1
|
Paramasivam S, Perumal SS. Methanolic extract of O.umbellata L. exhibits anti-osteoporotic effect via promoting osteoblast proliferation in MG-63 cells and inhibiting osteoclastogenesis in RANKL-stimulated RAW 264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2023:116641. [PMID: 37236379 DOI: 10.1016/j.jep.2023.116641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oldenlandia umbellataL., belonging to the Rubiaceae family, is an annual plant possessing anti-inflammatory and antipyretic, anti-nociceptive, anti-bacterial, anti-helminthic, antioxidant and hepatoprotective activities and used in traditional medicine to treat inflammation and respiratory diseases. AIM OF THE STUDY The present study aims to evaluate the anti-osteoporotic effect of Methanolic extract of O.umbellata in MG-63 cells and RANKL-stimulated RAW 264.7 cells. MATERIALS AND METHODS The methanolic extract from the aerial parts of O.umbellata was subjected to metabolite profiling. The anti-osteoporotic effect of MOU was assessed in MG-63 cells and RANKL-stimulated RAW 264.7 cells. In MG-63 cells, the proliferative effect of MOU was evaluated using MTT assay, ALP assay, Alizarin red staining, ELISA and western blot. Similarly, the anti-osteoclastogenic effect of MOU was assessed in RANKL-stimulated RAW 264.7 cells via MTT, TRAP staining and western blot. RESULTS LC-MS metabolite profiling showed the presence of 59 phytoconstituents including scandoside, scandoside methyl ester, deacetylasperuloside, asperulosidic acid, and cedrelopsin in MOU. In MG-63 cells, MOU has increased the proliferation of osteoblast cells and ALP activity, thereby increasing bone mineralization. ELISA results showed increased levels of osteogenic markers such as osteocalcin and osteopontin in the culture media. Western blot analysis showed inhibition of GSK3β protein expression and increased the expression levels of β-catenin, Runx-2, col 1 and osterix, promoting osteoblast differentiation. In RANKL-stimulated RAW 264.7 cells, MOU did not elicit any significant cytotoxicity; instead, it suppressed the osteoclastogenesis reducing the osteoclast number. MOU has reduced TRAP activity in a dose-dependent manner. MOU inhibited the TRAF6, NFATc1, c-Jun, C-fos and cathepsin K expression, thereby inhibiting osteoclast formation. CONCLUSION In conclusion, MOU promoted osteoblast differentiation via inhibiting GSK3β and activating Wnt/β catenin signalling and its transcription factors, including β catenin, Runx2 and Osterix. Similarly, MOU inhibited osteoclast formation by inhibiting the expression of TRAF6, NFATc1, c-Jun, C-fos and cathepsin K in RANK-RANKL signalling. Finally, it can be emphasised that O.umbellata is a potential source of therapeutic leads for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Sivasakthi Paramasivam
- Department of Pharmaceutical Technology, University College of Engineering, Anna University (BIT Campus), Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Senthamil Selvan Perumal
- Department of Pharmaceutical Technology, University College of Engineering, Anna University (BIT Campus), Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
2
|
Ma Y, Hu J, Song C, Li P, Cheng Y, Wang Y, Liu H, Chen Y, Zhang Z. Er-Xian decoction attenuates ovariectomy-induced osteoporosis by modulating fatty acid metabolism and IGF1/PI3K/AKT signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115835. [PMID: 36252878 DOI: 10.1016/j.jep.2022.115835] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Er-Xian decoction (EXD) is a traditional Chinese medicine (TCM) formula used to treat osteoporosis (OP). However, the anti-OP mechanism of EXD has not yet been fully elucidated. AIM OF THE STUDY The study aimed to verify the anti-OP effect of EXD and to explore its underlying mechanism. METHODS The anti-OP targets and mechanisms of EXD were predicted by network pharmacological analysis. Then, an ovariectomized (OVX) rat model was established to validate the key anti-OP mechanism of EXD. Firstly, the therapeutic effect of EXD on OP was confirmed using micro-CT bone analysis, pathological observation, and ELISA detection. Secondly, serum metabolites related to key biological processes were detected using an automatic biochemical analyzer and GC-MS. Finally, ELISA, qRT-PCR, and western blot were utilized to further explore the potential key anti-OP pathway of EXD. RESULTS A total of 159 anti-OP targets of EXD were identified. Functional annotation revealed that OP treatment using EXD was associated with lipid metabolism, fatty acid (FA) metabolism, and PI3K/AKT signaling pathway. Experimental studies confirmed that EXD ameliorated ovariectomy-induced bone loss and bone microstructure deterioration. EXD treatment also upregulated the level of serum estrogen and downregulated the level of OC, PⅠNP, CTX-1, TC, and LDL-C. Besides, principal component analysis (PCA) and heat map of serum FAs distinguished OVX rats from the SHAM and EXD groups. Serum concentrations of important n-3 FAs, including C20:3N3, C20:5N3, and C22:5N3, were significantly increased in the EXD group. The increased stearoyl-CoA desaturase 1 (SCD1) index 1 and index 2 in the OVX group were reversed by EXD administration. Additionally, EXD reversed the decreased serum IGF1 level and tibia IGF1R, PI3K, and AKT expression in OVX rats. CONCLUSION EXD ameliorated ovariectomy-induced bone loss by modulating lipid metabolism, FA metabolism, and IGF1/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yujie Ma
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Hu
