1
|
Wang YS, Wang SL, Liu XL, Kang ZC. Platelet-rich plasma promotes peripheral nerve regeneration after sciatic nerve injury. Neural Regen Res 2023; 18:375-381. [PMID: 35900433 PMCID: PMC9396478 DOI: 10.4103/1673-5374.346461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The effect of platelet-rich plasma on nerve regeneration remains controversial. In this study, we established a rabbit model of sciatic nerve small-gap defects with preserved epineurium and then filled the gaps with platelet-rich plasma. Twenty-eight rabbits were divided into the following groups (7 rabbits/group): model, low-concentration PRP (2.5–3.5-fold concentration of whole blood platelets), medium-concentration PRP (4.5–6.5-fold concentration of whole blood platelets), and high-concentration PRP (7.5–8.5-fold concentration of whole blood platelets). Electrophysiological and histomorphometrical assessments and proteomics analysis were used to evaluate regeneration of the sciatic nerve. Our results showed that platelet-rich plasma containing 4.5–6.5- and 7.5–8.5-fold concentrations of whole blood platelets promoted repair of sciatic nerve injury. Proteomics analysis was performed to investigate the possible mechanism by which platelet-rich plasma promoted nerve regeneration. Proteomics analysis showed that after sciatic nerve injury, platelet-rich plasma increased the expression of integrin subunit β-8 (ITGB8), which participates in angiogenesis, and differentially expressed proteins were mainly enriched in focal adhesion pathways. Additionally, two key proteins, ribosomal protein S27a (RSP27a) and ubiquilin 1 (UBQLN1), which were selected after protein-protein interaction analysis, are involved in the regulation of ubiquitin levels in vivo. These data suggest that platelet-rich plasma promotes peripheral nerve regeneration after sciatic nerve injury by affecting angiogenesis and intracellular ubiquitin levels.
Collapse
|
2
|
Elmatboly AM, Sherif AM, Deeb DA, Benmelouka A, Bin-Jumah MN, Aleya L, Abdel-Daim MM. The impact of proteostasis dysfunction secondary to environmental and genetic causes on neurodegenerative diseases progression and potential therapeutic intervention. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11461-11483. [PMID: 32072427 DOI: 10.1007/s11356-020-07914-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Aggregation of particular proteins in the form of inclusion bodies or plaques followed by neuronal death is a hallmark of neurodegenerative proteopathies such as primary Parkinsonism, Alzheimer's disease, Lou Gehrig's disease, and Huntington's chorea. Complex polygenic and environmental factors implicated in these proteopathies. Accumulation of proteins in these disorders indicates a substantial disruption in protein homeostasis (proteostasis). Proteostasis or cellular proteome homeostasis is attained by the synchronization of a group of cellular mechanisms called the proteostasis network (PN), which is responsible for the stability of the proteome and achieves the equilibrium between synthesis, folding, and degradation of proteins. In this review, we will discuss the different types of PN and the impact of PN component dysfunction on the four major neurodegenerative diseases mentioned earlier. Graphical abstract.
Collapse
Affiliation(s)
| | - Ahmed M Sherif
- Faculty of Medicine, Zagazig University, El-Sharkia, Egypt
| | - Dalia A Deeb
- Faculty of Medicine, Zagazig University, El-Sharkia, Egypt
| | - Amira Benmelouka
- Faculty of Medicine, University of Algiers, Sidi M'Hamed, Algeria
| | - May N Bin-Jumah
- Biology Department, College Of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon Cedex, France
| | - Mohamed M Abdel-Daim
- Department of Zoology, Science College, King Saud University, Riyadh, 11451, Saudi Arabia.
