1
|
Shen YJ, Ou PH, Shen YC, Lai CJ. Role of endogenous nerve growth factor in laryngeal airway hyperreactivity and laryngeal inflammation induced by intermittent hypoxia in rats. Respir Physiol Neurobiol 2025; 332:104372. [PMID: 39566876 DOI: 10.1016/j.resp.2024.104372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Obstructive sleep apnea, characterized by airway exposure to intermittent hypoxia (IH), is associated with laryngeal airway hyperreactivity (LAH) and laryngeal inflammation. The sensitization of capsaicin-sensitive superior laryngeal afferents (CSSLAs) by inflammatory mediators has been implicated in the pathogenesis of LAH. Nerve growth factor (NGF) is an inflammatory mediator that acts on tropomyosin receptor kinase A (TrkA) and the p75 neurotrophin receptor (p75NTR) to induce lower airway hyperresponsiveness. In this study, we investigated the role of NGF in the development of LAH and laryngeal inflammation induced by IH in anesthetized rats. Compared with rats subjected to room air exposure for 14 days, rats with 14-day IH exposure exhibited augmented reflex apneic responses to the laryngeal provocation of three different chemical stimulants of CSSLAs, resulting in LAH. The apneic responses to laryngeal stimulants were abolished by either perineural capsaicin treatment (a procedure that selectively blocks the conduction of CSSLAs) or denervation of the superior laryngeal nerves, suggesting that the reflex was mediated through CSSLAs. The IH-induced LAH was significantly attenuated by daily treatment with anti-NGF antibody, but was unaffected by daily treatment with immunoglobulin G. IH exposure also induced laryngeal inflammation as evidenced by increases in laryngeal levels of NGF, lipid peroxidation, tumor necrosis factor-α, interleukin-1β, TrkA, and p75NTR. Similarly, IH-induced laryngeal inflammation was significantly reduced by daily treatment with anti-NGF antibody. We concluded that NGF contributes to the development of LAH and laryngeal inflammation induced by IH in rats. The LAH may result from the sensitizing effect of NGF on CSSLAs.
Collapse
Affiliation(s)
- Yan-Jhih Shen
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ping-Hsun Ou
- Master program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yan-Cheng Shen
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching Jung Lai
- Master program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
2
|
Kroeff GPH, de Castro JM, Braga HB, Bosco TD, de Oliveira TC, de Sousa Morais IT, Medeiros LF, Caumo W, Stein DJ, Torres ILS. Hormone replacement therapy did not alleviate temporomandibular joint inflammatory pain in ovariectomized rats. Odontology 2025; 113:232-244. [PMID: 38954152 DOI: 10.1007/s10266-024-00964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
This study had the aim of examining the relationships between variations in estrogen levels resulting from ovariectomy, and estrogen hormone replacement therapy (HRT) in rats subjected to an orofacial inflammatory pain model. Eighty adult female Wistar rats were initially divided into 2 groups: Sham or ovariectomy (OVX-D1). Seven days later (D7), the rats were subjected to an unilateral infiltration of Freund's Complete Adjuvant (CFA) or saline solution into the right temporomandibular joint (TMJ). Then, rats received 17β-estradiol (28 µg/kg/day) or placebo for 21 days (D10-D31). Nociception was evaluated by the von Frey (VF) and the Hot Plate (HP) tests, and depressive-like behavior by the Forced Swimming (FS) test. On D32 all rats were euthanized and serum, hippocampus and brainstem were collected. The CFA groups presented a mechanical hyperalgesia until day 21 (p ≤ 0.05). No differences were observed among groups in the HP (p = 0.735), and in the immobility and swimming time of the FS (p = 0.800; p = 0.998, respectively). In the brainstem, there was a significant difference in the TNF-ɑ levels (p = 0.043), and a marginal significant difference in BDNF levels (p = 0.054), without differences among groups in the hippocampal BDNF and TNF-ɑ levels (p = 0.232; p = 0.081, respectively). In conclusion, the hormone replacement therapy did not alleviate orofacial pain in ovariectomized rats. However, there is a decrease in brainstem TNF-ɑ levels in the animals submitted to both models, which was partially reverted by HRT.
Collapse
Affiliation(s)
- Giovana Paola Heck Kroeff
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences (ICBS), Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90050-170, Brazil
- Pharmacology of Pain and Neuromodulation Laboratory: Preclinical Investigations, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Bairro Santa Cecília, Porto Alegre, RS, 90050-903, Brazil
| | - Josimar Macedo de Castro
- Pharmacology of Pain and Neuromodulation Laboratory: Preclinical Investigations, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Bairro Santa Cecília, Porto Alegre, RS, 90050-903, Brazil
- Postgraduate Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, RS, 90050-170, Brazil
| | - Hemily Barbosa Braga
- Pharmacology of Pain and Neuromodulation Laboratory: Preclinical Investigations, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Bairro Santa Cecília, Porto Alegre, RS, 90050-903, Brazil
| | - Tenille Dal Bosco
- Pharmacology of Pain and Neuromodulation Laboratory: Preclinical Investigations, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Bairro Santa Cecília, Porto Alegre, RS, 90050-903, Brazil
- Postgraduate Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, RS, 90050-170, Brazil
| | - Thais Collioni de Oliveira
- Pharmacology of Pain and Neuromodulation Laboratory: Preclinical Investigations, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Bairro Santa Cecília, Porto Alegre, RS, 90050-903, Brazil
| | - Iala Thais de Sousa Morais
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences (ICBS), Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90050-170, Brazil
- Pharmacology of Pain and Neuromodulation Laboratory: Preclinical Investigations, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Bairro Santa Cecília, Porto Alegre, RS, 90050-903, Brazil
| | - Liciane Fernandes Medeiros
- Pharmacology of Pain and Neuromodulation Laboratory: Preclinical Investigations, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Bairro Santa Cecília, Porto Alegre, RS, 90050-903, Brazil
- Postgraduate Program in Health and Human Development, Universidade La Salle, Canoas, RS, 92010-000, Brazil
| | - Wolnei Caumo
- Pharmacology of Pain and Neuromodulation Laboratory: Preclinical Investigations, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Bairro Santa Cecília, Porto Alegre, RS, 90050-903, Brazil
- Postgraduate Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, RS, 90050-170, Brazil
| | - Dirson J Stein
- Pharmacology of Pain and Neuromodulation Laboratory: Preclinical Investigations, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Bairro Santa Cecília, Porto Alegre, RS, 90050-903, Brazil
- Postgraduate Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, RS, 90050-170, Brazil
| | - Iraci L S Torres
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences (ICBS), Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90050-170, Brazil.
- Pharmacology of Pain and Neuromodulation Laboratory: Preclinical Investigations, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Bairro Santa Cecília, Porto Alegre, RS, 90050-903, Brazil.
- Postgraduate Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
3
|
Hasani F, Masrour M, Khamaki S, Jazi K, Ghoodjani E, Teixeira AL. Brain-Derived Neurotrophic Factor (BDNF) as a Potential Biomarker in Brain Glioma: A Systematic Review and Meta-Analysis. Brain Behav 2025; 15:e70266. [PMID: 39789839 DOI: 10.1002/brb3.70266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND This systematic review and meta-analysis evaluates peripheral and CNS BDNF levels in glioma patients. METHODS Following PRISMA guidelines, we systematically searched databases for studies measuring BDNF in glioma patients and controls. After screening and data extraction, we conducted quality assessment, meta-analysis, and meta-regression. RESULTS Eight studies were included. Meta-analysis showed significantly reduced plasma BDNF levels in glioma patients versus controls (SMD: -1.0026; 95% CI: [-1.5284, -0.4769], p = 0.0002). High-grade gliomas had lower plasma BDNF (p = 0.0288). Tissue BDNF levels were higher in glioma patients (SMD: 1.9513; 95% CI: [0.7365, 3.1661], p = 0.0016) and correlated with tumor grade (p = 0.0122). Plasma BDNF levels negatively correlated with patient age (p = 0.0244) and positively with female percentage (p = 0.0007). CONCLUSION BDNF is a promising biomarker in glioma, showing significant changes in plasma and tissue levels correlating with tumor grade, patient age, and gender.
Collapse
Affiliation(s)
- Fatemeh Hasani
- Gastroenterology and Hepatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahdi Masrour
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Khamaki
- Gastroenterology and Hepatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Kimia Jazi
- Student Research Committee, Faculty of Medicine, Medical University of Qom, Qom, Iran
| | - Erfan Ghoodjani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Antonio L Teixeira
- Biggs Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
4
|
Ferrés S, Serrat M, Auer W, Royuela-Colomer E, Almirall M, Lizama-Lefno A, Nijs J, Maes M, Luciano JV, Borràs X, Feliu-Soler A. Immune-inflammatory effects of the multicomponent intervention FIBROWALK in outdoor and online formats for patients with fibromyalgia. Brain Behav Immun 2024; 125:184-197. [PMID: 39742894 DOI: 10.1016/j.bbi.2024.12.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/10/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025] Open
Abstract
The multicomponent intervention FIBROWALK integrates pain science education (PSE), therapeutic exercise, cognitive behavioral therapy (CBT), and mindfulness training for treating fibromyalgia (FM). This study investigated the effects of the FIBROWALK in online (FIBRO-On) and outdoor (FIBRO-Out) formats compared to treatment-as-usual (TAU) on core clinical variables along with serum immune-inflammatory biomarkers and brain-derived neurotrophic factor (BDNF). Furthermore, the predictive value of these biomarkers on clinical response to FIBROWALK was also evaluated. 120 participants were randomly divided into three groups: TAU, TAU + FIBRO-On or TAU + FIBRO-Out. Clinical and blood assessments were conducted pre-post treatment. Both FIBRO-Out and FIBRO-On showed effectiveness (vs TAU) by improving functional impairment and kinesiophobia. Individuals allocated to FIBRO-Out (vs TAU) additionally showed decreases in pain, fatigue, depressive symptoms, and serum IL-6 and IL-10 levels along with IL-6/IL-4 ratio; patients allocated to FIBRO-On only showed a less stepped increase in IL-6 compared to TAU. An exaggerated pro-inflammatory profile along with higher levels of BDNF at baseline predicted greater clinical improvements in both active treatment arms. Our results suggest that FIBROWALK -in online and outdoor formats- is effective in individuals with FM and has significant immune regulatory effects in FM patients, while immune-inflammatory pathways and BDNF levels may in part predict its clinical effectiveness. Trial registration number NCT05377567 (clinicaltrials.gov).
Collapse
Affiliation(s)
- Sònia Ferrés
- Escoles Universitàries Gimbernat, Autonomous University of Barcelona, Bellaterra, Spain; Department of Basic, Developmental and Educational Psychology, Faculty of Psychology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Mayte Serrat
- Unitat d'Expertesa en Síndromes de Sensibilització Central, Servei de Reumatologia, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
| | - William Auer
- Department of Basic, Developmental and Educational Psychology, Faculty of Psychology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Estíbaliz Royuela-Colomer
- Department of Clinical and Health Psychology, Faculty of Psychology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Míriam Almirall
- Unitat d'Expertesa en Síndromes de Sensibilització Central, Servei de Reumatologia, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Andrea Lizama-Lefno
- Department of Development and Postgraduate, Autonomous University of Chile, Chile
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium; Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden; Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Belgium
| | - Michael Maes
- Sichuan Provincial Center for Mental Health, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan V Luciano
- Department of Clinical and Health Psychology, Faculty of Psychology, Autonomous University of Barcelona, Bellaterra, Spain; Teaching, Research & Innovation Unit, Parc Sanitari Sant Joan de Déu, St. Boi de Llobregat, Spain; Centre for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Xavier Borràs
- Department of Basic, Developmental and Educational Psychology, Faculty of Psychology, Autonomous University of Barcelona, Bellaterra, Spain; Centre for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Albert Feliu-Soler
- Department of Clinical and Health Psychology, Faculty of Psychology, Autonomous University of Barcelona, Bellaterra, Spain; Centre for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| |
Collapse
|
5
|
Sun Z, Han W, Dou Z, Lu N, Wang X, Wang F, Ma S, Tian Z, Xian H, Liu W, Liu Y, Wu W, Chu W, Guo H, Wang F, Ding H, Liu Y, Tao H, Freichel M, Birnbaumer L, Li Z, Xie R, Wu S, Luo C. TRPC3/6 Channels Mediate Mechanical Pain Hypersensitivity via Enhancement of Nociceptor Excitability and of Spinal Synaptic Transmission. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404342. [PMID: 39340833 PMCID: PMC11600220 DOI: 10.1002/advs.202404342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Patients with tissue inflammation or injury often experience aberrant mechanical pain hypersensitivity, one of leading symptoms in clinic. Despite this, the molecular mechanisms underlying mechanical distortion are poorly understood. Canonical transient receptor potential (TRPC) channels confer sensitivity to mechanical stimulation. TRPC3 and TRPC6 proteins, coassembling as heterotetrameric channels, are highly expressed in sensory neurons. However, how these channels mediate mechanical pain hypersensitivity has remained elusive. It is shown that in mice and human, TRPC3 and TRPC6 are upregulated in DRG and spinal dorsal horn under pathological states. Double knockout of TRPC3/6 blunts mechanical pain hypersensitivity, largely by decreasing nociceptor hyperexcitability and spinal synaptic potentiation via presynaptic mechanism. In corroboration with this, nociceptor-specific ablation of TRPC3/6 produces comparable pain relief. Mechanistic analysis reveals that upon peripheral inflammation, TRPC3/6 in primary sensory neurons get recruited via released bradykinin acting on B1/B2 receptors, facilitating BDNF secretion from spinal nociceptor terminals, which in turn potentiates synaptic transmission through TRPC3/6 and eventually results in mechanical pain hypersensitivity. Antagonizing TRPC3/6 in DRG relieves mechanical pain hypersensitivity in mice and nociceptor hyperexcitability in human. Thus, TRPC3/6 in nociceptors is crucially involved in pain plasticity and constitutes a promising therapeutic target against mechanical pain hypersensitivity with minor side effects.