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Changheng Song
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Pei Li
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yin Cheng
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuhan Wang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haixia Liu
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yanjing Chen
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Zhiguo Zhang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
3
|
Livshits G, Kalinkovich A. Targeting chronic inflammation as a potential adjuvant therapy for osteoporosis. Life Sci 2022; 306:120847. [PMID: 35908619 DOI: 10.1016/j.lfs.2022.120847] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/07/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
Systemic, chronic, low-grade inflammation (SCLGI) underlies the pathogenesis of various widespread diseases. It is often associated with bone loss, thus connecting chronic inflammation to the pathogenesis of osteoporosis. In postmenopausal women, osteoporosis is accompanied by SCLGI development, likely owing to estrogen deficiency. We propose that SCGLI persistence in osteoporosis results from failed inflammation resolution, which is mainly mediated by specialized, pro-resolving mediators (SPMs). In corroboration, SPMs demonstrate encouraging therapeutic effects in various preclinical models of inflammatory disorders, including bone pathology. Since numerous data implicate gut dysbiosis in osteoporosis-associated chronic inflammation, restoring balanced microbiota by supplementing probiotics and prebiotics could contribute to the efficient resolution of SCGLI. In the present review, we provide evidence for this hypothesis and argue that efficient SCGLI resolution may serve as a novel approach for treating osteoporosis, complementary to traditional anti-osteoporotic medications.
Collapse
Affiliation(s)
- Gregory Livshits
- Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
4
|
Li SS, He SH, Xie PY, Li W, Zhang XX, Li TF, Li DF. Recent Progresses in the Treatment of Osteoporosis. Front Pharmacol 2021; 12:717065. [PMID: 34366868 PMCID: PMC8339209 DOI: 10.3389/fphar.2021.717065] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/12/2021] [Indexed: 12/23/2022] Open
Abstract
Osteoporosis (OP) is a chronic bone disease characterized by aberrant microstructure and macrostructure of bone, leading to reduced bone mass and increased risk of fragile fractures. Anti-resorptive drugs, especially, bisphosphonates, are currently the treatment of choice in most developing countries. However, they do have limitations and adverse effects, which, to some extent, helped the development of anabolic drugs such as teriparatide and romosozumab. In patients with high or very high risk for fracture, sequential or combined therapies may be considered with the initial drugs being anabolic agents. Great endeavors have been made to find next generation drugs with maximal efficacy and minimal toxicity, and improved understanding of the role of different signaling pathways and their crosstalk in the pathogenesis of OP may help achieve this goal. Our review focused on recent progress with regards to the drug development by modification of Wnt pathway, while other pathways/molecules were also discussed briefly. In addition, new observations made in recent years in bone biology were summarized and discussed for the treatment of OP.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shi-Hao He
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peng-Yu Xie
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Xin Zhang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tian-Fang Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dai-Feng Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Magnetic Resonance Imaging, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Rosa JT, Laizé V, Gavaia PJ, Cancela ML. Fish Models of Induced Osteoporosis. Front Cell Dev Biol 2021; 9:672424. [PMID: 34179000 PMCID: PMC8222987 DOI: 10.3389/fcell.2021.672424] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
Osteopenia and osteoporosis are bone disorders characterized by reduced bone mineral density (BMD), altered bone microarchitecture and increased bone fragility. Because of global aging, their incidence is rapidly increasing worldwide and novel treatments that would be more efficient at preventing disease progression and at reducing the risk of bone fractures are needed. Preclinical studies are today a major bottleneck to the collection of new data and the discovery of new drugs, since they are commonly based on rodent in vivo systems that are time consuming and expensive, or in vitro systems that do not exactly recapitulate the complexity of low BMD disorders. In this regard, teleost fish, in particular zebrafish and medaka, have recently emerged as suitable alternatives to study bone formation and mineralization and to model human bone disorders. In addition to the many technical advantages that allow faster and larger studies, the availability of several fish models that efficiently mimic human osteopenia and osteoporosis phenotypes has stimulated the interest of the academia and industry toward a better understanding of the mechanisms of pathogenesis but also toward the discovery of new bone anabolic or antiresorptive compounds. This mini review recapitulates the in vivo teleost fish systems available to study low BMD disorders and highlights their applications and the recent advances in the field.
