previously been reported to have anti-tumor effects in vivo and in vitro. However, the mechanisms whereby ISL exerts its anticancer effects remain poorly understood in hepatocellular carcinoma (HCC). Purpose In the present study, we investigated the anticancer efficacy and associated mechanisms of ISL in HCC MHCC97-H and SMMC7721 cells. Results We found that ISL inhibited cell viability and proliferation and induced apoptosis in a dose- and time-dependent manner in liver cancer lines. Furthermore, ISL could activate autophagy in HCC cells, and the autophagy inhibitor HCQ enhances ISL-induced apoptosis in HCC cells. Additionally, ISL induced apoptosis and autophagy through inhibition of the PI3K/Akt/mTOR pathway. Most importantly, in a xenograft tumor model in nude mice, data showed that the administration of ISL decreased tumor growth and concurrently promoted the expression of LC3-II and cleaved-caspase-3. Interestingly, we found that ISL inhibits mTOR by docking onto the ATP-binding pocket of mTOR (ie, it competes with ATP). We thus suggest that mTOR is a potential target for ISL inhibition of hepatocellular carcinoma development, which could be of interest for future investigations. Conclusion Taken together, the results reveal that ISL effectively inhibited proliferation and induced apoptosis in HCC through autophagy induction in vivo and in vitro, probably via the PI3K/Akt/mTOR pathway. ISL may be a potential therapeutic agent for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Lei Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China.,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yi Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Shaoling Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Ming Hong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Xiaoling Chi
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Cong Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| |
Collapse
|
4
|
Peng F, Xiong L, Xie X, Tang H, Huang R, Peng C. Isoliquiritigenin Derivative Regulates miR-374a/BAX Axis to Suppress Triple-Negative Breast Cancer Tumorigenesis and Development. Front Pharmacol 2020; 11:378. [PMID: 32296334 PMCID: PMC7137655 DOI: 10.3389/fphar.2020.00378] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that accounts for the largest proportion of breast cancer-related deaths. Thus, it is imperative to search for novel drug candidates with potent anti-TNBC effects. Recent studies suggest that isoliquiritigenin (ISL) can significantly suppress the growth, migration, and invasion of breast cancer cells. We previously synthesized ISL derivatives and found that 3′,4′,5′,4″-tetramethoxychalcone (TMC) inhibits TNBC cell proliferation to a greater degree than ISL. The present study aimed to investigate the mechanisms underlying the anti-TNBC effects of TMC in vitro and in vivo. We show that TMC significantly inhibits the proliferative, migratory, and invasive abilities of MDA-MB-231 and BT549 cells. TMC induces apoptosis through the upregulation of Bax and downregulation of Bcl-2. PCR arrays demonstrate a significant decrease in miR-374a expression in TNBC cells after 24-h TMC treatment. MiR-374a is overexpressed in TNBC cells and has oncogenic properties. Real-time PCR analysis confirmed that TMC inhibits miR-374a in a dose-dependent manner, and luciferase assays confirmed that BAX is targeted by miR-374a. Further, we show that TMC increases Bax protein and mRNA levels by inhibiting miR-374a. TMC also attenuates TNBC tumor volumes and weights in vivo. These results demonstrate that TMC inhibits TNBC cell proliferation, foci formation, migration, invasion, and tumorigenesis, suggesting its potential to serve as a novel drug for treating TNBC through miR-374a repression.
Collapse
Affiliation(s)
- Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, China.,Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Cardiovascular Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liang Xiong
- Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Ruizhen Huang
- Cardiovascular Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Zhao TT, Xu YQ, Hu HM, Gong HB, Zhu HL. Isoliquiritigenin (ISL) and its Formulations: Potential Antitumor Agents. Curr Med Chem 2019; 26:6786-6796. [DOI: 10.2174/0929867325666181112091700] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 01/09/2023]
Abstract
Isoliquiritigenin (2’,4’,4-trihydroxychalcone, ISL) is one of the most important
chalcone compounds which is mainly derived from licorice root and many other plants. It exhibits
a remarkable range of potent biological and pharmacological activities such as antioxidative,
antitumor, antiaging, anti-inflammatory, anti-diabetic activities, etc. Numerous research
teams have demonstrated that ISL posseses the ability to carry out antigrowth and proliferation
in various cancer cells in vitro and in vivo. Meanwhile, the underlying mechanisms
of ISL that inhibit cancer cell proliferation have not been well explored. However, the poor
bioavailability and low water-soluble limit its clinical application. This review aims at providing
a comprehensive overview of the pharmacology antitumor activity of ISL and its mechanisms
in different malignancy especially in breast cancer cell line and summarize developments
of formulation utilized to overcome the barrier between its delivery characteristics and
application in clinics over the past 20 years.