Collapse
Affiliation(s)
- Zhi‐Chuan Sun
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
- Department of NeurosurgeryXi'an Daxing HospitalXi'an710016China
| | - Wen‐Juan Han
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Zhi‐Wei Dou
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Na Lu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
- The Assisted Reproduction CenterNorthwest Women and Children's HospitalXi'an710000China
| | - Xu Wang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Fu‐Dong Wang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Sui‐Bin Ma
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Zhi‐Cheng Tian
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Hang Xian
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
- Department of OrthopedicsXijing HospitalFourth Military Medical UniversityXi'an710032China
| | - Wan‐Neng Liu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Ying‐Ying Liu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Wen‐Bin Wu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Wen‐Guang Chu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Huan Guo
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Fei Wang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Hui Ding
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Yuan‐Ying Liu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Hui‐Ren Tao
- Department of Orthopedic SurgeryThe University of Hong Kong‐Shenzhen HospitalShenzhenGuangdong518053China
| | - Marc Freichel
- Institute of PharmacologyHeidelberg University69120HeidelbergGermany
| | - Lutz Birnbaumer
- Institute of Biomedical Research (BIOMED)Catholic University of ArgentinaBuenos AiresC1107AVVArgentina
- Signal Transduction LaboratoryNational institute of Environmental Health SciencesResearch Triangle ParkNC27709United States
| | - Zhen‐Zhen Li
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Rou‐Gang Xie
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Sheng‐Xi Wu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Ceng Luo
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
- Innovation Research InstituteXijing HospitalFourth Military Medical UniversityXi'an710032China
| |
Collapse
|
6
|
Klyne DM, Smith SS, Hall M. Should cognitive behavioral therapy for insomnia be considered for preventing and managing chronic pain? Sleep 2024; 47:zsae177. [PMID: 39093687 PMCID: PMC11467058 DOI: 10.1093/sleep/zsae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Indexed: 08/04/2024] Open
Affiliation(s)
- David M Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Simon S Smith
- Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Michelle Hall
- Sydney Musculoskeletal Health, The Kolling Institute, School of Health Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Kamel DM, Hassan M, Elsawy NA, Hashad D, Fayed AA, Elhabashy AM, Abdel-Fattah YH. Serum brain-derived neurotrophic factor level in patients with disc induced lumbosacral radiculopathy: Relation to pain severity and functional disability. J Clin Neurosci 2024; 128:110773. [PMID: 39137713 DOI: 10.1016/j.jocn.2024.110773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Pain is the major cause of disability in disc induced lumbosacral radiculopathy (LSR) and is related to neurotrophins mainly brain derived neurotrophic factor (BDNF). However, to our knowledge evaluating serum BDNF in disc induced LSR has not been reported before. This study was done to investigate serum BDNF in LSR patients and its relation to pain severity and functional disability. METHODS This case-control study included 40 disc induced LSR patients and 40 age and sex matched healthy subjects. All patients were subjected to neurological examination, electrophysiological evaluation, pain severity assessment using numerical rating scale (NRS) and functional disability assessment using Modified Oswestry Low Back Pain Disability Index (ODI) and Maine-Seattle Back Questionnaire (MSBQ). According to Douleur neuropathique 4 (DN4) questionnaire, patients were divided into those with neuropathic pain and those with non-neuropathic pain. Serum BDNF was measured by enzyme-linked immunosorbent assay in all participants. RESULTS Serum BDNF was significantly higher in LSR patients than in healthy controls (U=272.5, P<0.001). Moreover, serum BDNF was significantly higher in those with neuropathic pain compared to those with non-neuropathic pain (U=35, P=0.03). Serum BDNF had a significant positive correlation with NRS score among those with acute pain (rs=0.537, P=0.026), however there was no significant correlation among those with chronic pain. Furthermore, BDNF had no significant correlation with modified ODI and MSBQ. CONCLUSION Increased serum BDNF may be associated with neuropathic pain and acute pain severity in disc induced LSR. However, it may not be related to chronic pain severity or functional disability.
Collapse
Affiliation(s)
- Dina Mansour Kamel
- Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, University of Alexandria, Egypt.
| | - Marwa Hassan
- Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, University of Alexandria, Egypt.
| | - Noha A Elsawy
- Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, University of Alexandria, Egypt
| | - Doaa Hashad
- Clinical and Chemical Pathology, Faculty of Medicine, University of Alexandria, Egypt
| | | | | | - Yousra Hisham Abdel-Fattah
- Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, University of Alexandria, Egypt
| |
Collapse
|
8
|
Reis AS, Paltian JJ, Domingues WB, Novo DLR, Bolea-Fernandez E, Van Acker T, Campos VF, Luchese C, Vanhaecke F, Mesko MF, Wilhelm EA. Platinum Deposition in the Central Nervous System: A Novel Insight into Oxaliplatin-induced Peripheral Neuropathy in Young and Old Mice. Mol Neurobiol 2024:10.1007/s12035-024-04430-y. [PMID: 39320565 DOI: 10.1007/s12035-024-04430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/08/2024] [Indexed: 09/26/2024]
Abstract
Numerous factors can contribute to the incidence or exacerbation of peripheral neuropathy induced by oxaliplatin (OXA). Recently, platinum accumulation in the spinal cord of mice after OXA exposure, despite the efficient defenses of the central nervous system, has been demonstrated by our research group, expanding the knowledge about its toxicity. One hypothesis is platinum accumulation in the spinal cord causes oxidative damage to neurons and impairs mitochondrial function. Thus, the main aim of this study was to investigate the relationship between aging and OXA-induced neuropathic pain and its comorbidities, including anxious behavior and cognitive impairment. By using an OXA-induced peripheral neuropathy model, platinum and bioelement concentrations and their influence on oxidative damage, neuroprotection, and neuroplasticity pathways were evaluated in Swiss mice, and our findings showed that treatment with OXA exacerbated pain and anxious behavior, albeit not age-induced cognitive impairment. Platinum deposition in the spinal cord and, for the first time, in the brain of mice exposed to OXA, regardless of age, was identified. We found that alterations in bioelement concentration, oxidative damage, neuroprotection, and neuroplasticity pathways induced by aging contribute to OXA-induced peripheral neuropathy. Our results strive to supply a basis for therapeutic interventions for OXA-induced peripheral neuropathy considering age specificities.
Collapse
Affiliation(s)
- Angélica S Reis
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão Do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Jaini J Paltian
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão Do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - William B Domingues
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Genômica Estrutural, Biotecnologia - Universidade Federal de Pelotas, UFPel -, Pelotas, RS, CEP - 96010-900, Brazil
| | - Diogo L R Novo
- Programa de Pós-Graduação em Química, Laboratório de Controle de Contaminantes em Biomateriais, CCQFA - Universidade Federal de Pelotas, UFPel -, Pelotas, RS, CEP - 96010-900, Brazil
| | - Eduardo Bolea-Fernandez
- Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium
| | - Thibaut Van Acker
- Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium
| | - Vinicius F Campos
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Genômica Estrutural, Biotecnologia - Universidade Federal de Pelotas, UFPel -, Pelotas, RS, CEP - 96010-900, Brazil
| | - Cristiane Luchese
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão Do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Frank Vanhaecke
- Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium
| | - Marcia F Mesko
- Programa de Pós-Graduação em Química, Laboratório de Controle de Contaminantes em Biomateriais, CCQFA - Universidade Federal de Pelotas, UFPel -, Pelotas, RS, CEP - 96010-900, Brazil.
| | - Ethel A Wilhelm
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão Do Leão, Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
9
|
Yuan BT, Li MN, Zhu LP, Xu ML, Gu J, Gao YJ, Ma LJ. TFAP2A is involved in neuropathic pain by regulating Grin1 expression in glial cells of the dorsal root ganglion. Biochem Pharmacol 2024; 227:116427. [PMID: 39009095 DOI: 10.1016/j.bcp.2024.116427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/20/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Neuropathic pain is a highly prevalent and refractory condition, yet its mechanism remains poorly understood. While NR1, the essential subunit of NMDA receptors, has long been recognized for its pivotal role in nociceptive transmission, its involvement in presynaptic stimulation is incompletely elucidated. Transcription factors can regulate the expression of both pro-nociceptive and analgesic factors. Our study shows that transcription factor TFAP2A was up-regulated in the dorsal root ganglion (DRG) neurons, satellite glial cells (SGCs), and Schwann cells following spinal nerve ligation (SNL). Intrathecal injection of siRNA targeting Tfap2a immediately or 7 days after SNL effectively alleviated SNL-induced pain hypersensitivity and reduced Tfap2a expression levels. Bioinformatics analysis revealed that TFAP2A may regulate the expression of the Grin1 gene, which encodes NR1. Dual-luciferase reporter assays confirmed TFAP2A's positive regulation of Grin1 expression. Notably, both Tfap2a and Grin1 were expressed in the primary SGCs and upregulated by lipopolysaccharides. The expression of Grin1 was also down-regulated in the DRG following Tfap2a knockdown. Furthermore, intrathecal injection of siRNA targeting Grin1 immediately or 7 days post-SNL effectively alleviated SNL-induced mechanical allodynia and thermal hyperalgesia. Finally, intrathecal Tfap2a siRNA alleviated SNL-induced neuronal hypersensitivity, and incubation of primary SGCs with Tfap2a siRNA decreased NMDA-induced upregulation of proinflammatory cytokines. Collectively, our study reveals the role of TFAP2A-Grin1 in regulating neuropathic pain in peripheral glia, offering a new strategy for the development of novel analgesics.
Collapse
Affiliation(s)
- Bao-Tong Yuan
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Meng-Na Li
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Lin-Peng Zhu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Meng-Lin Xu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Jun Gu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China.
| | - Ling-Jie Ma
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China.
| |
Collapse
|
10
|
Belviranlı M, Okudan N, Sezer T. Exercise Training Alleviates Symptoms and Cognitive Decline in a Reserpine-induced Fibromyalgia Model by Activating Hippocampal PGC-1α/FNDC5/BDNF Pathway. Neuroscience 2024; 549:145-155. [PMID: 38759912 DOI: 10.1016/j.neuroscience.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/25/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
The purpose of this study was to assess, from a behavioral, biochemical, and molecular standpoint, how exercise training affected fibromyalgia (FM) symptoms in a reserpine-induced FM model and to look into the potential involvement of the hippocampal PGC-1α/FNDC5/BDNF pathway in this process. Reserpine (1 mg kg-1) was subcutaneously injected once daily for three consecutive days and then the rats were exercised for 21 days. Mechanical allodynia was evaluated 1, 11, and 21 days after the last injection. At the end of the exercise training protocol forced swim, open field and Morris water maze tests were performed to assess depression, locomotion and cognition, respectively. Additionally, biochemical and molecular markers related to the pathogenesis of the FM and cognitive functions were measured. Reserpine exposure was associated with a decrease in locomotion, an increase in depression, an increase in mechanical allodynia, and a decrease in spatial learning and memory (p < 0.05). These behavioral abnormalities were found to be correlated with elevated blood cytokine levels, reduced serotonin levels in the prefrontal cortex, and altered PGC-1α/FNDC5/BDNF pathway in the hippocampus (p < 0.05). Interestingly, exercise training attenuated all the neuropathological changes mentioned above (p < 0.05). These results imply that exercise training restored behavioral, biochemical, and molecular changes against reserpine-induced FM-like symptoms in rats, hence mitigating the behavioral abnormalities linked to pain, depression, and cognitive functioning.
Collapse
Affiliation(s)
- Muaz Belviranlı
- Selçuk University, School of Medicine, Department of Physiology, Konya, Turkey.
| | - Nilsel Okudan
- Selçuk University, School of Medicine, Department of Physiology, Konya, Turkey
| | - Tuğba Sezer
- Selçuk University, School of Medicine, Department of Physiology, Konya, Turkey
| |
Collapse
|
11
|
Klyne DM, Hall M. Is sleep the new treatment for pain? Two issues need resolving before deciding. Sleep 2024; 47:zsae089. [PMID: 38632974 PMCID: PMC11168756 DOI: 10.1093/sleep/zsae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Indexed: 04/19/2024] Open
Affiliation(s)
- David M Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Michelle Hall
- Sydney Musculoskeletal Health, The Kolling Institute, School of Health Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Barbe MF, Chen FL, Loomis RH, Harris MY, Kim BM, Xie K, Hilliard BA, McGonagle ER, Bailey TD, Gares RP, Van Der Bas M, Kalicharan BA, Holt-Bright L, Stone LS, Hodges PW, Klyne DM. Characterization of pain-related behaviors in a rat model of acute-to-chronic low back pain: single vs. multi-level disc injury. FRONTIERS IN PAIN RESEARCH 2024; 5:1394017. [PMID: 38770243 PMCID: PMC11102983 DOI: 10.3389/fpain.2024.1394017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Low back pain is the most common type of chronic pain. We examined pain-related behaviors across 18 weeks in rats that received injury to one or two lumbar intervertebral discs (IVD) to determine if multi-level disc injuries enhance/prolong pain. Methods Twenty-three Sprague-Dawley adult female rats were used: 8 received disc puncture (DP) of one lumbar IVD (L5/6, DP-1); 8 received DP of two lumbar IVDs (L4/5 & L5/6, DP-2); 8 underwent sham surgery. Results DP-2 rats showed local (low back) sensitivity to pressure at 6- and 12-weeks post-injury, and remote sensitivity to pressure (upper thighs) at 12- and 18-weeks and touch (hind paws) at 6, 12 and 18-weeks. DP-1 rats showed local and remote pressure sensitivity at 12-weeks only (and no tactile sensitivity), relative to Sham DP rats. Both DP groups showed reduced distance traveled during gait testing over multiple weeks, compared to pre-injury; only DP-2 rats showed reduced distance relative to Sham DP rats at 12-weeks. DP-2 rats displayed reduced positive interactions with a novel adult female rat at 3-weeks and hesitation and freezing during gait assays from 6-weeks onwards. At study end (18-weeks), radiological and histological analyses revealed reduced disc height and degeneration of punctured IVDs. Serum BDNF and TNFα levels were higher at 18-weeks in DP-2 rats, relative to Sham DP rats, and levels correlated positively with remote sensitivity in hind paws (tactile) and thighs (pressure). Discussion Thus, multi-level disc injuries resulted in earlier, prolonged and greater discomfort locally and remotely, than single-level disc injury. BDNF and TNFα may have contributing roles.
