1
|
Maslennikova A, Mazurov D. Application of CRISPR/Cas Genomic Editing Tools for HIV Therapy: Toward Precise Modifications and Multilevel Protection. Front Cell Infect Microbiol 2022; 12:880030. [PMID: 35694537 PMCID: PMC9177041 DOI: 10.3389/fcimb.2022.880030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
Although highly active antiretroviral therapy (HAART) can robustly control human immunodeficiency virus (HIV) infection, the existence of latent HIV in a form of proviral DNA integrated into the host genome makes the virus insensitive to HAART. This requires patients to adhere to HAART for a lifetime, often leading to drug toxicity or viral resistance to therapy. Current genome-editing technologies offer different strategies to reduce the latent HIV reservoir in the body. In this review, we systematize the research on CRISPR/Cas-based anti-HIV therapeutic methods, discuss problems related to viral escape and gene editing, and try to focus on the technologies that effectively and precisely introduce genetic modifications and confer strong resistance to HIV infection. Particularly, knock-in (KI) approaches, such as mature B cells engineered to produce broadly neutralizing antibodies, T cells expressing fusion inhibitory peptides in the context of inactivated viral coreceptors, or provirus excision using base editors, look very promising. Current and future advancements in the precision of CRISPR/Cas editing and its delivery will help extend its applicability to clinical HIV therapy.
Collapse
Affiliation(s)
- Alexandra Maslennikova
- Cell and Gene Technology Group, Institute of Gene Biology of Russian Academy of Science, Moscow, Russia
| | - Dmitriy Mazurov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology of Russian Academy of Science, Moscow, Russia
| |
Collapse
|
2
|
Santerre M, Chatila W, Wang Y, Mukerjee R, Sawaya BE. HIV-1 Nef promotes cell proliferation and microRNA dysregulation in lung cells. Cell Cycle 2019; 18:130-142. [PMID: 30563405 DOI: 10.1080/15384101.2018.1557487] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) represents about 85% of all lung cancer cases. Lung cancer is the most frequent non-AIDS-defining malignancies in HIV-infected patients. The mechanism of the increased risk for lung cancer in HIV-1 patients is poorly understood. HIV-1 Nef protein has been suggested to be one of the key players in HIV-related lung disease. In here, we showed the involvement of Nef protein in cell modifications such as fibroblasts (IMR-90) and normal (BEAS-2B) or cancerous (A549) epithelial cells. We demonstrated that Nef protein reprograms initial stages of lung cancer (e.g. changes in the metabolism, improved cell survival and invasion, increase the angiogenesis factor VEGF). Additionally, we showed that Nef is provoking a global decrease of mature miRNA and a decrease of DICER1 and AGO expression in lung cells. MiRNAs play a crucial role in cell signaling and homeostasis, functioning as oncogenes or tumor suppressors, and their dysregulation can contribute to the tumorigenic process. These results showed that HIV-1 Nef protein is directly involved in preventing cell death and contributes to tumor progression.
Collapse
Affiliation(s)
- Maryline Santerre
- a Molecular Studies of Neurodegenerative Diseases Lab, FELS Institute for Cancer Research , Lewis Katz School of Medicine, Temple University, Philadelphia , PA , USA
| | - Wissam Chatila
- b Departments of Thoracic Medicine and Surgery , Lewis Katz School of Medicine, Temple University, Philadelphia , PA , USA
| | - Ying Wang
- a Molecular Studies of Neurodegenerative Diseases Lab, FELS Institute for Cancer Research , Lewis Katz School of Medicine, Temple University, Philadelphia , PA , USA
| | - Ruma Mukerjee
- a Molecular Studies of Neurodegenerative Diseases Lab, FELS Institute for Cancer Research , Lewis Katz School of Medicine, Temple University, Philadelphia , PA , USA
| | - Bassel E Sawaya
- a Molecular Studies of Neurodegenerative Diseases Lab, FELS Institute for Cancer Research , Lewis Katz School of Medicine, Temple University, Philadelphia , PA , USA.,c Departments of Neurology , Lewis Katz School of Medicine, Temple University, Philadelphia , PA , USA
| |
Collapse
|
3
|
Patters BJ, Kumar S. The role of exosomal transport of viral agents in persistent HIV pathogenesis. Retrovirology 2018; 15:79. [PMID: 30577804 PMCID: PMC6303896 DOI: 10.1186/s12977-018-0462-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection, despite great advances in antiretroviral therapy, remains a lifelong affliction. Though current treatment regimens can effectively suppress viral load to undetectable levels and preserve healthy immune function, they cannot fully alleviate all symptoms caused by the presence of the virus, such as HIV-associated neurocognitive disorders. Exosomes are small vesicles that transport cellular proteins, RNA, and small molecules between cells as a mechanism of intercellular communication. Recent research has shown that HIV proteins and RNA can be packaged into exosomes and transported between cells, to pathogenic effect. This review summarizes the current knowledge on the diverse mechanisms involved in the sorting of viral elements into exosomes and the damage those exosomal agents can inflict. In addition, potential therapeutic options to counteract exosome-mediated HIV pathogenesis are reviewed and considered.