Collapse
Affiliation(s)
- Ting-Ting Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Yu-Qing Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Hui-Min Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Hai-Bin Gong
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Gao F, Zhang J, Fu C, Xie X, Peng F, You J, Tang H, Wang Z, Li P, Chen J. iRGD-modified lipid-polymer hybrid nanoparticles loaded with isoliquiritigenin to enhance anti-breast cancer effect and tumor-targeting ability. Int J Nanomedicine 2017; 12:4147-4162. [PMID: 28615942 PMCID: PMC5459978 DOI: 10.2147/ijn.s134148] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Isoliquiritigenin (ISL), a natural anti-breast cancer dietary compound, has poor delivery characteristics and low bioavailability. In order to promote the therapeutic outcome of ISL, a tumor-targeting lipid–polymer hybrid nanoparticle (NP) system modified by tumor-homing iRGD peptides has been developed. The hybrid NPs were prepared by a modified single-step nanoprecipitation method to encapsulate ISL. iRGD peptides were anchored on the surface by a postinsertion method (ISL-iRGD NPs). The stable lipid–polymer structure of ISL-iRGD NPs, with high encapsulation and loading efficiency, was confirmed. Compared to free ISL and non-iRGD-modified counterparts, ISL-iRGD NPs showed higher cytotoxicity and cell apoptosis against the different type of breast cancer cells. This was attributable to higher cellular accumulation mediated by the iRGD-integrin recognition and the nanoscale effect. More importantly, based on the active tumor-tissue accumulation by iRGD peptides and the prolonged in vivo circulation by the stealth nanostructure, ISL-iRGD NPs displayed higher tumor-growth inhibition efficiency in 4T1-bearing breast-tumor mouse models. Therefore, the constructed iRGD modified lipid–polymer hybrid NPs would provide a promising drug-delivery strategy to improve ISL in anti-breast cancer efficacy.
Collapse
Affiliation(s)
- Fei Gao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen.,College of Pharmacy, Chengdu University of Chinese Medicine, Chengdu
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Chinese Medicine, Chengdu
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Chinese Medicine, Chengdu
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine
| | - Fu Peng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen.,College of Pharmacy, Chengdu University of Chinese Medicine, Chengdu
| | - Jieshu You
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen
| | - Hailin Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen.,Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine
| | - Zhiyu Wang
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Jianping Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen.,College of Pharmacy, Chengdu University of Chinese Medicine, Chengdu
| |
Collapse
|
7
|
Farooqi AA, Gadaleta CD, Ranieri G, Fayyaz S, Marech I. Restoring TRAIL Induced Apoptosis Using Naturopathy. Hercules Joins Hand with Nature to Triumph Over Lernaean Hydra. Curr Genomics 2016; 18:27-38. [PMID: 28503088 PMCID: PMC5321767 DOI: 10.2174/1389202917666160803150023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/28/2015] [Accepted: 11/13/2015] [Indexed: 01/01/2023] Open
Abstract
Cancer is a multifaceted disease. Our deepened knowledge about genetic and biological mechanisms of cancer cells presents an opportunity to explore the inter-individual differences in the body’s ability to metabolize and respond to different nutrients. It is becoming progressively more understandable that the deregulation of several signaling pathways and the alterations in apoptotic response are some of the major determinants that underpin carcinogenesis. Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL)-mediated signaling has gained a remarkable appreciation because of its ability to selectively induce apoptosis in cancer cells leaving normal cells intact. However, technological advances have started to shed light on underlying mechanisms of resistance against TRAIL-induced apoptosis in cancer cells. The impairment of TRAIL-mediated apoptosis includes various factors ranging from the loss or down regulation of TRAIL receptors or pro-apoptotic proteins to the up regulation of anti-apoptotic proteins. Intriguingly to mention that there is an ever-increasing number of natural herbal extracts (phytometabolites), which have been explored to date for their potential action in restoring apoptosis TRAIL-mediated in cancer cells. In this review, we will highlight the progress in understanding the mechanisms opted by phenolic compounds in overcoming TRAIL resistance.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- 1Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan; 2Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Cosmo Damiano Gadaleta
- 1Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan; 2Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Girolamo Ranieri