Collapse
Affiliation(s)
- Mary F. Barbe
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Frank Liu Chen
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Regina H. Loomis
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michele Y. Harris
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Brandon M. Kim
- Medical Doctor Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Kevin Xie
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Brendan A. Hilliard
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Elizabeth R. McGonagle
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Taylor D. Bailey
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Ryan P. Gares
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Megan Van Der Bas
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Betsy A. Kalicharan
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Lewis Holt-Bright
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Laura S. Stone
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN, United States
| | - Paul W. Hodges
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - David M. Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Klyne DM, Hilliard BA, Harris MY, Amin M, Hall M, Besomi M, Mustafa S, Farrell SF, Rawashdeh O, Han FY, Hodges PW, Frara N, Barbe MF. Poor sleep versus exercise: A duel to decide whether pain resolves or persists after injury. Brain Behav Immun Health 2024; 35:100714. [PMID: 38111687 PMCID: PMC10727927 DOI: 10.1016/j.bbih.2023.100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023] Open
Abstract
Poor sleep is thought to enhance pain via increasing peripheral and/or central sensitization. Aerobic exercise, conversely, relives pain via reducing sensitization, among other mechanisms. This raises two clinical questions: (1) does poor sleep contribute to the transition from acute-to-persistent pain, and (2) can exercise protect against this transition? This study tested these questions and explored underlying mechanisms in a controlled injury model. Twenty-nine adult female Sprague-Dawley rats performed an intensive lever-pulling task for 4 weeks to induce symptoms consistent with clinical acute-onset overuse injury. Rats were then divided into three groups and exposed for 4 weeks to either: voluntary exercise via access to a running wheel, sleep disturbance, or both. Pain-related behaviours (forepaw mechanical sensitivity, reflexive grip strength), systemic levels of brain derived neurotrophic factor (BDNF), estradiol and corticosterone, and white blood cells (WBC) were assessed pre-injury, post-injury and post-intervention. Mechanical sensitivity increased post-injury and remained elevated with sleep disturbance alone, but decreased to pre-injury levels with exercise both with and without sleep disturbance. Reflexive grip strength decreased post-injury but recovered post-intervention-more with exercise than sleep disturbance. BDNF increased with sleep disturbance alone, remained at pre-injury levels with exercise regardless of sleep, and correlated with mechanical sensitivity. WBCs and estradiol increased with exercise alone and together with sleep disturbance, respectively. Corticosterone was not impacted by injury/intervention. Findings provide preliminary evidence for a role of poor sleep in the transition from acute-to-persistent pain, and the potential for aerobic exercise to counter these effects. BDNF might have a role in these relationships.
Collapse
Affiliation(s)
- David M. Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Brendan A. Hilliard
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine of Temple University, Philadelphia, 19140, USA
| | - Michele Y. Harris
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine of Temple University, Philadelphia, 19140, USA
| | - Mamta Amin
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine of Temple University, Philadelphia, 19140, USA
| | - Michelle Hall
- Centre for Health, Exercise and Sports Medicine, School of Health Sciences, The University of Melbourne, Melbourne, 3010, Australia
| | - Manuela Besomi
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Sanam Mustafa
- School of Biomedicine, The University of Adelaide, Adelaide, 5005, Australia
| | - Scott F. Farrell
- RECOVER Injury Research Centre, NHMRC Centre of Research Excellence in Better Health Outcomes for Compensable Injury, The University of Queensland, Brisbane, 4029, Australia
| | - Oliver Rawashdeh
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Felicity Y. Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Paul W. Hodges
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Nagat Frara
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine of Temple University, Philadelphia, 19140, USA
| | - Mary F. Barbe
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine of Temple University, Philadelphia, 19140, USA
| |
Collapse
|
14
|
Wirth B, Schweinhardt P. Personalized assessment and management of non-specific low back pain. Eur J Pain 2024; 28:181-198. [PMID: 37874300 DOI: 10.1002/ejp.2190] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/22/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND AND OBJECTIVE Low back pain (LBP), and in particular non-specific low back pain (NSLBP), which accounts for approximately 90% of LBP, is the leading cause of years lived with disability worldwide. In clinical trials, LBP is often poorly categorized into 'specific' versus 'non-specific' and 'acute' versus 'chronic' pain. However, a better understanding of the underlying pain mechanisms might improve study results and reduce the number of NSLBP patients. DATABASES AND DATA TREATMENT Narrative review. RESULTS NSLBP is a multi-dimensional, biopsychosocial condition that requires all contributing dimensions to be assessed and prioritized. Thereby, the assessment of the contribution of nociceptive, neuropathic and nociplastic pain mechanisms forms the basis for personalized management. In addition, psychosocial (e.g. anxiety, catastrophizing) and contextual factors (e.g. work situation) as well as comorbidities need to be assessed and individually weighted. Personalized treatment of NSLBP further requires individually choosing treatment modalities, for example, exercising, patient education, cognitive-behavioural advice, pharmacotherapy, as well as tailoring treatment within these modalities, for example, the delivery of tailored psychological interventions or exercise programs. As the main pain mechanism and psychosocial factors may vary over time, re-assessment is necessary and treatment success should ideally be assessed quantitatively and qualitatively. CONCLUSIONS The identification of the main contributing pain mechanism and the integration of the patients' view on their condition, including beliefs, preferences, concerns and expectations, are key in the personalized clinical management of NSLBP. In research, particular importance should be placed on accurate characterization of patients and on including outcomes relevant to the individual patient. SIGNIFICANCE STATEMENT Here, a comprehensive review of the challenges associated with the diagnostic label 'non-specific low back pain' is given. It outlines what is lacking in current treatment guidelines and it is summarized what is currently known with respect to individual phenotyping. It becomes clear that more research on clinically meaningful subgroups is needed to best tailor treatment approaches.
Collapse
Affiliation(s)
- Brigitte Wirth
- Department of Chiropractic Medicine, Integrative Spinal Research Group, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Petra Schweinhardt
- Department of Chiropractic Medicine, Integrative Spinal Research Group, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Ismail CAN, Zakaria R, Azman KF, Shafin N, Bakar NAA. Brain-derived neurotrophic factor (BDNF) in chronic pain research: A decade of bibliometric analysis and network visualization. AIMS Neurosci 2024; 11:1-24. [PMID: 38617040 PMCID: PMC11007409 DOI: 10.3934/neuroscience.2024001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 04/16/2024] Open
Abstract
Chronic pain research, with a specific focus on the brain-derived neurotrophic factor (BDNF), has made impressive progress in the past decade, as evident in the improved research quality and increased publications. To better understand this evolving landscape, a quantitative approach is needed. The main aim of this study is to identify the hotspots and trends of BDNF in chronic pain research. We screened relevant publications from 2013 to 2022 in the Scopus database using specific search subject terms. A total of 401 documents were selected for further analysis. We utilized several tools, including Microsoft Excel, Harzing's Publish or Perish, and VOSViewer, to perform a frequency analysis, citation metrics, and visualization, respectively. Key indicators that were examined included publication growth, keyword analyses, topmost influential articles and journals, networking by countries and co-citation of cited references. Notably, there was a persistent publication growth between 2015 and 2021. "Neuropathic pain" emerged as a prominent keyword in 2018, alongside "microglia" and "depression". The journal Pain® was the most impactful journal that published BDNF and chronic pain research, while the most influential publications came from open-access reviews and original articles. China was the leading contributor, followed by the United States (US), and maintained a leadership position in the total number of publications and collaborations. In conclusion, this study provides a comprehensive list of the most influential publications on BDNF in chronic pain research, thereby aiding in the understanding of academic concerns, research hotspots, and global trends in this specialized field.
Collapse
Affiliation(s)
- Che Aishah Nazariah Ismail
- Department of Physiology, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, MALAYSIA
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, MALAYSIA
| | - Rahimah Zakaria
- Department of Physiology, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, MALAYSIA
| | - Khairunnuur Fairuz Azman
- Department of Physiology, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, MALAYSIA
| | - Nazlahshaniza Shafin
- Department of Physiology, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, MALAYSIA
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, MALAYSIA
| | - Noor Azlina Abu Bakar
- Faculty of Medicine, Universiti Sultan Zainal Abidin Medical Campus, Jalan Mahmud, 20400 Kuala Terengganu, Terengganu, MALAYSIA
| |
Collapse
|
16
|
Xiong HY, Hendrix J, Schabrun S, Wyns A, Campenhout JV, Nijs J, Polli A. The Role of the Brain-Derived Neurotrophic Factor in Chronic Pain: Links to Central Sensitization and Neuroinflammation. Biomolecules 2024; 14:71. [PMID: 38254671 PMCID: PMC10813479 DOI: 10.3390/biom14010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Chronic pain is sustained, in part, through the intricate process of central sensitization (CS), marked by maladaptive neuroplasticity and neuronal hyperexcitability within central pain pathways. Accumulating evidence suggests that CS is also driven by neuroinflammation in the peripheral and central nervous system. In any chronic disease, the search for perpetuating factors is crucial in identifying therapeutic targets and developing primary preventive strategies. The brain-derived neurotrophic factor (BDNF) emerges as a critical regulator of synaptic plasticity, serving as both a neurotransmitter and neuromodulator. Mounting evidence supports BDNF's pro-nociceptive role, spanning from its pain-sensitizing capacity across multiple levels of nociceptive pathways to its intricate involvement in CS and neuroinflammation. Moreover, consistently elevated BDNF levels are observed in various chronic pain disorders. To comprehensively understand the profound impact of BDNF in chronic pain, we delve into its key characteristics, focusing on its role in underlying molecular mechanisms contributing to chronic pain. Additionally, we also explore the potential utility of BDNF as an objective biomarker for chronic pain. This discussion encompasses emerging therapeutic approaches aimed at modulating BDNF expression, offering insights into addressing the intricate complexities of chronic pain.
Collapse
Affiliation(s)
- Huan-Yu Xiong
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
| | - Jolien Hendrix
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| | - Siobhan Schabrun
- The School of Physical Therapy, University of Western Ontario, London, ON N6A 3K7, Canada;
- The Gray Centre for Mobility and Activity, Parkwood Institute, London, ON N6A 4V2, Canada
| | - Arne Wyns
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
| | - Jente Van Campenhout
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
- Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
- Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 41390 Göterbog, Sweden
| | - Andrea Polli
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
17
|
Jang K, Garraway SM. A review of dorsal root ganglia and primary sensory neuron plasticity mediating inflammatory and chronic neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100151. [PMID: 38314104 PMCID: PMC10837099 DOI: 10.1016/j.ynpai.2024.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Pain is a sensory state resulting from complex integration of peripheral nociceptive inputs and central processing. Pain consists of adaptive pain that is acute and beneficial for healing and maladaptive pain that is often persistent and pathological. Pain is indeed heterogeneous, and can be expressed as nociceptive, inflammatory, or neuropathic in nature. Neuropathic pain is an example of maladaptive pain that occurs after spinal cord injury (SCI), which triggers a wide range of neural plasticity. The nociceptive processing that underlies pain hypersensitivity is well-studied in the spinal cord. However, recent investigations show maladaptive plasticity that leads to pain, including neuropathic pain after SCI, also exists at peripheral sites, such as the dorsal root ganglia (DRG), which contains the cell bodies of sensory neurons. This review discusses the important role DRGs play in nociceptive processing that underlies inflammatory and neuropathic pain. Specifically, it highlights nociceptor hyperexcitability as critical to increased pain states. Furthermore, it reviews prior literature on glutamate and glutamate receptors, voltage-gated sodium channels (VGSC), and brain-derived neurotrophic factor (BDNF) signaling in the DRG as important contributors to inflammatory and neuropathic pain. We previously reviewed BDNF's role as a bidirectional neuromodulator of spinal plasticity. Here, we shift focus to the periphery and discuss BDNF-TrkB expression on nociceptors, non-nociceptor sensory neurons, and non-neuronal cells in the periphery as a potential contributor to induction and persistence of pain after SCI. Overall, this review presents a comprehensive evaluation of large bodies of work that individually focus on pain, DRG, BDNF, and SCI, to understand their interaction in nociceptive processing.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
18
|
Behnoush AH, Khalaji A, Khanmohammadi S, Alehossein P, Saeedian B, Shobeiri P, Teixeira AL, Rezaei N. Brain-derived neurotrophic factor in fibromyalgia: A systematic review and meta-analysis of its role as a potential biomarker. PLoS One 2023; 18:e0296103. [PMID: 38127937 PMCID: PMC10734974 DOI: 10.1371/journal.pone.0296103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Fibromyalgia (FM) is a form of chronic pain disorder accompanied by several tender points, fatigue, sleeping and mood disturbances, cognitive dysfunction, and memory problems. Brain-derived neurotrophic factor (BDNF) is also a mediator of neurotrophin for many activity-dependent processes in the brain. Despite numerous research studies investigating BDNF in FM, contradictory results have been reported. Thus, we investigated the overall effect shown by studies to find the association between peripheral BDNF concentrations and its gene polymorphisms with FM. METHODS A systematic search in online international databases, including PubMed, Cochrane Library, Embase, the Web of Science, and Scopus was performed. Relevant studies assessing BDNF levels or gene polymorphism in patients with FM and comparing them with controls were included. Case reports, reviews, and non-English studies were excluded. We conducted the random-effect meta-analysis to estimate the pooled standardized mean difference (SMD) or odds ratio (OR) and 95% confidence interval (CI). RESULTS Twenty studies were found to be included composed of 1,206 FM patients and 1,027 controls. The meta-analysis of 15 studies indicated that the circulating BDNF levels were significantly higher in FM (SMD 0.72, 95% CI 0.12 to 1.31; p-value = 0.02). However, no difference between the rate of Val/Met carrier status at the rs6265 site was found (p-value = 0.43). Using meta-regression, the sample size and age variables accounted for 4.69% and 6.90% of the observed heterogeneity of BDNF level analysis, respectively. CONCLUSION Our meta-analysis demonstrated that FM is correlated with increased peripheral BDNF levels. This biomarker's diagnostic and prognostic value should be further investigated in future studies.