Collapse
Affiliation(s)
- Joana T Rosa
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,S2 AQUA - Sustainable and Smart Aquaculture Collaborative Laboratory, Olhão, Portugal
| | - Paulo J Gavaia
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,GreenCoLab - Associação Oceano Verde, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.,Algarve Biomedical Center, University of Algarve, Faro, Portugal
| |
Collapse
|
6
|
Sharma A, Sharma L, Goyal R. Molecular Signaling Pathways and Essential Metabolic Elements in Bone Remodeling: An Implication of Therapeutic Targets for Bone Diseases. Curr Drug Targets 2020; 22:77-104. [PMID: 32914712 DOI: 10.2174/1389450121666200910160404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/28/2020] [Accepted: 07/15/2020] [Indexed: 01/01/2023]
Abstract
Bone is one of the dynamic tissues in the human body that undergoes continuous remodelling through subsequent actions of bone cells, osteoclasts, and osteoblasts. Several signal transduction pathways are involved in the transition of mesenchymal stem cells into osteoblasts. These primarily include Runx2, ATF4, Wnt signaling and sympathetic signalling. The differentiation of osteoclasts is controlled by M-CSF, RANKL, and costimulatory signalling. It is well known that bone remodelling is regulated through receptor activator of nuclear factor-kappa B ligand followed by binding to RANK, which eventually induces the differentiation of osteoclasts. The resorbing osteoclasts secrete TRAP, cathepsin K, MMP-9 and gelatinase to digest the proteinaceous matrix of type I collagen and form a saucer-shaped lacuna along with resorption tunnels in the trabecular bone. Osteoblasts secrete a soluble decoy receptor, osteoprotegerin that prevents the binding of RANK/RANKL and thus moderating osteoclastogenesis. Moreover, bone homeostasis is also regulated by several growth factors like, cytokines, calciotropic hormones, parathyroid hormone and sex steroids. The current review presents a correlation of the probable molecular targets underlying the regulation of bone mass and the role of essential metabolic elements in bone remodelling. Targeting these signaling pathways may help to design newer therapies for treating bone diseases.
Collapse
Affiliation(s)
- Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| |
Collapse
|
7
|
Fei D, Zhang Y, Wu J, Zhang H, Liu A, He X, Wang J, Li B, Wang Q, Jin Y. Ca v 1.2 regulates osteogenesis of bone marrow-derived mesenchymal stem cells via canonical Wnt pathway in age-related osteoporosis. Aging Cell 2019; 18:e12967. [PMID: 31120193 PMCID: PMC6612635 DOI: 10.1111/acel.12967] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/02/2019] [Accepted: 04/25/2019] [Indexed: 01/03/2023] Open
Abstract
Aims Age‐related bone mass loss is one of the most prevalent diseases that afflict the elderly population. The decline in the osteogenic differentiation capacity of bone marrow‐derived mesenchymal stem cells (BMMSCs) is regarded as one of the central mediators. Voltage‐gated Ca2+ channels (VGCCs) play an important role in the regulation of various cell biological functions, and disruption of VGCCs is associated with several age‐related cellular characteristics and systemic symptoms. However, whether and how VGCCs cause the decreased osteogenic differentiation abilities of BMMSCs have not been fully elucidated. Methods Voltage‐gated Ca2+ channels related genes were screened, and the candidate gene was determined in several aging models. Functional role of determined channel on osteogenic differentiation of BMMSCs was investigated through gain and loss of function experiments. Molecular mechanism was explored, and intervention experiments in vivo and in vitro were performed. Results We found that Cav1.2 was downregulated in these aging models, and downregulation of Cav1.2 in Zmpste24−/− BMMSCs contributed to compromised osteogenic capacity. Mechanistically, Cav1.2 regulated the osteogenesis of BMMSCs through canonical Wnt/β‐catenin pathway. Moreover, upregulating the activity of Cav1.2 mitigated osteoporosis symptom in Zmpste24−/− mice. Conclusion Impaired osteogenic differentiation of Zmpste24−/− BMMSCs can be partly attributed to the decreased Cav1.2 expression, which leads to the inhibition of canonical Wnt pathway. Bay K8644 treatment could be an applicable approach for treating age‐related bone loss by ameliorating compromised osteogenic differentiation capacity through targeting Cav1.2 channel.