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
3
|
Al Mamun A, Uddin MS, Kabir MT, Khanum S, Sarwar MS, Mathew B, Rauf A, Ahmed M, Ashraf GM. Exploring the Promise of Targeting Ubiquitin-Proteasome System to Combat Alzheimer’s Disease. Neurotox Res 2020; 38:8-17. [DOI: 10.1007/s12640-020-00185-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022]
|
4
|
Zhang L, Wei PF, Song YH, Dong L, Wu YD, Hao ZY, Fan S, Tai S, Meng JL, Lu Y, Xue J, Liang CZ, Wen LP. MnFe2O4 nanoparticles accelerate the clearance of mutant huntingtin selectively through ubiquitin-proteasome system. Biomaterials 2019; 216:119248. [DOI: 10.1016/j.biomaterials.2019.119248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/20/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023]
|
5
|
Luo L, Liu Y, Tu X, Ren X, Zhao W, Liu J, Zhang L, Chen W, Zhang P, Wang W, Lü L, Wang M. Decreased expression of ubiquilin‑1 following neonatal hypoxia‑ischemic brain injury in mice. Mol Med Rep 2019; 19:4597-4602. [PMID: 31059032 PMCID: PMC6522830 DOI: 10.3892/mmr.2019.10168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/07/2019] [Indexed: 01/16/2023] Open
Abstract
Ubiquilin‑1 (Ubqln), a ubiquitin‑like protein, regulates degradation of misfolded proteins and has been reported to have a crucial role in multiple pathologic and physiologic conditions. The current study was undertaken to investigate the expression of Ubqln in the brain of a neonatal hypoxia‑ischemic (HI) brain injury model induced using the Rice method with some modifications. Mouse pups at postnatal day 7 day were used in this study. Pups underwent permanent ligation of the left common carotid artery and a consecutive hypoxic challenge (8% O2 and 92% N2 for 120 min). The expression of Ubqln in the brain of pups following HI was analyzed by immunofluorescence staining and western blot analysis. Immunofluorescence staining demonstrated that Ubqln was extensively distributed in the cerebral cortex and hippocampus, and Ubqln was expressed in neurons, astrocytes and microglia in the brains of the HI brain injury model mice. Western blot analyses revealed decreased expression of Ubqln in the HI penumbra of the mouse model compared with Ubqln in the sham control group. The results of this study revealed that HI alters the expression of Ubqln, thus may provide a novel understanding of role of Ubqln in neonatal hypoxic ischemic encephalopathy.
Collapse
Affiliation(s)
- Li Luo
- School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Yilin Liu
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Xing Tu
- School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Xuxin Ren
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Wenyan Zhao
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Jing Liu
- School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Li Zhang
- School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Weiqiang Chen
- School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Pei Zhang
- Department of Obstetrics, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Weicai Wang
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology and Institute of Stomatological Research, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong, 510055, P.R. China
| | - Lanhai Lü
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology and Institute of Stomatological Research, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong, 510055, P.R. China
| | - Mengxia Wang
- Intensive Care Unit, Guangdong No. 2 Provincial People's Hospital, Guangzhou, Guangdong 510317, P.R. China
| |
Collapse
|
6
|
Collins DW, Gudiseva HV, Chavali VRM, Trachtman B, Ramakrishnan M, Merritt WT, Pistilli M, Rossi RA, Blachon S, Sankar PS, Miller-Ellis E, Lehman A, Addis V, O'Brien JM. The MT-CO1 V83I Polymorphism is a Risk Factor for Primary Open-Angle Glaucoma in African American Men. Invest Ophthalmol Vis Sci 2018; 59:1751-1759. [PMID: 29610859 PMCID: PMC5886029 DOI: 10.1167/iovs.17-23277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/23/2018] [Indexed: 01/05/2023] Open
Abstract
Purpose We investigate the function of the V83I polymorphism (m.6150G>A, rs879053914) in the mitochondrial cytochrome c oxidase subunit 1 (MT-CO1) gene and its role in African American (AA) primary open-angle glaucoma (POAG). Methods This study used Sanger sequencing (1339 cases, 850 controls), phenotypic characterization of Primary Open-Angle African American Glaucoma Genetics study (POAAGG) cases, a masked chart review of CO1 missense cases (V83I plus M117T, n = 29) versus wild type cases (n = 29), a yeast 2-hybrid (Y2H) cDNA library screen, and quantification of protein-protein interactions by Y2H and ELISA. Results The association of V83I with POAG in AA was highly significant for men (odds ratio [OR] 6.5; 95% confidence interval [CI] 2.0-21.3, P = 0.0001), but not for women (OR 1.1; 95% CI, 0.62-2.00, P = 0.78). POAG cases having CO1 double missense mutation (V83I + M117T, L1c2 haplogroup) had a higher cup-to-disc ratio (0.77 vs. 0.71, P = 0.04) and significantly worse visual function (average pattern standard deviation, 6.5 vs. 4.3, P = 0.009; average mean deviation -10.4 vs. -4.5, P = 0.006) when compared to matched wild type cases (L1b haplogroup). Interaction of the V83I region of CO1 with amyloid beta peptide (Aβ) was confirmed by ELISA assay, and this interaction was abrogated by V83I. A Y2H screen of an adult human brain cDNA library with the V83 region of CO1 as bait retrieved the UBQLN1 gene. Conclusions The V83I polymorphism was associated strongly with POAG in AA men and disrupts Aβ-binding to CO1. This region also interacts with a neuroprotective protein, UBQLN1.