Collapse
Affiliation(s)
- Amir Hossein Behnoush
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children’s Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Non–Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Khalaji
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children’s Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Non–Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Khanmohammadi
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children’s Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parsa Alehossein
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children’s Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Behrad Saeedian
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children’s Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children’s Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Non–Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Antonio L. Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Lao Y, Li Z, Bai Y, Li W, Wang J, Wang Y, Li Q, Dong Z. Glial Cells of the Central Nervous System: A Potential Target in Chronic Prostatitis/Chronic Pelvic Pain Syndrome. Pain Res Manag 2023; 2023:2061632. [PMID: 38023826 PMCID: PMC10661872 DOI: 10.1155/2023/2061632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023]
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is one of the most common diseases of the male urological system while the etiology and treatment of CP/CPPS remain a thorny issue. Cumulative research suggested a potentially important role of glial cells in CP/CPPS. This narrative review retrospected literature and grasped the research process about glial cells and CP/CPPS. Three types of glial cells showed a crucial connection with general pain and psychosocial symptoms. Microglia might also be involved in lower urinary tract symptoms. Only microglia and astrocytes have been studied in the animal model of CP/CPPS. Activated microglia and reactive astrocytes were found to be involved in both pain and psychosocial symptoms of CP/CPPS. The possible mechanism might be to mediate the production of some inflammatory mediators and their interaction with neurons. Glial cells provide a new insight to understand the cause of complex symptoms of CP/CPPS and might become a novel target to develop new treatment options. However, the activation and action mechanism of glial cells in CP/CPPS needs to be further explored.
Collapse
Affiliation(s)
- Yongfeng Lao
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zewen Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanan Bai
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Weijia Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jian Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanan Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Qingchao Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhilong Dong
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
20
|
Chiriac VF, Ciurescu D, Moșoiu DV. Cancer Pain and Non-Invasive Brain Stimulation-A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1957. [PMID: 38004006 PMCID: PMC10673188 DOI: 10.3390/medicina59111957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: Pain is the most prevalent symptom in cancer patients. There is a paucity of data regarding non-invasive brain stimulation (NIBS) for the treatment of chronic pain in patients with cancer. The purpose of this article is to review the techniques of NIBS and present the published experiences of the oncological population. Materials and Methods: Databases including MEDLINE, Scopus, Web of Science, and the Cochrane Library were searched for articles on cancer patients with pain that was managed with non-invasive brain stimulation techniques. We included articles in English that were published from inception to January 2023. As studies were limited in number and had different designs and methodologies, a narrative review was considered as the best option to integrate data. Results: Four studies focusing on transcranial magnetic stimulation, six articles on transcranial direct current stimulation, and three articles regarding cranial electric stimulation were found and reviewed. Conclusions: Data are limited and not robust. Further studies in this field are required. Guidelines on NIBS for non-malignant chronic pain conditions provide good premises for cancer-related chronic pain.
Collapse
Affiliation(s)
- Valentina-Fineta Chiriac
- Departament of Medical Oncology, “Dr Pompei Samarian” County Emergency Hospital, 910071 Călărași, Romania
- Faculty of Medicine, Transilvania University, 500036 Brașov, Romania
| | - Daniel Ciurescu
- Faculty of Medicine, Transilvania University, 500036 Brașov, Romania
| | - Daniela-Viorica Moșoiu
- Faculty of Medicine, Transilvania University, 500036 Brașov, Romania
- HOSPICE Casa Sperantei, 500074 Brașov, Romania
| |
Collapse
|
21
|
Paschke L, Dreyer N, Worm M, Klinger R. Can open label placebos improve pain and gluten tolerance via open label placebos in fibromyalgia patients? A study protocol for a randomised clinical trial in an outpatient centre. BMJ Open 2023; 13:e074957. [PMID: 37865404 PMCID: PMC10603456 DOI: 10.1136/bmjopen-2023-074957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/05/2023] [Indexed: 10/23/2023] Open
Abstract
INTRODUCTION Fibromyalgia syndrome (FMS) is defined as a medical condition with chronic widespread musculoskeletal pain accompanied by mood disorders, fatigue and sleep disturbances. Treatment of this condition can often be challenging. As nutrition in general and nutritional interventions in the context of illness management become more and more important, current research also focuses on the relevance of diets for FMS, including gluten as field of interest. To date, there is no clear evidence that a gluten-free diet or other nutritional interventions are significantly important for the reduction of pain in the context of FMS. Only a very few studies show that FMS patients respond to a gluten-free diet and that cytokine production (also in FMS) can be reduced through the change. However, these studies have not investigated whether and to what extent cognitive factors, such as the expectation of symptom reduction triggered by diet, play a role. Recent research shows that treatment expectation plays an important role in the course of the disease and in the effectiveness of treatment approaches. For example, there are promising pain treatment options using open-label placebos (OLPs), which show that expectation alone, rather than the pharmacological substance of medication, can reduce pain experience. In our study protocol, we hypothesise that treatment expectation can be positively influenced by the given information regarding the placebos, resulting in improved treatment outcomes for pain and indigestions. METHODS AND ANALYSIS In this trial, patients with FMS will undergo a food challenge and take an OLP (patients will be informed about the placebo), followed by a 3-week OLP treatment. The subjects will be randomised into four groups: (a) gluten-free porridge+neutral OLP instructions; (b) gluten-free porridge+positive OLP instructions; (c) gluten-containing porridge+neutral OLP instructions and (d) gluten-containing porridge+positive OLP instructions. Patients will be recruited via different institutions and support groups in Hamburg. The inclusion criteria are (a) diagnosed FMS, (b) absence of wheat allergy, coeliac disease or pain-related red flags and (c) being a minimum age of 18 years. The study requires 100 subjects to assess the primary outcomes: pain intensity and occurence of indigestion. Secondary outcomes are functional capacity, treatment expectation, and different pain-related and inflammation-related blood parameters. The measure time points will be before and after the food challenge and before and after the 3-week OLP treatment. ETHICS AND DISSEMINATION Ethical approval was obtained in October 2021 from the Hamburg Medical Ethics Council. The results of the study will be disseminated through publications, presentations and conference meetings. TRIAL REGISTRATION NUMBER German Clinical Trials Register (DRKS; DRKS00027130).
Collapse
Affiliation(s)
- Lena Paschke
- Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Norma Dreyer
- Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Margitta Worm
- Allergology and Immunology, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Regine Klinger
- Department of Anaesthesiology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
22
|
Miao C, Li X, Zhang Y. Effect of acupuncture on BDNF signaling pathways in several nervous system diseases. Front Neurol 2023; 14:1248348. [PMID: 37780709 PMCID: PMC10536971 DOI: 10.3389/fneur.2023.1248348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
In recent years, the understanding of the mechanisms of acupuncture in the treatment of neurological disorders has deepened, and considerable progress has been made in basic and clinical research on acupuncture, but the relationship between acupuncture treatment mechanisms and brain-derived neurotrophic factor (BDNF) has not yet been elucidated. A wealth of evidence has shown that acupuncture exhibits a dual regulatory function of activating or inhibiting different BDNF pathways. This review focuses on recent research advances on the effect of acupuncture on BDNF and downstream signaling pathways in several neurological disorders. Firstly, the signaling pathways of BDNF and its function in regulating plasticity are outlined. Furthermore, this review discusses explicitly the regulation of BDNF by acupuncture in several nervous system diseases, including neuropathic pain, Parkinson's disease, cerebral ischemia, depression, spinal cord injury, and other diseases. The underlying mechanisms of BDNF regulation by acupuncture are also discussed. This review aims to improve the theoretical system of the mechanism of acupuncture action through further elucidation of the mechanism of acupuncture modulation of BDNF in the treatment of neurological diseases and to provide evidence to support the wide application of acupuncture in clinical practice.
Collapse
Affiliation(s)
- Chenxin Miao
- Second Clinical Medical School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaoning Li
- Department of Acupuncture, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yishu Zhang
- Second Clinical Medical School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
23
|
Martami F, Holton KF. Targeting Glutamate Neurotoxicity through Dietary Manipulation: Potential Treatment for Migraine. Nutrients 2023; 15:3952. [PMID: 37764736 PMCID: PMC10537717 DOI: 10.3390/nu15183952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Glutamate, the main excitatory neurotransmitter in the central nervous system, is implicated in both the initiation of migraine as well as central sensitization, which increases the frequency of migraine attacks. Excessive levels of glutamate can lead to excitotoxicity in the nervous system which can disrupt normal neurotransmission and contribute to neuronal injury or death. Glutamate-mediated excitotoxicity also leads to neuroinflammation, oxidative stress, blood-brain barrier permeability, and cerebral vasodilation, all of which are associated with migraine pathophysiology. Experimental evidence has shown the protective effects of several nutrients against excitotoxicity. The current review focuses on the mechanisms behind glutamate's involvement in migraines as well as a discussion on how specific nutrients are able to work towards restoring glutamate homeostasis. Understanding glutamate's role in migraine is of vital importance for understanding why migraine is commonly comorbid with widespread pain conditions and for informing future research directions.
Collapse
Affiliation(s)
- Fahimeh Martami
- Department of Health Studies, American University, Washington, DC 20016, USA;
| | - Kathleen F. Holton
- Department of Health Studies, American University, Washington, DC 20016, USA;
- Department of Neuroscience, American University, Washington, DC 20016, USA
- Center for Neuroscience and Behavior, American University, Washington, DC 20016, USA
| |
Collapse
|
24
|
Shaikh A, Li YQ, Lu J. Perspectives on pain in Down syndrome. Med Res Rev 2023; 43:1411-1437. [PMID: 36924439 DOI: 10.1002/med.21954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/08/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Down syndrome (DS) or trisomy 21 is a genetic condition often accompanied by chronic pain caused by congenital abnormalities and/or conditions, such as osteoarthritis, recurrent infections, and leukemia. Although DS patients are more susceptible to chronic pain as compared to the general population, the pain experience in these individuals may vary, attributed to the heterogenous structural and functional differences in the central nervous system, which might result in abnormal pain sensory information transduction, transmission, modulation, and perception. We tried to elaborate on some key questions and possible explanations in this review. Further clarification of the mechanisms underlying such abnormal conditions induced by the structural and functional differences is needed to help pain management in DS patients.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| | - Yun-Qing Li
- Department of Anatomy, Histology, and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Jie Lu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
25
|
Ye Y, Yan X, Wang L, Xu J, Li T. Transcranial direct current stimulation attenuates chronic pain in knee osteoarthritis by modulating BDNF/TrkB signaling in the descending pain modulation system. Neurosci Lett 2023; 810:137320. [PMID: 37295640 DOI: 10.1016/j.neulet.2023.137320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/15/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Knee osteoarthritis (KOA) is the most common cause of chronic pain, but its pain mechanisms are complex and may be closely related to the descending pain modulation system. Transcranial direct current stimulation (tDCS) is used for relieving pain, but its analgesic mechanisms are still being explored. The purpose of this study was to investigate the role of BDNF/TrkB signaling in chronic pain in KOA and to investigate whether this signaling is related to the analgesic effect of tDCS. Rats were injected with monosodium iodoacetate (MIA) into the left knee joint to establish a chronic pain model and then received 20 min of tDCS for 8 days. Rats were respectively administered the TrkB inhibitor ANA-12 after MIA modeling and exogenous BDNF after tDCS treatment. Behaviors testing was assessed by hot plate and von Frey hairs using the up-down method. In addition, the expression levels of BDNF and TrkB on the periaqueductal gray (PAG)-the rostral ventromedial medulla (RVM)-the spinal dorsal horn (SDH) axis were detected by Western blot and Immunohistochemistry staining. Behavioral results show that tDCS treatment and ANA-12 injection reversed MIA-induced allodynia while reducing BDNF and TrkB expression levels. Furthermore, injection of exogenous BDNF reversed the therapeutic effect of tDCS on pain. These results indicate that upregulation of the BDNF/TrkB signaling in the descending pain modulation system may play an important role in KOA-induced chronic pain in rats, and tDCS may reduce KOA-induced chronic pain by inhibiting the BDNF/TrkB signaling in the descending pain modulation system.
Collapse
Affiliation(s)
- Yinshuang Ye
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiao Yan
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lin Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jiawei Xu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Tieshan Li
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
26
|
Yang L, Liu B, Zheng S, Xu L, Yao M. Understanding the initiation, delivery and processing of bone cancer pain from the peripheral to the central nervous system. Neuropharmacology 2023; 237:109641. [PMID: 37392821 DOI: 10.1016/j.neuropharm.2023.109641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
Bone cancer pain is a complex condition characterized by persistent, sudden, spontaneous pain accompanied by hyperalgesia that typically arises from bone metastases or primary bone tumors, causing severe discomfort and significantly diminishing cancer patients' quality of life and confidence in their ability to overcome the disease. It is widely known that peripheral nerves are responsible for detecting harmful stimuli, which are then transmitted to the brain via the spinal cord, resulting in the perception of pain. In the case of bone cancer, tumors and stromal cells within the bone marrow release various chemical signals, including inflammatory factors, colony-stimulating factors, chemokines, and hydrogen ions. Consequently, the nociceptors located at the nerve endings within the bone marrow sense these chemical signals, generating electrical signals that are then transmitted to the brain through the spinal cord. Subsequently, the brain processes these electrical signals in a complex manner to create the sensation of bone cancer pain. Numerous studies have investigated the transmission of bone cancer pain from the periphery to the spinal cord. However, the processing of pain information induced by bone cancer within the brain remains unclear. With the continuous advancements in brain science and technology, the brain mechanism of bone cancer pain would become more clearly understood. Herein, we focus on summarizing the peripheral nerve perception of the spinal cord transmission of bone cancer pain and provide a brief overview of the ongoing research regarding the brain mechanisms involved in bone cancer pain.