Collapse
Affiliation(s)
- Dongdong Fei
- State Key Laboratory of Military Stomatology, Department of Periodontology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture School of Stomatology The Fourth Military Medical University Xi’an China
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology The Fourth Military Medical University Xi’an China
| | - Yang Zhang
- Department of Orthopaedics, Xijing Hospital The Fourth Military Medical University Xi’an China
| | - Junjie Wu
- State Key Laboratory of Military Stomatology, Department of Orthodontics, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases School of Stomatology The Fourth Military Medical University Xi’an China
| | - Hui Zhang
- State Key Laboratory of Military Stomatology, Department of Orthodontics, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases School of Stomatology The Fourth Military Medical University Xi’an China
| | - Anqi Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology The Fourth Military Medical University Xi’an China
| | - Xiaoning He
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology The Fourth Military Medical University Xi’an China
| | - Jinjin Wang
- State Key Laboratory of Military Stomatology, Department of Periodontology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture School of Stomatology The Fourth Military Medical University Xi’an China
| | - Bei Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology The Fourth Military Medical University Xi’an China
| | - Qintao Wang
- State Key Laboratory of Military Stomatology, Department of Periodontology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture School of Stomatology The Fourth Military Medical University Xi’an China
| | - Yan Jin
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology The Fourth Military Medical University Xi’an China
| |
Collapse
|
8
|
Inhibitory effects of sesamin on human osteoclastogenesis. Arch Pharm Res 2017; 40:1186-1196. [DOI: 10.1007/s12272-017-0926-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 06/06/2017] [Indexed: 10/19/2022]
|
9
|
Liu K, Jing Y, Zhang W, Fu X, Zhao H, Zhou X, Tao Y, Yang H, Zhang Y, Zen K, Zhang C, Li D, Shi Q. Silencing miR-106b accelerates osteogenesis of mesenchymal stem cells and rescues against glucocorticoid-induced osteoporosis by targeting BMP2. Bone 2017; 97:130-138. [PMID: 28108317 DOI: 10.1016/j.bone.2017.01.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 02/07/2023]
Abstract
Osteoporosis is a serious health problem worldwide. MicroRNA is a post-transcriptional regulator of gene expression by either promoting mRNA degradation or interfering with mRNA translation of specific target genes. It plays a significant role in the pathogenesis of osteoporosis. Here, we first demonstrated that miR-106b (miR-106b-5p) negatively regulated osteogenic differentiation of mesenchymal stem cells in vitro. Then, we found that miR-106b expression increased in C57BL/6 mice with glucocorticoid-induced osteoporosis (GIOP), and that silencing of miR-106b signaling protected mice against GIOP through promoting bone formation and inhibiting bone resorption. At last, we showed that miR-106b inhibited osteoblastic differentiation and bone formation partly through directly targeting bone morphogenetic protein 2 (BMP2) both in vitro and in the GIOP model. Together, our findings have identified the role and mechanism of miR-106b in negatively regulating osteogenesis. Inhibition of miR-106b might be a potential new strategy for treating osteoporosis and bone defects.