- 1Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan; 2Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Sundas Fayyaz
- 1Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan; 2Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Ilaria Marech
- 1Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan; 2Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre Istituto Tumori "Giovanni Paolo II", Bari, Italy
| |
Collapse
|
8
|
Mahalingam S, Gao L, Eisner J, Helferich W, Flaws JA. Effects of isoliquiritigenin on ovarian antral follicle growth and steroidogenesis. Reprod Toxicol 2016; 66:107-114. [PMID: 27773742 PMCID: PMC5125911 DOI: 10.1016/j.reprotox.2016.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/12/2016] [Accepted: 10/19/2016] [Indexed: 01/28/2023]
Abstract
Isoliquiritigenin is a botanical estrogen used as a dietary supplement. Previous studies show that other botanical estrogens affect ovarian estradiol synthesis, but isoliquiritigenin's effects on the ovary are unknown. Thus, this study tested the hypothesis that isoliquiritigenin inhibits ovarian antral follicle growth and steroidogenesis. Antral follicles from CD-1 mice were cultured with vehicle control (dimethyl sulfoxide; DMSO) or isoliquiritigenin (0.6μM, 6 μM, 36 μM, and 100 μM) for 48-96h. During culture, follicle diameters were measured daily to assess follicle growth. After culture, media were collected for hormone assays and follicles were collected for gene expression analysis of steroidogenic enzymes. Isoliquiritigenin inhibited antral follicle growth and altered estradiol, testosterone, and progesterone levels. Additionally, isoliquiritigenin altered the mRNA levels of cytochrome P450 steroid 17-α-hydroxylase 1, aromatase, 17β-hydroxysteroid dehydrogenase 1, and steroidogenic acute regulatory protein. These data indicate that exposure to isoliquiritigenin inhibits growth and disrupts steroid production in antral follicles.
Collapse
Affiliation(s)
- Sharada Mahalingam
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802, United States.
| | - Liying Gao
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802, United States.
| | - Jacqueline Eisner
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802, United States.
| | - William Helferich
- Department of Food Science and Human Nutrition, University of Illinois, 905 S. Goodwin, Urbana, IL 61801, United States.
| | - Jodi A Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802, United States.
| |
Collapse
|
9
|
Dietz BM, Hajirahimkhan A, Dunlap TL, Bolton JL. Botanicals and Their Bioactive Phytochemicals for Women's Health. Pharmacol Rev 2016; 68:1026-1073. [PMID: 27677719 PMCID: PMC5050441 DOI: 10.1124/pr.115.010843] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Botanical dietary supplements are increasingly popular for women's health, particularly for older women. The specific botanicals women take vary as a function of age. Younger women will use botanicals for urinary tract infections, especially Vaccinium macrocarpon (cranberry), where there is evidence for efficacy. Botanical dietary supplements for premenstrual syndrome (PMS) are less commonly used, and rigorous clinical trials have not been done. Some examples include Vitex agnus-castus (chasteberry), Angelica sinensis (dong quai), Viburnum opulus/prunifolium (cramp bark and black haw), and Zingiber officinale (ginger). Pregnant women have also used ginger for relief from nausea. Natural galactagogues for lactating women include Trigonella foenum-graecum (fenugreek) and Silybum marianum (milk thistle); however, rigorous safety and efficacy studies are lacking. Older women suffering menopausal symptoms are increasingly likely to use botanicals, especially since the Women's Health Initiative showed an increased risk for breast cancer associated with traditional hormone therapy. Serotonergic mechanisms similar to antidepressants have been proposed for Actaea/Cimicifuga racemosa (black cohosh) and Valeriana officinalis (valerian). Plant extracts with estrogenic activities for menopausal symptom relief include Glycine max (soy), Trifolium pratense (red clover), Pueraria lobata (kudzu), Humulus lupulus (hops), Glycyrrhiza species (licorice), Rheum rhaponticum (rhubarb), Vitex agnus-castus (chasteberry), Linum usitatissimum (flaxseed), Epimedium species (herba Epimedii, horny goat weed), and Medicago sativa (alfalfa). Some of the estrogenic botanicals have also been shown to have protective effects against osteoporosis. Several of these botanicals could have additional breast cancer preventive effects linked to hormonal, chemical, inflammatory, and/or epigenetic pathways. Finally, although botanicals are perceived as natural safe remedies, it is important for women and their healthcare providers to realize that they have not been rigorously tested for potential toxic effects and/or drug/botanical interactions. Understanding the mechanism of action of these supplements used for women's health will ultimately lead to standardized botanical products with higher efficacy, safety, and chemopreventive properties.