Collapse
Affiliation(s)
- Lei Yang
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China
| | - Beibei Liu
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China
| | - Shang Zheng
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China
| | - Longsheng Xu
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China.
| | - Ming Yao
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China.
| |
Collapse
|
27
|
Zeng X, Niu Y, Qin G, Zhang D, Chen L. Dysfunction of inhibitory interneurons contributes to synaptic plasticity via GABABR-pNR2B signaling in a chronic migraine rat model. Front Mol Neurosci 2023; 16:1142072. [PMID: 37324588 PMCID: PMC10265202 DOI: 10.3389/fnmol.2023.1142072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/02/2023] [Indexed: 06/17/2023] Open
Abstract
Background According to our previous study, the loss of inhibitory interneuron function contributes to central sensitization in chronic migraine (CM). Synaptic plasticity is a vital basis for the occurrence of central sensitization. However, whether the decline in interneuron-mediated inhibition promotes central sensitization by regulating synaptic plasticity in CM remains unclear. Therefore, this study aims to explore the role of interneuron-mediated inhibition in the development of synaptic plasticity in CM. Methods A CM model was established in rats by repeated dural infusion of inflammatory soup (IS) for 7 days, and the function of inhibitory interneurons was then evaluated. After intraventricular injection of baclofen [a gamma-aminobutyric acid type B receptor (GABABR) agonist] or H89 [a protein kinase A (PKA) inhibitor), behavioral tests were performed. The changes in synaptic plasticity were investigated by determining the levels of the synapse-associated proteins postsynaptic density protein 95 (PSD95), synaptophysin (Syp) and synaptophysin-1(Syt-1)]; evaluating the synaptic ultrastructure by transmission electron microscopy (TEM); and determining the density of synaptic spines via Golgi-Cox staining. Central sensitization was evaluated by measuring calcitonin gene-related peptide (CGRP), brain-derived neurotrophic factor (BDNF), c-Fos and substance P (SP) levels. Finally, the PKA/Fyn kinase (Fyn)/tyrosine-phosphorylated NR2B (pNR2B) pathway and downstream calcium-calmodulin-dependent kinase II (CaMKII)/c-AMP-responsive element binding protein (pCREB) signaling were assessed. Results We observed dysfunction of inhibitory interneurons, and found that activation of GABABR ameliorated CM-induced hyperalgesia, repressed the CM-evoked elevation of synapse-associated protein levels and enhancement of synaptic transmission, alleviated the CM-triggered increases in the levels of central sensitization-related proteins, and inhibited CaMKII/pCREB signaling via the PKA/Fyn/pNR2B pathway. The inhibition of PKA suppressed the CM-induced activation of Fyn/pNR2B signaling. Conclusion These data reveal that the dysfunction of inhibitory interneurons contributes to central sensitization by regulating synaptic plasticity through the GABABR/PKA/Fyn/pNR2B pathway in the periaqueductal gray (PAG) of CM rats. Blockade of GABABR-pNR2B signaling might have a positive influence on the effects of CM therapy by modulating synaptic plasticity in central sensitization.
Collapse
Affiliation(s)
- Xiaoxu Zeng
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yingying Niu
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Kumar V, Kingsley D, Perikamana SM, Mogha P, Goodwin CR, Varghese S. Self-assembled innervated vasculature-on-a-chip to study nociception. Biofabrication 2023; 15:10.1088/1758-5090/acc904. [PMID: 36996841 PMCID: PMC10152403 DOI: 10.1088/1758-5090/acc904] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/30/2023] [Indexed: 04/01/2023]
Abstract
Nociceptor sensory neurons play a key role in eliciting pain. An active crosstalk between nociceptor neurons and the vascular system at the molecular and cellular level is required to sense and respond to noxious stimuli. Besides nociception, interaction between nociceptor neurons and vasculature also contributes to neurogenesis and angiogenesis.In vitromodels of innervated vasculature can greatly help delineate these roles while facilitating disease modeling and drug screening. Herein, we report the development of a microfluidic-assisted tissue model of nociception in the presence of microvasculature. The self-assembled innervated microvasculature was engineered using endothelial cells and primary dorsal root ganglion (DRG) neurons. The sensory neurons and the endothelial cells displayed distinct morphologies in presence of each other. The neurons exhibited an elevated response to capsaicin in the presence of vasculature. Concomitantly, increased transient receptor potential cation channel subfamily V member 1 (TRPV1) receptor expression was observed in the DRG neurons in presence of vascularization. Finally, we demonstrated the applicability of this platform for modeling nociception associated with tissue acidosis. While not demonstrated here, this platform could also serve as a tool to study pain resulting from vascular disorders while also paving the way towards the development of innervated microphysiological models.
Collapse
Affiliation(s)
- Vardhman Kumar
- Department of Biomedical Engineering, Duke University, Durham NC
| | - David Kingsley
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham NC
| | | | - Pankaj Mogha
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham NC
| | - C Rory Goodwin
- Department of Neurosurgery, Spine Division, Duke University Medical Center, Durham, NC
| | - Shyni Varghese
- Department of Biomedical Engineering, Duke University, Durham NC
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham NC
- Department of Mechanical Engineering and Material Science, Duke University, Durham NC
| |
Collapse
|
29
|
Chang WJ, Jenkins LC, Humburg P, Schabrun SM. Human assumed central sensitization in people with acute non-specific low back pain: A cross-sectional study of the association with brain-derived neurotrophic factor, clinical, psychological and demographic factors. Eur J Pain 2023; 27:530-545. [PMID: 36585941 DOI: 10.1002/ejp.2078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/12/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Early evidence suggests human assumed central sensitization (HACS) is present in some people with acute low back pain (LBP). Factors influencing individual variation in HACS during acute LBP have not been fully explored. We aimed to examine the evidence for HACS in acute LBP and the contribution of brain-derived neurotrophic factor (BDNF), clinical, psychological and demographic factors to HACS. METHODS Participants with acute LBP (<6 weeks after pain onset, N = 118) and pain-free controls (N = 57) from a longitudinal trial were included. Quantitative sensory testing including pressure and heat pain thresholds and conditioned pain modulation, BDNF serum concentration and genotype and questionnaires were assessed. RESULTS There were no signs of HACS during acute LBP at group level when compared with controls. Sensory measures did not differ when compared between controls and LBP participants with different BDNF genotypes. Two LBP subgroups with distinct sensory profiles were identified. Although one subgroup (N = 60) demonstrated features of HACS including pressure/heat pain hypersensitivity at a remote site and deficient conditioned pain modulation, pain severity and disability did not differ between the two subgroups. Variation in sensory measures (~33%) was partially explained by BDNF genotype, sex, age and psychological factors. CONCLUSIONS This study confirms that HACS is present in some people with acute LBP, but this was not associated with pain or disability. Further, no relationship was observed between BDNF and HACS in acute LBP. More research is needed to understand factors contributing to individual variation in sensory measures in LBP. SIGNIFICANCE Human assumed central sensitization (HACS) is present in acute low back pain (LBP) but factors contributing to individual variation are not fully explored. This study investigated the relationship between factors such as brain derived neurotrophic factor (BDNF) and HACS in acute LBP. Our findings indicate that HACS was present in specific LBP subgroups but BDNF was unrelated to HACS. Combinations of BDNF genotype, demographic and psychological factors explained a small proportion of the variation in sensory measures during acute LBP.
Collapse
Affiliation(s)
- Wei-Ju Chang
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Luke C Jenkins
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
- School of Health Sciences, Western Sydney University, Penrith, New South Wales, Australia
| | - Peter Humburg
- Stats Central, Mark Wainwright Analytical Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Siobhan M Schabrun
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
- School of Physical Therapy, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
30
|
Pico M, Matey-Rodríguez C, Domínguez-García A, Menéndez H, Lista S, Santos-Lozano A. Healthcare Professionals’ Knowledge about Pediatric Chronic Pain: A Systematic Review. CHILDREN 2023; 10:children10040665. [PMID: 37189914 DOI: 10.3390/children10040665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Pediatric chronic pain is a common public health problem with a high prevalence among children and adolescents. The aim of this study was to review the current knowledge of health professionals on pediatric chronic pain between 15–30% among children and adolescents. However, since this is an underdiagnosed condition, it is inadequately treated by health professionals. To this aim, a systematic review was carried out based on a search of the electronic literature databases (PubMed and Web of Science), resulting in 14 articles that met the inclusion criteria. The analysis of these articles seems to show a certain degree of heterogeneity in the surveyed professionals about the awareness of this concept, especially regarding its etiology, assessment, and management. In addition, the extent of knowledge of the health professionals seems to be insufficient regarding these aspects of pediatric chronic pain. Hence, the knowledge of the health professionals is unrelated to recent research that identifies central hyperexcitability as the primary factor affecting the onset, persistence, and management of pediatric chronic pain.
Collapse
Affiliation(s)
- Mónica Pico
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Carmen Matey-Rodríguez
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Ana Domínguez-García
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Héctor Menéndez
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
- Research Institute of the Hospital 12 de Octubre (‘imas12’), 28041 Madrid, Spain
| |
Collapse
|
31
|
Thakkar B, Acevedo EO. BDNF as a biomarker for neuropathic pain: Consideration of mechanisms of action and associated measurement challenges. Brain Behav 2023; 13:e2903. [PMID: 36722793 PMCID: PMC10013954 DOI: 10.1002/brb3.2903] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION The primary objective of this paper is to (1) provide a summary of human studies that have used brain derived neurotrophic factor (BDNF) as a biomarker, (2) review animal studies that help to elucidate the mechanistic involvement of BDNF in the development and maintenance of neuropathic pain (NP), and (3) provide a critique of the existing measurement techniques to highlight the limitations of the methods utilized to quantify BDNF in different biofluids in the blood (i.e., serum and plasma) with the intention of presenting a case for the most reliable and valid technique. Lastly, this review also explores potential moderators that can influence the measurement of BDNF and provides recommendations to standardize its quantification to reduce the inconsistencies across studies. METHODS In this manuscript we examined the literature on BDNF, focusing on its role as a biomarker, its mechanism of action in NP, and critically analyzed its measurement in serum and plasma to identify factors that contribute to the discrepancy in results between plasma and serum BDNF values. RESULTS A large heterogenous literature was reviewed that detailed BDNF's utility as a potential biomarker in healthy volunteers, patients with chronic pain, and patients with neuropsychiatric disorders but demonstrated inconsistent findings. The literature provides insight into the mechanism of action of BDNF at different levels of the central nervous system using animal studies. We identified multiple factors that influence the measurement of BDNF in serum and plasma and based on current evidence, we recommend assessing serum BDNF levels to quantify peripheral BDNF as they are more stable and sensitive to changes than plasma BDNF. CONCLUSION Although mechanistic studies clearly explain the role of BDNF, results from human studies are inconsistent. More studies are needed to evaluate the methodological challenges in using serum BDNF as a biomarker in NP.
Collapse
Affiliation(s)
- Bhushan Thakkar
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Edmund O Acevedo
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
32
|
Chen Z, Fang Y, Jiang W. Important Cells and Factors from Tumor Microenvironment Participated in Perineural Invasion. Cancers (Basel) 2023; 15:1360. [PMID: 36900158 PMCID: PMC10000249 DOI: 10.3390/cancers15051360] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Perineural invasion (PNI) as the fourth way for solid tumors metastasis and invasion has attracted a lot of attention, recent research reported a new point that PNI starts to include axon growth and possible nerve "invasion" to tumors as the component. More and more tumor-nerve crosstalk has been explored to explain the internal mechanism for tumor microenvironment (TME) of some types of tumors tends to observe nerve infiltration. As is well known, the interaction of tumor cells, peripheral blood vessels, extracellular matrix, other non-malignant cells, and signal molecules in TME plays a key role in the occurrence, development, and metastasis of cancer, as to the occurrence and development of PNI. We aim to summarize the current theories on the molecular mediators and pathogenesis of PNI, add the latest scientific research progress, and explore the use of single-cell spatial transcriptomics in this invasion way. A better understanding of PNI may help to understand tumor metastasis and recurrence and will be beneficial for improving staging strategies, new treatment methods, and even paradigm shifts in our treatment of patients.