Collapse
Affiliation(s)
- Ke Liu
- Orthopedic Department, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, No.188 Shizi Street, Suzhou 215006, PR China
| | - Ying Jing
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Avenue, Nanjing 210093, PR China
| | - Wen Zhang
- Orthopedic Department, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, No.188 Shizi Street, Suzhou 215006, PR China
| | - Xuejie Fu
- Orthopedic Department, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, No.188 Shizi Street, Suzhou 215006, PR China
| | - Huan Zhao
- Orthopedic Department, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, No.188 Shizi Street, Suzhou 215006, PR China
| | - Xichao Zhou
- Orthopedic Department, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, No.188 Shizi Street, Suzhou 215006, PR China
| | - Yunxia Tao
- Orthopedic Department, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, No.188 Shizi Street, Suzhou 215006, PR China
| | - Huilin Yang
- Orthopedic Department, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, No.188 Shizi Street, Suzhou 215006, PR China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No.163 Xianlin Avenue, Nanjing 210093, PR China
| | - Ke Zen
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Avenue, Nanjing 210093, PR China
| | - Chenyu Zhang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Avenue, Nanjing 210093, PR China.
| | - Donghai Li
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Avenue, Nanjing 210093, PR China.
| | - Qin Shi
- Orthopedic Department, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, No.188 Shizi Street, Suzhou 215006, PR China.
| |
Collapse
|
10
|
Basha G, Ordobadi M, Scott WR, Cottle A, Liu Y, Wang H, Cullis PR. Lipid Nanoparticle Delivery of siRNA to Osteocytes Leads to Effective Silencing of SOST and Inhibition of Sclerostin In Vivo. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e363. [PMID: 27623445 PMCID: PMC5056992 DOI: 10.1038/mtna.2016.68] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/19/2016] [Indexed: 01/22/2023]
Abstract
Sclerostin is a protein secreted by osteocytes that is encoded by the SOST gene; it decreases bone formation by reducing osteoblast differentiation through inhibition of the Wnt signaling pathway. Silencing the SOST gene using RNA interference (RNAi) could therefore be an effective way to treat osteoporosis. Here, we investigate the utility of lipid nanoparticle (LNP) formulations of siRNA to silence the SOST gene in vitro and in vivo. It is shown that primary mouse embryonic fibroblasts (MEF) provide a useful model system in which the SOST gene can be induced by incubation in osteogenic media, allowing development of optimized SOST siRNA for silencing the SOST gene. Incubation of MEF cells with LNP containing optimized SOST siRNA produced significant, prolonged knockdown of the induced SOST gene in vitro, which was associated with an increase in osteogenic markers. Intravenous (i.v.) administration of LNP containing SOST siRNA to mice showed significant accumulation of LNP in osteocytes in compact bone, depletion of SOST mRNA and subsequent reduction of circulating sclerostin protein, establishing the potential utility for LNP siRNA systems to promote bone formation.
Collapse
Affiliation(s)
- Genc Basha
- NanoMedicines Research Group, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mina Ordobadi
- NanoMedicines Research Group, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wilder R Scott
- Department of Cellular and Physiological Sciences, Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Cottle
- NanoMedicines Research Group, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yan Liu
- NanoMedicines Research Group, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Haitang Wang
- NanoMedicines Research Group, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pieter R Cullis
- NanoMedicines Research Group, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Carey HA, Bronisz A, Cabrera J, Hildreth BE, Cuitiño M, Fu Q, Ahmad A, Toribio RE, Ostrowski MC, Sharma SM. Failure to Target RANKL Signaling Through p38-MAPK Results in Defective Osteoclastogenesis in the Microphthalmia Cloudy-Eyed Mutant. J Cell Physiol 2016. [PMID: 26218069 DOI: 10.1002/jcp.25108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper family factor that is essential for terminal osteoclast differentiation. Previous work demonstrates that phosphorylation of MITF by p38 MAPK downstream of Receptor Activator of NFkB Ligand (RANKL) signaling is necessary for MITF activation in osteoclasts. The spontaneous Mitf cloudy eyed (ce) allele results in production of a truncated MITF protein that lacks the leucine zipper and C-terminal end. Here we show that the Mitf(ce) allele leads to a dense bone phenotype in neonatal mice due to defective osteoclast differentiation. In response to RANKL stimulation, in vitro osteoclast differentiation was impaired in myeloid precursors derived from neonatal or adult Mitf(ce/ce) mice. The loss of the leucine zipper domain in Mitf(ce/ce) mice does not interfere with the recruitment of MITF/PU.1 complexes to target promoters. Further, we have mapped the p38 MAPK docking site within the region deleted in Mitf(ce). This interaction is necessary for the phosphorylation of MITF by p38 MAPK. Site-directed mutations in the docking site interfered with the interaction between MITF and its co-factors FUS and BRG1. MITF-ce fails to recruit FUS and BRG1 to target genes, resulting in decreased expression of target genes and impaired osteoclast function. These results highlight the crucial role of signaling dependent MITF/p38 MAPK interactions in osteoclast differentiation.