Collapse
Affiliation(s)
- Benjamin J Patters
- Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Santosh Kumar
- Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
4
|
Lê-Bury G, Niedergang F. Defective Phagocytic Properties of HIV-Infected Macrophages: How Might They Be Implicated in the Development of Invasive Salmonella Typhimurium? Front Immunol 2018; 9:531. [PMID: 29628924 PMCID: PMC5876300 DOI: 10.3389/fimmu.2018.00531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/28/2018] [Indexed: 01/07/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infects and kills T cells, profoundly damaging the host-specific immune response. The virus also integrates into memory T cells and long-lived macrophages, establishing chronic infections. HIV-1 infection impairs the functions of macrophages both in vivo and in vitro, which contributes to the development of opportunistic diseases. Non-typhoidal Salmonella enterica serovar Typhimurium has been identified as the most common cause of bacterial bloodstream infections in HIV-infected adults. In this review, we report how the functions of macrophages are impaired post HIV infection; introduce what makes invasive Salmonella Typhimurium specific for its pathogenesis; and finally, we discuss why these bacteria may be particularly adapted to the HIV-infected host.
Collapse
Affiliation(s)
- Gabrielle Lê-Bury
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Florence Niedergang
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
5
|
Che Nordin MA, Teow SY. Review of Current Cell-Penetrating Antibody Developments for HIV-1 Therapy. Molecules 2018; 23:molecules23020335. [PMID: 29415435 PMCID: PMC6017373 DOI: 10.3390/molecules23020335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/06/2018] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
The discovery of highly active antiretroviral therapy (HAART) in 1996 has significantly reduced the global mortality and morbidity caused by the acquired immunodeficiency syndrome (AIDS). However, the therapeutic strategy of HAART that targets multiple viral proteins may render off-target toxicity and more importantly results in drug-resistant escape mutants. These have been the main challenges for HAART and refinement of this therapeutic strategy is urgently needed. Antibody-mediated treatments are emerging therapeutic modalities for various diseases. Most therapeutic antibodies have been approved by Food and Drug Administration (FDA) mainly for targeting cancers. Previous studies have also demonstrated the promising effect of therapeutic antibodies against HIV-1, but there are several limitations in this therapy, particularly when the viral targets are intracellular proteins. The conventional antibodies do not cross the cell membrane, hence, the pathogenic intracellular proteins cannot be targeted with this classical therapeutic approach. Over the years, the advancement of antibody engineering has permitted the therapeutic antibodies to comprehensively target both extra- and intra-cellular proteins in various infections and diseases. This review aims to update on the current progress in the development of antibody-based treatment against intracellular targets in HIV-1 infection. We also attempt to highlight the challenges and limitations in the development of antibody-based therapeutic modalities against HIV-1.
Collapse
Affiliation(s)
- Muhamad Alif Che Nordin
- Kulliyyah of Medicine and Health Sciences (KMHS), Kolej Universiti INSANIAH, 09300 Kuala Ketil, Kedah, Malaysia.