Collapse
Affiliation(s)
- Zirong Chen
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yan Fang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha 410008, China
| | - Weihong Jiang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
33
|
Jasim H. Topical review - salivary biomarkers in chronic muscle pain. Scand J Pain 2023; 23:3-13. [PMID: 36228098 DOI: 10.1515/sjpain-2022-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/23/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND AIMS Muscle related temporomandibular disorders (myogenous TMD), one of the most common orofacial pain conditions, is characterized by facial pain and often accompanied by jaw movement limitations. Although the underlying biological mechanisms are still unclear, a cluster of proteins and peptides is assumed to be involved in the pathophysiology. These proteins and peptides may be measured in a simple non-invasive saliva sample. This work investigated whether saliva can be used to sample algogenic substances that can serve as molecular biomarkers for TMD myalgia. METHODS Saliva and blood samples were collected from healthy individuals (n=69) and patients diagnosed with TMD myalgia (n=39) according to the Diagnostic Criteria for TMD. Unstimulated and stimulated whole, parotid, and sublingual saliva were analysed. The protein profiles were investigated using two-dimensional gel electrophoresis followed by identification with liquid chromatography tandem mass spectrometry. Levels of nerve growth factor (NGF), calcitonin gene-related peptide (CGRP), and brain derived neuro-tropic factor (BDNF) were determined using western blotting based technology and multiplex electro-chemiluminescence assay panel. Glutamate, serotonin, and substance p (SP) were determined using commercially available methods. RESULTS Different saliva collection approaches resulted in significant differences in the protein profile as well as in the expression of NGF, BDNF, CGRP, SP, and glutamate. Stimulated whole saliva showed least variability in protein concentration (35%) and was correlated to plasma levels of glutamate. Unlike SP and glutamate, NGF and BDNF expressed a rhythmic variation in salivary expression with higher levels in the morning (p<0.05). Patients with a diagnosis of TMD myalgia had significantly higher levels of salivary glutamate but lower salivary NGF and BDNF compared to controls; in addition, the lower NGF and BDNF levels correlated to psychological dysfunction. The quantitative proteomics data revealed 20 proteins that were significantly altered in patients compared to controls. The identified proteins are involved in metabolic processes, immune response, and stress response. Dissimilarities in protein profile and clinical variables were observed between TMD myalgia and myofascial pain. CONCLUSIONS The work highlights the importance of consistency in saliva collection approaches, including the timing of the collection. It displayed significant changes in pain specific mediators and protein profile in TMD myalgia and furthermore dissimilarities between subclasses indicating different pathophysiology. After extensive validation, potential salivary biomarkers can be combined with clinical features to better understand and diagnose TMD myalgia.
Collapse
Affiliation(s)
- Hajer Jasim
- Eastman Institutet, Folktandvården Stockholms Län AB, Stockholm, Sweden
- Division of Oral Diagnostics & Rehabilitation, Department of Dental Medicine, Karolinska Institutet and Scandinavian Center for Orofacial Neuroscience (SCON), Huddinge, Sweden
| |
Collapse
|
34
|
Huang X, Huang Y, Hu B. Melatonin Treatment of Circadian Rhythm Sleep-Wake Disorder in Obese Children Affects the Brain-Derived Neurotrophic Factor Level. Neuropediatrics 2023. [PMID: 36634691 DOI: 10.1055/s-0042-1760368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Previous studies proved that the brain-derived neurotrophic factor (BDNF) is correlated with sleep regulation, yet how BDNF functions and reacts in the melatonin treatment of circadian rhythm sleep-wake disorder (CRSWD) among obese children remain enigmatic. Focusing on CRSWD in obese children, this study monitored their sleep efficiency and serum BDNF level changes during the treatment of melatonin. METHODS In total, 35 obese children diagnosed with CRSWD were included in this study and administrated melatonin (3 mg/night) for 3 months. Blood samples were collected 24 hours before and after the treatment (08:00, 12:00, 16:00, 20:00, 24:00, and 04:00). Subsequently, the plasma melatonin level and serum BDNF level were measured by enzyme-linked immunosorbent assay. Sleep parameters, including sleep quality, Pittsburgh Sleep Quality Index as well as melatonin and BDNF levels before and after treatment, were recorded to profile the effectiveness and safety of melatonin treatment. RESULTS Melatonin treatment increased plasma melatonin concentration and restored circadian rhythm. Besides, the serum BDNF level showed a significant increase, representing a strong positive correlation with melatonin concentration (p = 0.026). Patients experienced much-improved sleep efficiency (P < 0.001), with longer actual sleep time (P < 0.001), shorter sleep onset latency, and fewer awakenings after treatment (P < 0.001). Besides, melatonin was well tolerated by patients without producing severe side effects. CONCLUSION Melatonin treatment effectively improved CRSWD among obese children with their serum BDNF levels increased, indicating that BDNF is a key regulator in CRSWD in obese children. This study may offer theoretical support for melatonin treatment of CRSWD in obese children.
Collapse
Affiliation(s)
- Xuesong Huang
- Department of Pediatrics, Yichun People's Hospital, Yichun, Jiangxi, China
| | - Ying Huang
- Department of Pediatrics, Yichun People's Hospital, Yichun, Jiangxi, China
| | - Bing Hu
- Department of Pediatrics, Yichun People's Hospital, Yichun, Jiangxi, China
| |
Collapse
|
35
|
Di-Bonaventura S, Fernández-Carnero J, Matesanz-García L, Arribas-Romano A, Polli A, Ferrer-Peña R. Effect of Different Physical Therapy Interventions on Brain-Derived Neurotrophic Factor Levels in Chronic Musculoskeletal Pain Patients: A Systematic Review. Life (Basel) 2023; 13:163. [PMID: 36676112 PMCID: PMC9867147 DOI: 10.3390/life13010163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE The main objectives of this review were, firstly, to study the effect of different physiotherapy interventions on BDNF levels, and, secondly, to analyze the influence of physiotherapy on pain levels to subsequently draw conclusions about its possible relationship with BDNF. BACKGROUND Based on the theory that neurotrophic factors such as BDNF play a fundamental role in the initiation and/or maintenance of hyperexcitability of central neurons in pain, it was hypothesized that the levels of this neurotrophic factor may be modified by the application of therapeutic interventions, favoring a reduction in pain intensity. METHODS A literature search of multiple electronic databases (Pubmed, PsycINFO, Medline (Ebsco), Scopus, WOS, Embase) was conducted to identify randomized control trials (RCTs) published without language restrictions up to and including March 2022. The search strategy was based on the combination of medical terms (Mesh) and keywords relating to the following concepts: "pain", "chronic pain", "brain derived neurotrophic factor", "BDNF", "physiotherapy", and "physical therapy". A total of seven papers were included. RESULTS There were two studies that showed statistically significant differences in pain intensity reduction and an increase in the BDNF levels that used therapies such as rTMS and EIMS in patients with chronic myofascial pain. However, the same conclusions cannot be drawn for the other physical therapies applied. CONCLUSIONS rTMS and EIMS interventions achieved greater short-term reductions in pain intensity and increased BDNF over other types of interventions in chronic myofascial pain patients, as demonstrated by a moderate amount of evidence. In contrast, other types of physical therapy (PT) interventions did not appear to be more effective in decreasing pain intensity and increasing BDNF levels than placebo PT or minimal intervention, as a low amount of evidence was found.
Collapse
Affiliation(s)
- Silvia Di-Bonaventura
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28933 Alcorcón, Spain
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28922 Alcorcón, Spain
| | - Josué Fernández-Carnero
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28922 Alcorcón, Spain
- Grupo Multidisciplinar de Investigación y Tratamiento del Dolor, Grupo de Excelencia Investigadora URJC-Banco de Santander, 28922 Madrid, Spain
- La Paz Hospital Institute for Health Research, IdiPAZ, 28029 Madrid, Spain
- Motion in Brains Research Group, Institute of Neuroscience and Movement Sciences (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autonóma de Madrid, 28023 Madrid, Spain
- Grupo de Investigación de Dolor Musculoesqueletico y Control Motor, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Luis Matesanz-García
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, CSEU La Salle, Universidad Autonóma de Madrid, 28023 Madrid, Spain
| | - Alberto Arribas-Romano
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28933 Alcorcón, Spain
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28922 Alcorcón, Spain
| | - Andrea Polli
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Pleinlaan 22, 1050 Brussels, Belgium
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Blok D, Bus 7001, 3000 Leuven, Belgium
| | - Raúl Ferrer-Peña
- La Paz Hospital Institute for Health Research, IdiPAZ, 28029 Madrid, Spain
- Motion in Brains Research Group, Institute of Neuroscience and Movement Sciences (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autonóma de Madrid, 28023 Madrid, Spain
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, CSEU La Salle, Universidad Autonóma de Madrid, 28023 Madrid, Spain
| |
Collapse
|
36
|
Wang J, Cai Y, Sun J, Feng H, Zhu X, Chen Q, Gao F, Ni Q, Mao L, Yang M, Sun B. Administration of intramuscular AAV-BDNF and intranasal AAV-TrkB promotes neurological recovery via enhancing corticospinal synaptic connections in stroke rats. Exp Neurol 2023; 359:114236. [PMID: 36183811 DOI: 10.1016/j.expneurol.2022.114236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/14/2022] [Accepted: 09/25/2022] [Indexed: 12/30/2022]
Abstract
Stroke causes long-term disability in survivors. BDNF/TrkB plays an important role in synaptic plasticity and synaptic transmission in the central nervous system (CNS), promoting neurological recovery. In this study, we performed non-invasive treatment methods focused on intramuscular injection into stroke-injured forelimb muscles, or intranasal administration using adeno-associated virus (AAV) vectors carrying genes encoding BDNF or TrkB. In a permanent rat middle cerebral artery occlusion (MCAO) model, we assessed the effects of combination therapy with AAV-BDNF and AAV-TrkB on motor functional recovery and synaptic plasticity of the corticospinal connections. Our results showed that BDNF or TrkB gene transduced in the spinal anterior horn neurons and cerebral cortical neurons. Compared to AAV vector treatment alone, behavioral and electrophysiological results showed that the combination therapy significantly improved upper limb motor functional recovery and neurotransmission efficiency after stroke. BDA tracing, immunofluorescence staining, qRT-PCR, and transmission electron microscopy of synaptic ultrastructure results revealed that the combination therapy not only potently increased the expression of Synapsin I, PSD-95, and GAP-43, but also promoted the axonal remodeling and restoration of abnormal synaptic structures. These findings provide a new strategy for enhancing neural plasticity and a potential means to treat stroke clinically.
Collapse
Affiliation(s)
- Jing Wang
- Medical College of Qingdao University, Qingdao 266021, Shandong, China; Institute for Neurological Research, The Second Affiliated Hospital; School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Yichen Cai
- Institute for Neurological Research, The Second Affiliated Hospital; School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Jingyi Sun
- Department of Spinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Hua Feng
- Department of Otolaryngology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, China
| | - Xiaoyu Zhu
- Institute for Neurological Research, The Second Affiliated Hospital; School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Qian Chen
- Institute for Neurological Research, The Second Affiliated Hospital; School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Feng Gao
- Institute for Neurological Research, The Second Affiliated Hospital; School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Qingbin Ni
- Postdoctoral Workstation, Taian Central Hospital, Taian 271000, Shandong, China
| | - Leilei Mao
- Institute for Neurological Research, The Second Affiliated Hospital; School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| | - Mingfeng Yang
- Institute for Neurological Research, The Second Affiliated Hospital; School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| | - Baoliang Sun
- Medical College of Qingdao University, Qingdao 266021, Shandong, China; Institute for Neurological Research, The Second Affiliated Hospital; School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| |
Collapse
|
37
|
Gonçalves FDT, Pacheco-Barrios K, Rebello-Sanchez I, Castelo-Branco L, de Melo PS, Parente J, Cardenas-Rojas A, Firigato I, Pessotto AV, Imamura M, Simis M, Battistella L, Fregni F. Association of Mu opioid receptor (A118G) and BDNF (G196A) polymorphisms with rehabilitation-induced cortical inhibition and analgesic response in chronic osteoarthritis pain. Int J Clin Health Psychol 2023; 23:100330. [PMID: 36199368 PMCID: PMC9508345 DOI: 10.1016/j.ijchp.2022.100330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 01/02/2023] Open
Abstract
Background/objective Chronic pain due to osteoarthritis (OA) is a prevalent cause of global disability. New biomarkers are needed to improve treatment allocation, and genetic polymorphisms are promising candidates. Method We aimed to assess the association of OPRM1 (A118G and C17T) and brain-derived neurotrophic factor (BDNF [G196A]) polymorphisms with pain-related outcomes and motor cortex excitability metrics (measured by transcranial magnetic stimulation) in 113 knee OA patients with chronic pain. We performed adjusted multivariate regression analyses to compare carriers versus non-carriers in terms of clinical and neurophysiological characteristics at baseline, and treatment response (pain reduction and increased cortical inhibitory tonus) after rehabilitation. Results Compared to non-carriers, participants with polymorphisms on both OPRM1 (A118G) and BDNF (G196A) genes were less likely to improve pain after rehabilitation (85 and 72% fewer odds of improvement, respectively). Likewise, both carriers of OPRM1 polymorphisms (A118G and C17T) were also less likely to improve cortical inhibition (short intracortical inhibition [SICI], and intracortical facilitation [ICF], respectively). While pain and cortical inhibition improvement did not correlate in the total sample, the presence of OPRM1 (A118G) and BDNF (G196A) polymorphisms moderated this relationship. Conclusions These results underscore the promising role of combining genetic and neurophysiological markers to endotype the treatment response in this population.
Collapse
|
38
|
Cilostazol Alleviates NLRP3 Inflammasome-Induced Allodynia/Hyperalgesia in Murine Cerebral Cortex Following Transient Ischemia: Focus on TRPA1/Glutamate and Akt/Dopamine/BDNF/Nrf2 Trajectories. Mol Neurobiol 2022; 59:7194-7211. [PMID: 36127628 PMCID: PMC9616778 DOI: 10.1007/s12035-022-03024-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022]
Abstract
Global cerebral ischemia/reperfusion (I/R) provokes inflammation that augments neuropathic pain. Cilostazol (CLZ) has pleiotropic effects including neuroprotection in several ravaging central disorders; nonetheless, its potential role in transient central ischemic-induced allodynia and hyperalgesia has not been asserted before. Rats were allocated into 4 groups; sham, sham + CLZ, and 45 min-bilateral carotid occlusion followed by a 48 h-reperfusion period either with or without CLZ (50 mg/kg; p.o) post-treatment. CLZ prolonged latency of hindlimb withdrawal following von Frey filaments, 4 °C cold, and noxious mechanical stimulations. Histopathological alterations and the immunoexpression of glial fibrillary acidic protein induced by I/R were reduced by CLZ in the anterior cingulate cortex (ACC) area, while, CLZ enhanced intact neuronal count. Meanwhile, CLZ modulated cerebral cortical glutamate, dopamine neurotransmission, and transient receptor potential ankyrin 1 (TRPA1). CLZ anti-inflammatory potential was mediated by the downregulated p65 NF-κB and sirtuin-1 enhancement to reduce nucleotide-binding domain-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), active caspase-1, and interleukin-1β, indicative of inflammasome deactivation. It also revealed an antioxidant capacity via boosting nuclear factor E2-related factor (Nrf2) enhancing glutathione through forkhead box protein O3a (FOXO3a) reduction. Additionally, CLZ triggered neuronal survival by promoting the p-content of Akt, TrkB, and CREB as well as BDNF content. A novel approach of CLZ in hindering global cerebral I/R-mediated neuropathy is firstly documented herein to forward its adjunct action via deactivating the NLRP3 inflammasome, besides enhancing Nrf2 axis, neuronal survival, and dopamine neurotransmission as well as inhibiting TRPA1 and excitotoxicity.