Collapse
Affiliation(s)
- Heather A Carey
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Agnieszka Bronisz
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jennifer Cabrera
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Blake E Hildreth
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio.,College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Maria Cuitiño
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Qi Fu
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Asrar Ahmad
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ramiro E Toribio
- College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Michael C Ostrowski
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Sudarshana M Sharma
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
12
|
Regulation of osteoclastic and osteoblastic differentiation marker expressions in osteoblast-like saos-2 cells by Eucommia ulmoides. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13596-015-0214-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Liu J, Wang Y, Song S, Wang X, Qin Y, Si S, Guo Y. Combined oral administration of bovine collagen peptides with calcium citrate inhibits bone loss in ovariectomized rats. PLoS One 2015; 10:e0135019. [PMID: 26258559 PMCID: PMC4530891 DOI: 10.1371/journal.pone.0135019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 07/16/2015] [Indexed: 01/28/2023] Open
Abstract
Purpose Collagen peptides (CPs) and calcium citrate are commonly used as bone health supplements for treating osteoporosis. However, it remains unknown whether the combination of oral bovine CPs with calcium citrate is more effective than administration of either agent alone. Methods Forty 12-week-old Sprague-Dawley rats were randomly divided into five groups (n = 8) for once-daily intragastric administration of different treatments for 3 months at 3 months after ovariectomy (OVX) as follows: sham + vehicle; OVX + vehicle; OVX + 750 mg/kg CP; OVX + CP-calcium citrate (75 mg/kg); OVX + calcium citrate (75 mg/kg). After euthanasia, the femurs were removed and analyzed by dual energy X-ray absorptiometry and micro-computed tomography, and serum samples were analyzed for bone metabolic markers. Results OVX rats supplemented with CPs or CP-calcium citrate showed osteoprotective effects, with reductions in the OVX-induced decreases in their femoral bone mineral density. Moreover, CP-calcium citrate prevented trabecular bone loss, improved the microarchitecture of the distal femur, and significantly inhibited bone loss with increased bone volume, connectivity density, and trabecular number compared with OVX control rats. CP or CP-calcium citrate administration significantly increased serum procollagen type I N-terminal propeptide levels and reduced serum bone-specific alkaline phosphatase, osteocalcin, and C-telopeptide of type I collagen levels. Conclusions Our data indicate that combined oral administration of bovine CPs with calcium citrate inhibits bone loss in OVX rats. The present findings suggest that combined oral administration of bovine CPs with calcium citrate is a promising alternative for reducing bone loss in osteopenic postmenopausal women.
Collapse
Affiliation(s)
- JunLi Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, People’s Republic of China
- Center for Special Medicine and Experimental Research, 306 Hospital of PLA, Beijing, People’s Republic of China
| | - YiHu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, People’s Republic of China
| | - ShuJun Song
- Center for Special Medicine and Experimental Research, 306 Hospital of PLA, Beijing, People’s Republic of China
| | - XiJie Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, People’s Republic of China
| | - YaYa Qin
- Center for Special Medicine and Experimental Research, 306 Hospital of PLA, Beijing, People’s Republic of China
| | - ShaoYan Si
- Center for Special Medicine and Experimental Research, 306 Hospital of PLA, Beijing, People’s Republic of China
- * E-mail: (YCG); (SYS)
| | - YanChuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, People’s Republic of China
- * E-mail: (YCG); (SYS)
| |
Collapse
|
14
|
Fijalkowski I, Boudin E, Mortier G, Van Hul W. Sclerosing bone dysplasias: leads toward novel osteoporosis treatments. Curr Osteoporos Rep 2014; 12:243-51. [PMID: 24947952 DOI: 10.1007/s11914-014-0220-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sclerosing bone dysplasias are a group of rare, monogenic disorders characterized by increased bone density resulting from the disturbance in the fragile equilibrium between bone formation and resorption. Over the last decade, major contributions have been made toward better understanding of the pathogenesis of these conditions. These studies provided us with important insights into the bone biology and yielded the identification of numerous drug targets for the prevention and treatment of osteoporosis. Here, we review this heterogeneous group of disorders focusing on their utility in the development of novel osteoporosis therapies.
Collapse
Affiliation(s)
- Igor Fijalkowski
- Department of Medical Genetics, University and University Hospital of Antwerp, Edegem, Belgium
| | | | | | | |
Collapse
|