Collapse
Affiliation(s)
- David W. Collins
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Harini V. Gudiseva
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Venkata R. M. Chavali
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Benjamin Trachtman
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Meera Ramakrishnan
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - William T. Merritt
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Maxwell Pistilli
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Rebecca A. Rossi
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | | | - Prithvi S. Sankar
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Eydie Miller-Ellis
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Amanda Lehman
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Victoria Addis
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Joan M. O'Brien
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
7
|
Gadhave K, Bolshette N, Ahire A, Pardeshi R, Thakur K, Trandafir C, Istrate A, Ahmed S, Lahkar M, Muresanu DF, Balea M. The ubiquitin proteasomal system: a potential target for the management of Alzheimer's disease. J Cell Mol Med 2016; 20:1392-407. [PMID: 27028664 PMCID: PMC4929298 DOI: 10.1111/jcmm.12817] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/17/2016] [Indexed: 01/06/2023] Open
Abstract
The cellular quality control system degrades abnormal or misfolded proteins and consists of three different mechanisms: the ubiquitin proteasomal system (UPS), autophagy and molecular chaperones. Any disturbance in this system causes proteins to accumulate, resulting in neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer's disease (AD), Parkinson's disease, Huntington's disease and prion or polyglutamine diseases. Alzheimer's disease is currently one of the most common age-related neurodegenerative diseases. However, its exact cause and pathogenesis are unknown. Currently approved medications for AD provide symptomatic relief; however, they fail to influence disease progression. Moreover, the components of the cellular quality control system represent an important focus for the development of targeted and potent therapies for managing AD. This review aims to evaluate whether existing evidence supports the hypothesis that UPS impairment causes the early pathogenesis of neurodegenerative disorders. The first part presents basic information about the UPS and its molecular components. The next part explains how the UPS is involved in neurodegenerative disorders. Finally, we emphasize how the UPS influences the management of AD. This review may help in the design of future UPS-related therapies for AD.
Collapse
Affiliation(s)
- Kundlik Gadhave
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Nityanand Bolshette
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Ashutosh Ahire
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Rohit Pardeshi
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Krishan Thakur
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Cristiana Trandafir
- Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Alexandru Istrate
- Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Sahabuddin Ahmed
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Mangala Lahkar
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Dafin F Muresanu
- Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- Department of Clinical Neurosciences, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Maria Balea
- Department of Clinical Neurosciences, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| |
Collapse
|
8
|
Rpn10 monoubiquitination orchestrates the association of the ubiquilin-type DSK2 receptor with the proteasome. Biochem J 2015; 472:353-65. [PMID: 26450923 DOI: 10.1042/bj20150609] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/07/2015] [Indexed: 11/17/2022]
Abstract
Despite the progress made in understanding the roles of proteasome polyubiquitin receptors, such as the subunits Rpn10 (regulatory particle non-ATPase 10) and Rpn13, and the transient interactors Rad23 (radiation sensitivity abnormal 23) and Dsk2 (dual-specificity protein kinase 2), the mechanisms involved in their regulation are virtually unknown. Rpn10, which is found in the cell in proteasome-bound and -unbound pools, interacts with Dsk2, and this interaction has been proposed to regulate the amount of Dsk2 that gains access to the proteasome. Rpn10 monoubiquitination has emerged as a conserved mechanism with a strong effect on Rpn10 function. In the present study, we show that functional yeast proteasomes have the capacity to associate and dissociate with Rpn10 and that Rpn10 monoubiquitination decreases the Rpn10-proteasome and Rpn10-Dsk2 associations. Remarkably, this process facilitates the formation of Dsk2-proteasomes in vivo. Therefore, Rpn10 monoubiquitination acts as mechanism that serves to switch the proteasome from an 'Rpn10 high/Dsk2 low' state to an 'Rpn10 low/Dsk2 high' state. Interestingly, Rpn10-ubiquitin, with an inactivated ubiquitin-interacting motif (UIM), and Dsk2(I45S), with an inactive ubiquitin-like domain (UBL), show temperature-dependent phenotypes with multiple functional interactions.
Collapse
|
9
|
Shimada K, Fujii T, Tatsumi Y, Anai S, Fujimoto K, Konishi N. Ubiquilin2 as a novel marker for detection of urothelial carcinoma cells in urine. Diagn Cytopathol 2015; 44:3-9. [PMID: 26303000 DOI: 10.1002/dc.23332] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/23/2015] [Accepted: 08/05/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Ubiquilin 2 (UBQLN2), an ubiquitin-related protein, is strongly expressed in urothelial carcinoma cells, in contrast to no or less expression in non-neoplastic cells; it protects cancer cells from reactive oxygen species (ROS)-induced cytotoxicity. In this study, we investigated whether UBQLN2 immunostaining, using liquid-based cytology sample could improve the accuracy of cytological urine diagnosis. METHODS Two-hundred and forty-five urinary samples, including 143 negative controls and 102 urothelial carcinomas, consisting of 42 low-grade and 60 high-grade urothelial carcinomas, were used for immunocytochemical analysis of UBQLN2. RESULTS Urothelial carcinoma cells were positive for UBQLN2-staining, while non-neoplastic cells, including renal tubular cells and degenerative atypical cells, were negative. Interestingly, percentage of nuclear stain immunopositive for UBQLN2 was significantly higher in carcinoma cells with high grade/invasive phenotype than in those with low grade/noninvasive phenotype. UBQLN2 immunostaining had an overall sensitivity of 87.6%, specificity of 98.6%, positive predictive value of 97.8% and negative predictive value of 92.8% for the detection of urothelial carcinoma. CONCLUSIONS UBQLN2 immunostaining is a practical test for urine cytology, even in samples with few cells, with slight atypia or severe degenerative changes. In addition, it allows prediction of tumor grade and stage by examining the cellular localization of UBQLN2.