Collapse
|
39
|
Lim SY, Cengiz P. Opioid tolerance and opioid-induced hyperalgesia: Is TrkB modulation a potential pharmacological solution? Neuropharmacology 2022; 220:109260. [PMID: 36165856 DOI: 10.1016/j.neuropharm.2022.109260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/23/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022]
Abstract
Opioids are widely prescribed for moderate to severe pain in patients with acute illness, cancer pain, and chronic noncancer pain. However, long-term opioid use can cause opioid tolerance and opioid-induced hyperalgesia (OIH), contributing to the opioid misuse and addiction crisis. Strategies to mitigate opioid tolerance and OIH are needed to reduce opioid use and its sequelae. Currently, there are few effective pharmacological strategies that reduce opioid tolerance and OIH. The intrinsic tyrosine kinase receptor B (TrkB) ligand, brain-derived neurotrophic factor (BDNF), has been shown to modulate pain. The BDNF-TrkB signaling plays a role in initiating and sustaining elevated pain sensitivity; however, increasing evidence has shown that BDNF and 7,8-dihydroxyflavone (7,8-DHF), a potent blood-brain barrier-permeable ligand to TrkB, exert neuroprotective, anti-inflammatory, and antioxidant effects that may protect against opioid tolerance and OIH. As such, TrkB signaling may be an important therapeutic avenue in opioid tolerance and OIH. Here, we review 1) the mechanisms of pain, opioid analgesia, opioid tolerance, and OIH; 2) the role of BDNF-TrkB in pain modulation; and 3) the neuroprotective effects of 7,8-DHF and their implications for opioid tolerance and OIH.
Collapse
Affiliation(s)
- Sin Yin Lim
- Pharmacy Practice and Translational Research Division, University of Wisconsin-Madison School of Pharmacy, Madison, WI, United States.
| | - Pelin Cengiz
- Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States; Waisman Center, University of Wisconsin-Madison, United States.
| |
Collapse
|
40
|
Phạm TL, Noh C, Neupane C, Sharma R, Shin HJ, Park KD, Lee CJ, Kim HW, Lee SY, Park JB. MAO-B Inhibitor, KDS2010, Alleviates Spinal Nerve Ligation-induced Neuropathic Pain in Rats Through Competitively Blocking the BDNF/TrkB/NR2B Signaling. THE JOURNAL OF PAIN 2022; 23:2092-2109. [PMID: 35940543 DOI: 10.1016/j.jpain.2022.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 01/04/2023]
Abstract
MAO-B inhibitors have been implicated to reverse neuropathic pain behaviors. Our previous study has demonstrated that KDS2010 (KDS), a newly developed reversible MAO-B inhibitor, could attenuate Paclitaxel (PTX)-induced tactile hypersensitivity in mice through suppressing reactive oxidant species (ROS)-decreased inhibitory GABA synaptic transmission in the spinal cord. In this study, we evaluated the analgesic effect of KDS under a new approach, in which KDS acts on dorsal horn sensory neurons to reduce excitatory transmission. Oral administration of KDS effectively enhanced mechanical thresholds in the spinal nerve ligation (SNL) induced neuropathic pain in rats. Moreover, we discovered that although treatment with KDS increased brain-derived neurotrophic factor (BDNF) levels, KDS inhibited Tropomyosin receptor kinase B (TrkB) receptor activation, suppressing increased p-NR2B-induced hyperexcitability in spinal dorsal horn sensory neurons after nerve injury. In addition, KDS showed its anti-inflammatory effects by reducing microgliosis and astrogliosis and the activation of MAPK and NF-ᴋB inflammatory pathways in these glial cells. The levels of ROS production in the spinal cords after the SNL procedure were also decreased with KDS treatment. Taken together, our results suggest that KDS may represent a promising therapeutic option for treating neuropathic pain. PERSPECTIVE: Our study provides evidence suggesting the mechanisms by which KDS, a novel MAO-B inhibitor, can be effective in pain relief. KDS, by targeting multiple mechanisms involved in BDNF/TrkB/NR2B-related excitatory transmission and neuroinflammation, may represent the next future of pain medicine.
Collapse
Affiliation(s)
- Thuỳ Linh Phạm
- Department of Medical Science, Graduate School, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Histo-Pathology, Hai Phong University of Medicine & Pharmacy, Hai Phong 042-12, Vietnam
| | - Chan Noh
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Chiranjivi Neupane
- Department of Medical Science, Graduate School, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Republic of Korea; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Ramesh Sharma
- Department of Medical Science, Graduate School, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Republic of Korea; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Jin Shin
- Department of Medical Science, Graduate School, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Hyun-Woo Kim
- Department of Medical Science, Graduate School, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Republic of Korea
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Bong Park
- Department of Medical Science, Graduate School, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Republic of Korea; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
41
|
Serrat M, Ferrés S, Auer W, Almirall M, Lluch E, D’Amico F, Maes M, Lorente S, Navarrete J, Montero-Marín J, Neblett R, Nijs J, Borràs X, Luciano JV, Feliu-Soler A. Effectiveness, cost-utility and physiological underpinnings of the FIBROWALK multicomponent therapy in online and outdoor format in individuals with fibromyalgia: Study protocol of a randomized, controlled trial (On&Out study). Front Physiol 2022; 13:1046613. [DOI: 10.3389/fphys.2022.1046613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
Introduction: The On&Out study is aimed at assessing the effectiveness, cost-utility and physiological underpinnings of the FIBROWALK multicomponent intervention conducted in two different settings: online (FIBRO-On) or outdoors (FIBRO-Out). Both interventions have proved to be efficacious in the short-term but there is no study assessing their comparative effectiveness nor their long-term effects. For the first time, this study will also evaluate the cost-utility (6-month time-horizon) and the effects on immune-inflammatory biomarkers and Brain-Derived Neurotrophic Factor (BDNF) levels of both interventions. The objectives of this 6-month, randomized, controlled trial (RCT) are 1) to examine the effectiveness and cost-utility of adding FIBRO-On or FIBRO-Out to Treatment-As-Usual (TAU) for individuals with fibromyalgia (FM); 2) to identify pre–post differences in blood biomarker levels in the three study arms and 3) to analyze the role of process variables as mediators of 6-month follow-up clinical outcomes.Methods and analysis: Participants will be 225 individuals with FM recruited at Vall d’Hebron University Hospital (Barcelona, Spain), randomly allocated to one of the three study arms: TAU vs. TAU + FIBRO-On vs. TAU + FIBRO-Out. A comprehensive assessment to collect functional impairment, pain, fatigue, depressive and anxiety symptoms, perceived stress, central sensitization, physical function, sleep quality, perceived cognitive dysfunction, kinesiophobia, pain catastrophizing, psychological inflexibility in pain and pain knowledge will be conducted pre-intervention, at 6 weeks, post-intervention (12 weeks), and at 6-month follow-up. Changes in immune-inflammatory biomarkers [i.e., IL-6, CXCL8, IL-17A, IL-4, IL-10, and high-sensitivity C-reactive protein (hs-CRP)] and Brain-Derived Neurotrophic Factor will be evaluated in 40 participants in each treatment arm (total n = 120) at pre- and post-treatment. Quality of life and direct and indirect costs will be evaluated at baseline and at 6-month follow-up. Linear mixed-effects regression models using restricted maximum likelihood, mediational models and a full economic evaluation applying bootstrapping techniques, acceptability curves and sensitivity analyses will be computed.Ethics and dissemination: This study has been approved by the Ethics Committee of the Vall d’Hebron Institute of Research. The results will be actively disseminated through peer-reviewed journals, conference presentations, social media and various community engagement activities. Trial registration number NCT05377567 (clinicaltrials.gov).
Collapse
|
42
|
Hsiang HW, Girard BM, Ratkovits L, Campbell SE, Vizzard MA. Effects of pharmacological neurotrophin receptor inhibition on bladder function in female mice with cyclophosphamide-induced cystitis. FRONTIERS IN UROLOGY 2022; 2:1037511. [PMID: 37701182 PMCID: PMC10494527 DOI: 10.3389/fruro.2022.1037511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Interstitial cystitis/bladder pain syndrome is a chronic inflammatory pelvic pain syndrome of unknown etiology characterized by a number of lower urinary tract symptoms, including increased urinary urgency and frequency, bladder discomfort, decreased bladder capacity, and pelvic pain. While its etiology remains unknown, a large body of evidence suggests a role for changes in neurotrophin signaling, particularly that of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). Here, we evaluated the effects of pharmacological inhibition of the NGF receptor TrkA, BDNF receptor TrkB, and pan-neurotrophin receptor p75NTR on bladder function in acute (4-hour) and chronic (8-day) mouse models of cyclophosphamide (CYP)-induced cystitis. TrkA inhibition via ARRY-954 significantly increased intermicturition interval and bladder capacity in control and acute and chronic CYP-treatment conditions. TrkB inhibition via ANA-12 significantly increased intermicturition interval and bladder capacity in acute, but not chronic, CYP-treatment conditions. Interestingly, intermicturition interval and bladder capacity significantly increased following p75NTR inhibition via LM11A-31 in the acute CYP-treatment condition, but decreased in the chronic condition, potentially due to compensatory changes in neurotrophin signaling or increased urothelial barrier dysfunction in the chronic condition. Our findings demonstrate that these receptors represent additional potent therapeutic targets in mice with cystitis and may be useful in the treatment of interstitial cystitis and other inflammatory disorders of the bladder.
Collapse
Affiliation(s)
- Harrison W. Hsiang
- The Larner College of Medicine, Department of Neurological Sciences, The University of Vermont, Burlington, VT, United States
| | - Beatrice M. Girard
- The Larner College of Medicine, Department of Neurological Sciences, The University of Vermont, Burlington, VT, United States
| | - Lexi Ratkovits
- The Larner College of Medicine, Department of Neurological Sciences, The University of Vermont, Burlington, VT, United States
| | - Susan E. Campbell
- The Larner College of Medicine, Department of Neurological Sciences, The University of Vermont, Burlington, VT, United States
| | - Margaret A. Vizzard
- The Larner College of Medicine, Department of Neurological Sciences, The University of Vermont, Burlington, VT, United States
| |
Collapse
|
43
|
Tiwari A, Trivedi R, Lin SY. Tumor microenvironment: barrier or opportunity towards effective cancer therapy. J Biomed Sci 2022; 29:83. [PMID: 36253762 PMCID: PMC9575280 DOI: 10.1186/s12929-022-00866-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/01/2022] [Indexed: 12/24/2022] Open
Abstract
Tumor microenvironment (TME) is a specialized ecosystem of host components, designed by tumor cells for successful development and metastasis of tumor. With the advent of 3D culture and advanced bioinformatic methodologies, it is now possible to study TME’s individual components and their interplay at higher resolution. Deeper understanding of the immune cell’s diversity, stromal constituents, repertoire profiling, neoantigen prediction of TMEs has provided the opportunity to explore the spatial and temporal regulation of immune therapeutic interventions. The variation of TME composition among patients plays an important role in determining responders and non-responders towards cancer immunotherapy. Therefore, there could be a possibility of reprogramming of TME components to overcome the widely prevailing issue of immunotherapeutic resistance. The focus of the present review is to understand the complexity of TME and comprehending future perspective of its components as potential therapeutic targets. The later part of the review describes the sophisticated 3D models emerging as valuable means to study TME components and an extensive account of advanced bioinformatic tools to profile TME components and predict neoantigens. Overall, this review provides a comprehensive account of the current knowledge available to target TME.
Collapse
Affiliation(s)
- Aadhya Tiwari
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Rakesh Trivedi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
44
|
Li Y, Hung SW, Zhang R, Man GCW, Zhang T, Chung JPW, Fang L, Wang CC. Melatonin in Endometriosis: Mechanistic Understanding and Clinical Insight. Nutrients 2022; 14:nu14194087. [PMID: 36235740 PMCID: PMC9572886 DOI: 10.3390/nu14194087] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Endometriosis is defined as the development of endometrial glands and stroma outside the uterine cavity. Pathophysiology of this disease includes abnormal hormone profiles, cell survival, migration, invasion, angiogenesis, oxidative stress, immunology, and inflammation. Melatonin is a neuroendocrine hormone that is synthesized and released primarily at night from the mammalian pineal gland. Increasing evidence has revealed that melatonin can be synthesized and secreted from multiple extra-pineal tissues where it regulates immune response, inflammation, and angiogenesis locally. Melatonin receptors are expressed in the uterus, and the therapeutic effects of melatonin on endometriosis and other reproductive disorders have been reported. In this review, key information related to the metabolism of melatonin and its biological effects is summarized. Furthermore, the latest in vitro and in vivo findings are highlighted to evaluate the pleiotropic functions of melatonin, as well as to summarize its physiological and pathological effects and treatment potential in endometriosis. Moreover, the pharmacological and therapeutic benefits derived from the administration of exogenous melatonin on reproductive system-related disease are discussed to support the potential of melatonin supplements toward the development of endometriosis. More clinical trials are needed to confirm its therapeutic effects and safety.