| | - Sin-Yeang Teow
- Sunway Institute for Healthcare Development (SIHD), School of Healthcare and Medical Sciences (SHMS), Sunway University, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
6
|
Dumas A, Lê-Bury G, Marie-Anaïs F, Herit F, Mazzolini J, Guilbert T, Bourdoncle P, Russell DG, Benichou S, Zahraoui A, Niedergang F. The HIV-1 protein Vpr impairs phagosome maturation by controlling microtubule-dependent trafficking. J Cell Biol 2016; 211:359-72. [PMID: 26504171 PMCID: PMC4621833 DOI: 10.1083/jcb.201503124] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The HIV protein Vpr interacts with EB1, p150Glued, and dynein heavy chain and perturbs the centripetal movement of phagosomes and their maturation, resulting in impaired phagolysosome biogenesis, which is important for bacterial clearance and cytokine production. Human immunodeficiency virus type 1 (HIV-1) impairs major functions of macrophages but the molecular basis for this defect remains poorly characterized. Here, we show that macrophages infected with HIV-1 were unable to respond efficiently to phagocytic triggers and to clear bacteria. The maturation of phagosomes, defined by the presence of late endocytic markers, hydrolases, and reactive oxygen species, was perturbed in HIV-1–infected macrophages. We showed that maturation arrest occurred at the level of the EHD3/MICAL-L1 endosomal sorting machinery. Unexpectedly, we found that the regulatory viral protein (Vpr) was crucial to perturb phagosome maturation. Our data reveal that Vpr interacted with EB1, p150Glued, and dynein heavy chain and was sufficient to critically alter the microtubule plus end localization of EB1 and p150Glued, hence altering the centripetal movement of phagosomes and their maturation. Thus, we identify Vpr as a modulator of the microtubule-dependent endocytic trafficking in HIV-1–infected macrophages, leading to strong alterations in phagolysosome biogenesis.
Collapse
Affiliation(s)
- Audrey Dumas
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France Centre National de la Recherche Scientifique UMR 8104, Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Gabrielle Lê-Bury
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France Centre National de la Recherche Scientifique UMR 8104, Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Florence Marie-Anaïs
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France Centre National de la Recherche Scientifique UMR 8104, Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Floriane Herit
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France Centre National de la Recherche Scientifique UMR 8104, Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Julie Mazzolini
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France Centre National de la Recherche Scientifique UMR 8104, Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Thomas Guilbert
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France Centre National de la Recherche Scientifique UMR 8104, Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Pierre Bourdoncle
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France Centre National de la Recherche Scientifique UMR 8104, Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Serge Benichou
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France Centre National de la Recherche Scientifique UMR 8104, Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Ahmed Zahraoui
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France Centre National de la Recherche Scientifique UMR 8104, Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Florence Niedergang
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France Centre National de la Recherche Scientifique UMR 8104, Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| |
Collapse
|
7
|
Engineering and Validation of a Vector for Concomitant Expression of Rare Transfer RNA (tRNA) and HIV-1 nef Genes in Escherichia coli. PLoS One 2015; 10:e0130446. [PMID: 26147991 PMCID: PMC4492947 DOI: 10.1371/journal.pone.0130446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/20/2015] [Indexed: 11/19/2022] Open
Abstract
Relative ease in handling and manipulation of Escherichia coli strains make them primary candidate to express proteins heterologously. Overexpression of heterologous genes that contain codons infrequently used by E. coli is related with difficulties such as mRNA instability, early termination of transcription and/or translation, deletions and/or misincorporation, and cell growth inhibition. These codon bias -associated problems are addressed by co-expressing ColE1-compatible, rare tRNA expressing helper plasmids. However, this approach has inadequacies, which we have addressed by engineering an expression vector that concomitantly expresses the heterologous protein of interest, and rare tRNA genes in E. coli. The expression vector contains three (argU, ileY, leuW) rare tRNA genes and a useful multiple cloning site for easy in-frame cloning. To maintain the overall size of the parental plasmid vector, the rare tRNA genes replaced the non-essential DNA segments in the vector. The cloned gene is expressed under the control of T7 promoter and resulting recombinant protein has a C-terminal 6His tag for IMAC-mediated purification. We have evaluated the usefulness of this expression vector by expressing three HIV-1 genes namely HIV-1 p27 (nef), HIV-1 p24 (ca), and HIV-1 vif in NiCo21(DE3) E.coli and demonstrated the advantages of using expression vector that concomitantly expresses rare tRNA and heterologous genes.