Collapse
Affiliation(s)
- Keiji Shimada
- Department of Pathology, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8521, Japan
| | - Tomomi Fujii
- Department of Pathology, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8521, Japan
| | - Yoshihiro Tatsumi
- Department of Pathology, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8521, Japan
| | - Satoshi Anai
- Department of Urology, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8521, Japan
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8521, Japan
| | - Noboru Konishi
- Department of Pathology, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8521, Japan
| |
Collapse
|
10
|
Abstract
The success of Mycobacterium tuberculosis (Mtb) as a pathogen rests upon its ability to grow intracellularly in macrophages. Interferon-gamma (IFN-γ) is critical in host defense against Mtb and stimulates macrophage clearance of Mtb through an autophagy pathway. Here we show that the host protein ubiquilin 1 (UBQLN1) promotes IFN-γ-mediated autophagic clearance of Mtb. Ubiquilin family members have previously been shown to recognize proteins that aggregate in neurodegenerative disorders. We find that UBQLN1 can interact with Mtb surface proteins and associates with the bacilli in vitro. In IFN-γ activated macrophages, UBQLN1 co-localizes with Mtb and promotes the anti-mycobacterial activity of IFN-γ. The association of UBQLN1 with Mtb depends upon the secreted bacterial protein, EsxA, which is involved in permeabilizing host phagosomes. In autophagy-deficient macrophages, UBQLN1 accumulates around Mtb, consistent with the idea that it marks bacilli that traffic through the autophagy pathway. Moreover, UBQLN1 promotes ubiquitin, p62, and LC3 accumulation around Mtb, acting independently of the E3 ligase parkin. In summary, we propose a model in which UBQLN1 recognizes Mtb and in turn recruits the autophagy machinery thereby promoting intracellular control of Mtb. Thus, polymorphisms in ubiquilins, which are known to influence susceptibility to neurodegenerative illnesses, might also play a role in host defense against Mtb. More people die from Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), than any other bacterial pathogen. It has long been appreciated that Mtb can survive and divide within macrophages, white blood cells that normally kill bacteria. Macrophages are able to partially control Mtb through a degradative process called autophagy. Autophagy is activated by the cytokine interferon-gamma (IFN-γ), which promotes control of Mtb infection. How the tubercle bacilli are targeted to the autophagy pathway remains unclear. Here we show that the human protein ubiquilin 1 can interact with Mtb surface proteins and associate with Mtb that are present in the host cell cytosol. We propose a model in which activating autophagy with IFN-γ promotes UBQLN1 recruitment to Mtb, which in turn leads to recruitment of the autophagy machinery, autophagy-mediated degradation of the bacteria, and activation of effector T cells. Since IFN-γ is critical in human control of Mtb, our study suggests that polymorphisms in ubiquilins, known to influence susceptibility to neurodegenerative illnesses, might also play a role in host defense against Mtb.
Collapse
|
11
|
Regulation of nicotinic acetylcholine receptors in Alzheimer׳s disease: a possible role of chaperones. Eur J Pharmacol 2015; 755:34-41. [PMID: 25771456 DOI: 10.1016/j.ejphar.2015.02.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/15/2015] [Accepted: 02/22/2015] [Indexed: 12/25/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) seem to play an integral role in the progress and/or prevention of Alzheimer׳s diseases (AD). Functional abnormalities and problems in biogenesis and trafficking of nAChRs are two major culprits in AD; on the other hand, chaperones modulate post-translational changes in nAChRs. Moreover, they indirectly regulate nAChRs by controlling AD-related proteins such as tau and amyloid beta (Aβ). In this review, we go through recent studies which are showing that chaperones modulate the expression of nAChRs in a subtype-specific manner and explain how AD progress is affected by nAChRs chaperoning.
Collapse
|
12
|
Mashamba-Thompson T, Soliman MES. Insight into the binding theme of CA-074Me to cathepsin B: molecular dynamics simulations and scaffold hopping to identify potential analogues as anti-neurodegenerative diseases. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1145-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|