Collapse
Affiliation(s)
- Yiran Li
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Sze-Wan Hung
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Ruizhe Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Gene Chi-Wai Man
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Tao Zhang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jacqueline Pui-Wah Chung
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Correspondence: (L.F.); (C.-C.W.); Tel.: +86-371-6691-3635 (L.F.); +852-3505-4267 (C.-C.W.)
| | - Chi-Chiu Wang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
- Laboratory of Reproduction and Development, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
- Correspondence: (L.F.); (C.-C.W.); Tel.: +86-371-6691-3635 (L.F.); +852-3505-4267 (C.-C.W.)
| |
Collapse
|
45
|
Chronic Pain after Bone Fracture: Current Insights into Molecular Mechanisms and Therapeutic Strategies. Brain Sci 2022; 12:brainsci12081056. [PMID: 36009119 PMCID: PMC9406150 DOI: 10.3390/brainsci12081056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/20/2022] [Accepted: 08/06/2022] [Indexed: 12/12/2022] Open
Abstract
Bone fracture following traumatic injury or due to osteoporosis is characterized by severe pain and motor impairment and is a major cause of global mortality and disability. Fracture pain often originates from mechanical distortion of somatosensory nerve terminals innervating bones and muscles and is maintained by central sensitization. Chronic fracture pain (CFP) after orthopedic repairs is considered one of the most critical contributors to interference with the physical rehabilitation and musculoskeletal functional recovery. Analgesics available for CFP in clinics not only have poor curative potency but also have considerable side effects; therefore, it is important to further explore the pathogenesis of CFP and identify safe and effective therapies. The typical physiopathological characteristics of CFP are a neuroinflammatory response and excitatory synaptic plasticity, but the specific molecular mechanisms involved remain poorly elucidated. Recent progress has deepened our understanding of the emerging properties of chemokine production, proinflammatory mediator secretion, caspase activation, neurotransmitter release, and neuron-glia interaction in initiating and sustaining synaptogenesis, synaptic strength, and signal transduction in central pain sensitization, indicating the possibility of targeting neuroinflammation to prevent and treat CFP. This review summarizes current literature on the excitatory synaptic plasticity, microgliosis, and microglial activation-associated signaling molecules and discusses the unconventional modulation of caspases and stimulator of interferon genes (STING) in the pathophysiology of CFP. We also review the mechanisms of action of analgesics in the clinic and their side effects as well as promising therapeutic candidates (e.g., specialized pro-resolving mediators, a caspase-6 inhibitor, and a STING agonist) for pain relief by the attenuation of neuroinflammation with the aim of better managing patients undergoing CFP in the clinical setting.
Collapse
|
46
|
Colitti N, Desmoulin F, Le Friec A, Labriji W, Robert L, Michaux A, Conchou F, Cirillo C, Loubinoux I. Long-Term Intranasal Nerve Growth Factor Treatment Favors Neuron Formation in de novo Brain Tissue. Front Cell Neurosci 2022; 16:871532. [PMID: 35928573 PMCID: PMC9345199 DOI: 10.3389/fncel.2022.871532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To date, no safe and effective pharmacological treatment has been clinically validated for improving post-stroke neurogenesis. Growth factors are good candidates but low safety has limited their application in the clinic. An additional restraint is the delivery route. Intranasal delivery presents many advantages. Materials and Methods A brain lesion was induced in twenty-four rats. Nerve growth factor (NGF) 5 μg/kg/day or vehicle was given intranasally from day 10 post-lesion for two periods of five weeks, separated by a two-week wash out period with no treatment. Lesion volume and atrophy were identified by magnetic resonance imaging (MRI). Anxiety and sensorimotor recovery were measured by behavior tests. Neurogenesis, angiogenesis and inflammation were evaluated by histology at 12 weeks. Results Remarkable neurogenesis occurred and was visible at the second and third months after the insult. Tissue reconstruction was clearly detected by T2 weighted MRI at 8 and 12 weeks post-lesion and confirmed by histology. In the new tissue (8.1% of the lesion in the NGF group vs. 2.4%, in the control group at 12 weeks), NGF significantly increased the percentage of mature neurons (19% vs. 7%). Angiogenesis and inflammation were not different in the two groups. Sensorimotor recovery was neither improved nor hampered by NGF during the first period of treatment, but NGF treatment limited motor recovery in the second period. Interpretation The first five-week period of treatment was very well tolerated. This study is the first presenting the effects of a long treatment with NGF and has shown an important tissue regeneration rate at 8 and 12 weeks post-injury. NGF may have increased neuronal differentiation and survival and favored neurogenesis and neuron survival through subventricular zone (SVZ) neurogenesis or reprogramming of reactive astrocytes. For the first time, we evidenced a MRI biomarker of neurogenesis and tissue reconstruction with T2 and diffusion weighted imaging.
Collapse
Affiliation(s)
- Nina Colitti
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Franck Desmoulin
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Alice Le Friec
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Wafae Labriji
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Lorenne Robert
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Amandine Michaux
- Unit of Medical Imaging, National Veterinary School of Toulouse, University of Toulouse, Toulouse, France
| | - Fabrice Conchou
- Unit of Medical Imaging, National Veterinary School of Toulouse, University of Toulouse, Toulouse, France
| | - Carla Cirillo
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Isabelle Loubinoux
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
- *Correspondence: Isabelle Loubinoux,
| |
Collapse
|
47
|
Hacene S, Le Friec A, Desmoulin F, Robert L, Colitti N, Fitremann J, Loubinoux I, Cirillo C. Present and future avenues of cell-based therapy for brain injury: The enteric nervous system as a potential cell source. Brain Pathol 2022; 32:e13105. [PMID: 35773942 PMCID: PMC9425017 DOI: 10.1111/bpa.13105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023] Open
Abstract
Cell therapy is a promising strategy in the field of regenerative medicine; however, several concerns limit the effective clinical use, namely a valid cell source. The gastrointestinal tract, which contains a highly organized network of nerves called the enteric nervous system (ENS), is a valuable reservoir of nerve cells. Together with neurons and neuronal precursor cells, it contains glial cells with a well described neurotrophic potential and a newly identified neurogenic one. Recently, enteric glia is looked at as a candidate for cell therapy in intestinal neuropathies. Here, we present the therapeutic potential of the ENS as cell source for brain repair, too. The example of stroke is introduced as a brain injury where cell therapy appears promising. This disease is the first cause of handicap in adults. The therapies developed in recent years allow a partial response to the consequences of the disease. The only prospect of recovery in the chronic phase is currently based on rehabilitation. The urgency to offer other treatments is therefore tangible. In the first part of the review, some elements of stroke pathophysiology are presented. An update on the available therapeutic strategies is provided, focusing on cell‐ and biomaterial‐based approaches. Following, the ENS is presented with its anatomical and functional characteristics, focusing on glial cells. The properties of these cells are depicted, with particular attention to their neurotrophic and, recently identified, neurogenic properties. Finally, preliminary data on a possible therapeutic approach combining ENS‐derived cells and a biomaterial are presented.
Collapse
Affiliation(s)
- Sirine Hacene
- National Veterinary School of Toulouse, University of Toulouse, Toulouse, France.,Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Alice Le Friec
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France.,Department of Biological and Chemical Engineering-Medical Biotechnology, Aarhus University, Aarhus, Denmark
| | - Franck Desmoulin
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Lorenne Robert
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Nina Colitti
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Juliette Fitremann
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Isabelle Loubinoux
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Carla Cirillo
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| |
Collapse
|
48
|
Wang XL, Wang YT, Guo ZY, Zhang NN, Wang YY, Hu D, Wang ZZ, Zhang Y. Efficacy of paeoniflorin on models of depression: A systematic review and meta-analysis of rodent studies. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115067. [PMID: 35143936 DOI: 10.1016/j.jep.2022.115067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeoniflorin, a bioactive compound extracted from the traditional Chinese herb, Paeonia lactiflora Pall, has been demonstrated to possess efficient antidepressant activity in previous studies. AIM OF THE STUDY Our systematic review and meta-analysis aimed to assess the effectiveness of paeoniflorin in relieving depressive-like behaviors in animal models. MATERIALS AND METHODS We searched for in vivo studies on the antidepressant effects of paeoniflorin in rodents using electronic databases from their inception to April 2021. The measurements of animal behavioral tests, including the sucrose consumption, forced swimming, tail suspension, and open field tests, were regarded as the outcomes. RESULTS Fourteen studies involving 416 animals met the inclusion criteria and were included in the meta-analysis. Statistical analysis revealed remarkable differences between the paeoniflorin and control groups. Furthermore, the paeoniflorin group showed great efficiency in improving depressive-like symptoms of animals in the sucrose consumption, forced swimming, tail suspension, and open field tests. CONCLUSIONS Our meta-analysis demonstrates that paeoniflorin can significantly improve depressive-like symptoms in animals and suggests that it can be a potential therapy for patients with depression in the future.
Collapse
Affiliation(s)
- Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhen-Yu Guo
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ning-Ning Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuan-Yuan Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Die Hu
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
49
|
Seidel MF, Hügle T, Morlion B, Koltzenburg M, Chapman V, MaassenVanDenBrink A, Lane NE, Perrot S, Zieglgänsberger W. Neurogenic inflammation as a novel treatment target for chronic pain syndromes. Exp Neurol 2022; 356:114108. [PMID: 35551902 DOI: 10.1016/j.expneurol.2022.114108] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
Chronic pain syndrome is a heterogeneous group of diseases characterized by several pathological mechanisms. One in five adults in Europe may experience chronic pain. In addition to the individual burden, chronic pain has a significant societal impact because of work and school absences, loss of work, early retirement, and high social and healthcare costs. Several anti-inflammatory treatments are available for patients with inflammatory or autoimmune diseases to control their symptoms, including pain. However, patients with degenerative chronic pain conditions, some with 10-fold or more elevated incidence relative to these manageable diseases, have few long-term pharmacological treatment options, limited mainly to non-steroidal anti-inflammatory drugs or opioids. For this review, we performed multiple PubMed searches using keywords such as "pain," "neurogenic inflammation," "NGF," "substance P," "nociception," "BDNF," "inflammation," "CGRP," "osteoarthritis," and "migraine." Many treatments, most with limited scientific evidence of efficacy, are available for the management of chronic pain through a trial-and-error approach. Although basic science and pre-clinical pain research have elucidated many biomolecular mechanisms of pain and identified promising novel targets, little of this work has translated into better clinical management of these conditions. This state-of-the-art review summarizes concepts of chronic pain syndromes and describes potential novel treatment strategies.
Collapse
Affiliation(s)
- Matthias F Seidel
- Department of Rheumatology, Spitalzentrum Biel-Centre Hospitalier Bienne, 2501 Biel-Bienne, Switzerland.
| | - Thomas Hügle
- Department of Rheumatology, University Hospital Lausanne, 1011 Lausanne, Switzerland
| | - Barton Morlion
- The Leuven Center for Algology and Pain Management, University of Leuven, Leuven, Belgium
| | - Martin Koltzenburg
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Victoria Chapman
- Pain Centre Versus Arthritis, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Nancy E Lane
- Center for Musculoskeletal Health, University of California Davis School of Medicine, Sacramento, CA, USA; Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Serge Perrot
- Unité INSERM U987, Hôpital Ambroise Paré, Paris Descartes University, Boulogne Billancourt, France; Centre d'Evaluation et Traitement de la Douleur, Hôpital Cochin, Paris Descartes University, Paris, France
| | | |
Collapse
|
50
|
Bidari A, Ghavidel-Parsa B, Gharibpoor F. Comparison of the serum brain-derived neurotrophic factor (BDNF) between fibromyalgia and nociceptive pain groups; and effect of duloxetine on the BDNF level. BMC Musculoskelet Disord 2022; 23:411. [PMID: 35501732 PMCID: PMC9059381 DOI: 10.1186/s12891-022-05369-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
Background The primary objective was to compare the serum brain-derived neurotrophic factor (BDNF) level in the patients with two types of pain: fibromyalgia (FM) and non-FM nociceptive pain (non-FM NP). The secondary objective was to investigate the effect of duloxetine on serum BDNF in FM patients and assess the direction of BDNF changes’ relation to clinical parameters’ alterations. Methods: This is a study on 73 patients (50 FM and 23 non-FM chronic non-inflammatory pain patients). Serum BDNF was first compared between both groups. Patients with FM, then prospectively, underwent standardized FM treatment with duloxetine maximized to 60 mg/day. The Revised Fibromyalgia Impact Questionnaire (FIQR), Short-Form Health Survey (SF-12), pain visualized analog scale (pain VAS), Beck Depression Inventory-II (BDI-II), polysymptomatic distress scale (PSD) and serum BDNF were measured and compared at baseline and 4 weeks after treatment in FM group. Results The mean of adjusted BDNF level in the FM group had no significant difference than the non-FM NP group ((5293.5 ± 2676.3 vs. 6136.3 ± 4037.6; P value = 0.77). Using linear mixed model, we showed that duloxetine reduced BDNF level significantly in FM patients, even after adjusting for depression, pain and severity of the disease (P < 0.01). The FIQR, BDI-II, PSD, and pain VAS improved significantly after duloxetine treatment. Conclusions Non-significant BDNF level difference between FM and non-FM nociceptive pain suggested that peripheral BDNF is not a pathophysiological feature of FM. The decreased BDNF level parallel with improvement of PSD/pain scores after duloxetine treatment indicates BDNF alteration in the pain modulation process, regardless of cause and effect.
Collapse
Affiliation(s)
- Ali Bidari
- Department of Rheumatology, Iran University of Medical Sciences, Tehran, Iran
| | - Banafsheh Ghavidel-Parsa
- Rheumatology Research Center, Razi Hospital, School of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Faeze Gharibpoor
- Student Research Committee, Deputy of Research and Technology, Faculty of Medicine, Guilan University of Medical Sciences, Namjoo St, Rasht, Guilan, 41446-66949, Iran.
| |
Collapse
|