Collapse
|
8
|
Percario ZA, Ali M, Mangino G, Affabris E. Nef, the shuttling molecular adaptor of HIV, influences the cytokine network. Cytokine Growth Factor Rev 2014; 26:159-73. [PMID: 25529283 DOI: 10.1016/j.cytogfr.2014.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/05/2014] [Indexed: 12/17/2022]
Abstract
Several viruses manipulate host innate immune responses to avoid immune recognition and improve viral replication and spreading. The viral protein Nef of Human Immunodeficiency Virus is mainly involved in this "hijacking" activity and is a well established virulence factor. In the last few years there have been remarkable advances in outlining a defined framework of its functions. In particular Nef appears to be a shuttling molecular adaptor able to exert its effects both on infected and non infected bystander cell. In addition it is emerging fact that it has an important impact on the chemo-cytokine network. Nef protein represents an interesting new target to develop therapeutic drugs for treatment of seropositive patients. In this review we have tried to provide a unifying view of the multiple functions of this viral protein on the basis of recently available experimental data.
Collapse
Affiliation(s)
| | - Muhammad Ali
- Department of Sciences, University Roma Tre, Rome, Italy
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Italy
| | | |
Collapse
|
9
|
HIV-1 Nef induces CCL5 production in astrocytes through p38-MAPK and PI3K/Akt pathway and utilizes NF-kB, CEBP and AP-1 transcription factors. Sci Rep 2014; 4:4450. [PMID: 24658403 PMCID: PMC3963078 DOI: 10.1038/srep04450] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/07/2014] [Indexed: 12/18/2022] Open
Abstract
The prevalence of HIV-associated neurocognitive disorders (HAND) remains high in patients infected with HIV-1. The production of pro-inflammatory cytokines by astrocytes/microglia exposed to viral proteins is thought to be one of the mechanisms leading to HIV-1- mediated neurotoxicity. In the present study we examined the effects of Nef on CCL5 induction in astrocytes. The results demonstrate that CCL5 is significantly induced in Nef-transfected SVGA astrocytes. To determine the mechanisms responsible for the increased CCL5 caused by Nef, we employed siRNA and chemical antagonists. Antagonists of NF-κB, PI3K, and p38 significantly reduced the expression levels of CCL5 induced by Nef transfection. Furthermore, specific siRNAs demonstrated that the Akt, p38MAPK, NF-κB, CEBP, and AP-1 pathways play a role in Nef-mediated CCL5 expression. The results demonstrated that the PI3K/Akt and p38 MAPK pathways, along with the transcription factors NF-κB, CEBP, and AP-1, are involved in Nef-induced CCL5 production in astrocytes.
Collapse
|
10
|
Lülf S, Matz J, Rouyez MC, Järviluoma A, Saksela K, Benichou S, Geyer M. Structural basis for the inhibition of HIV-1 Nef by a high-affinity binding single-domain antibody. Retrovirology 2014; 11:24. [PMID: 24620746 PMCID: PMC4007562 DOI: 10.1186/1742-4690-11-24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 03/04/2014] [Indexed: 04/01/2023] Open
Abstract
Background The HIV-1 Nef protein is essential for AIDS pathogenesis by its interaction with host cell surface receptors and signaling factors. Despite its critical role as a virulence factor Nef is not targeted by current antiviral strategies. Results We have determined the crystal structure of the complex formed by a camelid single-domain antibody fragment, termed sdAb19, bound to HIV-1 Nef together with a stabilizing SH3 domain. sdAb19 forms a stoichiometric 1:1 complex with Nef and binds to a conformationally conserved surface at the C-terminus of Nef that overlaps with functionally important interaction sites involved in Nef-induced perturbations of signaling and trafficking pathways. The antibody fragment binds Nef with low nanomolar affinity, which could be attenuated to micromolar affinity range by site-directed mutagenesis of key interaction residues in sdAb19. Fusion of the SH3 domain to sdAb19, termed Neffin, leads to a significantly increased affinity for Nef and formation of a stoichiometric 2:2 Nef–Neffin complex. The 19 kDa Neffin protein inhibits all functions of Nef as CD4 and MHC-I downregulation, association with Pak2, and the increase in virus infectivity and replication. Conclusions Together, sdAb19 and Neffin thus represent efficient tools for the rational development of antiviral strategies against HIV-1 Nef.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Matthias Geyer
- Center of Advanced European Studies and Research, Group Physical Biochemistry, Bonn, Germany.
| |
Collapse
|