Collapse
Affiliation(s)
- Birgit M Dietz
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Atieh Hajirahimkhan
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Tareisha L Dunlap
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Judy L Bolton
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
10
|
Shin SY, Ahn S, Yoon H, Jung H, Jung Y, Koh D, Lee YH, Lim Y. Colorectal anticancer activities of polymethoxylated 3-naphthyl-5-phenylpyrazoline-carbothioamides. Bioorg Med Chem Lett 2016; 26:4301-9. [PMID: 27476140 DOI: 10.1016/j.bmcl.2016.07.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/07/2016] [Accepted: 07/18/2016] [Indexed: 01/08/2023]
Abstract
To develop potent chemotherapeutic agents for treating colorectal cancers, polymethoxylated 3-naphthyl-5-phenylpyrazoline-carbothioamide derivatives were designed. Twenty-two novel derivatives were synthesized and their cytotoxicities were measured using a clonogenic long-term survival assay. Of these derivatives, 3-(1-hydroxynaphthalen-2-yl)-N-(3-methoxyphenyl)-5-(4-methoxyphenyl)-pyrazoline-1-carbothioamide (NPC 15) exhibited the best half-maximal cell growth inhibitory concentrations (196.35nM). To explain its cytotoxicity, further biological experiments were performed. Treatment with NPC 15 inhibited cell cycle progression and triggered apoptosis through the caspase-mediated pathway. Its inhibitory effects on several kinases participating in the cell cycle were investigated using an in vitro kinase assay. Its half-maximal inhibitory concentrations for aurora kinases A and B were 105.03μM and 8.53μM, respectively. Further analysis showed that NPC 15 decreased phosphorylation of aurora kinases A, B, and C and phosphorylation of histone H3, a substrate of aurora kinases A and B. Its molecular binding mode for aurora kinase B was elucidated using in silico docking. In summary, polymethoxylated 3-naphthyl-5-phenylpyrazoline-carbothioamides could be potent chemotherapeutic agents.
Collapse
Affiliation(s)
- Soon Young Shin
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Seunghyun Ahn
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea
| | - Hyuk Yoon
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea
| | - Hyeryoung Jung
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea
| | - Yearam Jung
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea
| | - Dongsoo Koh
- Department of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
| | - Young Han Lee
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea.
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
11
|
Hsia SM, Yu CC, Shih YH, Yuanchien Chen M, Wang TH, Huang YT, Shieh TM. Isoliquiritigenin as a cause of DNA damage and inhibitor of ataxia-telangiectasia mutated expression leading to G2/M phase arrest and apoptosis in oral squamous cell carcinoma. Head Neck 2015; 38 Suppl 1:E360-71. [PMID: 25580586 DOI: 10.1002/hed.24001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Isoliquiritigenin (ISL), a natural compound extracted from licorice, has chemopreventive and antitumor activities. The purpose of this study was to investigate the anticancer effect of ISL on human oral squamous cell carcinoma (OSCC). METHODS The anti-OSCC effects of ISL were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test, flow cytometry, reverse transcription-polymerase chain reaction, Western blotting, promoter activity, terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, malignant phenotype analysis, microRNA, and xenografting. RESULTS ISL induced OSCC cell cycle G2/M phase arrest, apoptosis, and DNA damage. However, the DNA repair-associated ataxia telangiectasia mutated (ATM) and phospho-ATM were downregulated, ATM mRNA remained unchanged, and the downstream signals were inhibited. ATM recovered when the caspase activity was blocked by Z-DVED-FMK. A low dose of ISL inhibited OSCC malignancy in vitro and reduced the tumor size in vivo. CONCLUSION ATM was cleaved by ISL-activated caspase, thus inhibiting DNA repair in OSCC cells. Therefore, ISL is a promising chemopreventive agent against oral cancer. © 2015 Wiley Periodicals, Inc. Head Neck 38: E360-E371, 2016.
Collapse
Affiliation(s)
- Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chia Yu
- Institute of Oral Science, School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yin-Hua Shih
- Institute of Oral Science, School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Michael Yuanchien Chen
- Department of Oral and Maxillofacial Surgery, China Medical University Hospital, Taichung, Taiwan.,School of Dentistry, College of Medicine, China Medical University, Taichung, Taiwan
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Yu-Ting Huang
- Institute of Oral Science, School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dental Hygiene, College of Health Care, China Medical University, Taichung, Taiwan
| | - Tzong-Ming Shieh
- Department of Dental Hygiene, College of Health Care, China Medical University, Taichung, Taiwan
| |
Collapse
|
12
|
Peng F, Du Q, Peng C, Wang N, Tang H, Xie X, Shen J, Chen J. A Review: The Pharmacology of Isoliquiritigenin. Phytother Res 2015; 29:969-77. [DOI: 10.1002/ptr.5348] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 01/06/2015] [Accepted: 03/13/2015] [Indexed: 01/29/2023]
Affiliation(s)
- Fu Peng
- School of Chinese Medicine; The University of Hong Kong; 10 Sassoon Road Pokfulam Hong Kong
- Chengdu University of Traditional Chinese Medicine; Chengdu 610075 China
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources; Sichuan Province and Ministry of Science and Technology; Chengdu 610075 China
| | - Qiaohui Du
- Chengdu University of Traditional Chinese Medicine; Chengdu 610075 China
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources; Sichuan Province and Ministry of Science and Technology; Chengdu 610075 China
| | - Cheng Peng
- Chengdu University of Traditional Chinese Medicine; Chengdu 610075 China
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources; Sichuan Province and Ministry of Science and Technology; Chengdu 610075 China
| | - Neng Wang
- School of Chinese Medicine; The University of Hong Kong; 10 Sassoon Road Pokfulam Hong Kong
| | - Hailin Tang
- School of Chinese Medicine; The University of Hong Kong; 10 Sassoon Road Pokfulam Hong Kong
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangzhou Guangdong China
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangzhou Guangdong China
| | - Jiangang Shen
- School of Chinese Medicine; The University of Hong Kong; 10 Sassoon Road Pokfulam Hong Kong
| | - Jianping Chen
- School of Chinese Medicine; The University of Hong Kong; 10 Sassoon Road Pokfulam Hong Kong
- Chengdu University of Traditional Chinese Medicine; Chengdu 610075 China
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources; Sichuan Province and Ministry of Science and Technology; Chengdu 610075 China
| |
Collapse
|
13
|
Abstract
Cancer is still a major health issue worldwide and identifying novel but safe compounds for prevention and treatment is a high priority. Licorice (Glycyrrhiza) is a perennial plant that is cultivated in many countries and has been reported to exert antioxidant, anti-inflammatory and anticancer effects. However, some components of licorice exert unwanted side effects and therefore identifying safer licorice components would be ideal. The anticancer activities of many of the licorice components appear to include cycle arrest, apoptosis induction, and general antioxidant effects. Commonly reported indirect protein targets important in tumorigenesis include many cell cycle-related proteins, apoptosis-associated proteins, MMP proteins, COX-2, GSK-β, Akt, NF-κB, and MAP kinases. Importantly, several licorice components were reported to directly bind to and inhibit the activities of PI3-K, MKK4, MKK7, JNK1, mTOR, and Cdk2, resulting in decreased carcinogenesis in several cell and mouse models with no obvious toxicity. This review focuses on specific components of licorice for which a direct protein target has been identified.
Collapse
Affiliation(s)
- Ann M. Bode
- The Hormel Institute University of Minnesota, 801 16th Ave NE, Austin, MN 55912 USA
| | - Zigang Dong
- The Hormel Institute University of Minnesota, 801 16th Ave NE, Austin, MN 55912 USA
| |
Collapse
|
14
|
Yang R, Wang LQ, Liu Y. Antitumor Activities of Widely-used Chinese Herb—Licorice. CHINESE HERBAL MEDICINES 2014. [DOI: 10.1016/s1674-6384(14)60042-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|