1
|
de Médina P, Ayadi S, Soulès R, Payre B, Rup-Jacques S, Silvente-Poirot S, Samadi M, Poirot M. Chemical synthesis and biochemical properties of cholestane-5α,6β-diol-3-sulfonate: A non-hydrolysable analogue of cholestane-5α,6β-diol-3β-sulfate. J Steroid Biochem Mol Biol 2023; 234:106396. [PMID: 37683773 DOI: 10.1016/j.jsbmb.2023.106396] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Cholestane-3β,5α,6β-triol (CT) is a primary metabolite of 5,6-epoxycholesterols (5,6-EC) that is catalyzed by the cholesterol-5,6-epoxide hydrolase (ChEH). CT is a well-known biomarker for Niemann-Pick disease type C (NP-C), a progressive inherited neurodegenerative disease. On the other hand, CT is known to be metabolized by the 11β-hydroxysteroid-dehydrogenase of type 2 (11β-HSD2) into a tumor promoter named oncosterone that stimulates the growth of breast cancer tumors. Sulfation is a major metabolic transformation leading to the production of sulfated oxysterols. The production of cholestane-5α,6β-diol-3β-O-sulfate (CDS) has been reported in breast cancer cells. However, no data related to CDS biological properties have been reported so far. These studies have been hampered because sulfate esters of sterols and steroids are rapidly hydrolyzed by steroid sulfatase to give free steroids and sterols. In order to get insight into the biological properties of CDS, we report herein the synthesis and the characterization of cholestane-5α,6β-diol-3β-sulfonate (CDSN), a non-hydrolysable analogue of CDS. We show that CDSN is a potent inhibitor of 11β-HSD2 that blocks oncosterone production on cell lysate. The inhibition of oncosterone biosynthesis of a whole cell assay was observed but results from the blockage by CDSN of the uptake of CT in MCF-7 cells. While CDSN inhibits MCF-7 cell proliferation, we found that it potentiates the cytotoxic activity of post-lanosterol cholesterol biosynthesis inhibitors such as tamoxifen and PBPE. This effect was associated with an increase of free sterols accumulation and the appearance of giant multilamellar bodies, a structural feature reminiscent of Type C Niemann-Pick disease cells and consistent with a possible inhibition by CDSN of NPC1. Altogether, our data showed that CDSN is biologically active and that it is a valuable tool to study the biological properties of CDS and more specifically its impact on immunity and viral infection.
Collapse
Affiliation(s)
- Philippe de Médina
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: Cholesterol Metabolism and Therapeutic Innovations, Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, France; French network for Nutrition physical Acitivity And Cancer Research (NACRe network), France.
| | - Silia Ayadi
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: Cholesterol Metabolism and Therapeutic Innovations, Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, France
| | - Régis Soulès
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: Cholesterol Metabolism and Therapeutic Innovations, Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, France; French network for Nutrition physical Acitivity And Cancer Research (NACRe network), France
| | - Bruno Payre
- Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine Rangueil, Toulouse, France
| | - Sandrine Rup-Jacques
- Laboratory of Chemistry and Physics Multi-Scale Approach to Complex Environments, Department of Chemistry, University Lorraine, 57070 Metz, France
| | - Sandrine Silvente-Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: Cholesterol Metabolism and Therapeutic Innovations, Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, France; French network for Nutrition physical Acitivity And Cancer Research (NACRe network), France.
| | - Mohammad Samadi
- Laboratory of Chemistry and Physics Multi-Scale Approach to Complex Environments, Department of Chemistry, University Lorraine, 57070 Metz, France.
| | - Marc Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: Cholesterol Metabolism and Therapeutic Innovations, Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, France; French network for Nutrition physical Acitivity And Cancer Research (NACRe network), France.
| |
Collapse
|
2
|
Maiti S, MaitiDutta S, Chen G. Regulations of expressions of rat/human sulfotransferases by anticancer drug, nolatrexed, and micronutrients. Anticancer Drugs 2022; 33:e525-e533. [PMID: 34387600 DOI: 10.1097/cad.0000000000001155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cancer is related to the cellular proliferative state. Increase in cell-cycle regulatory function augments cellular folate pool. This pathway is therapeutically targeted. A number of drugs influences this metabolism, that is, folic acid, folinic acid, nolatrexed, and methotrexate. Our previous study showed methotrexate influences on rat/human sulfotransferases. Present study explains the effect of nolatrexed (widely used in different cancers) and some micronutrients on the expressions of rat/human sulfotransferases. Female Sprague-Dawley rats were treated with nolatrexed (01-100 mg/kg) and rats of both sexes were treated to folic acid (100, 200, or 400 mg/kg) for 2-weeks and their aryl sulfotransferase-IV (AST-IV; β-napthol sulfation) and sulfotransferase (STa; DHEA sulfation) activities, protein expression (western blot) and mRNA expression (RT-PCR) were tested. In human-cultured hepatocarcinoma (HepG2) cells nolatrexed (1 nM-1.2 mM) or folinic acid (10 nM-10 μM) were applied for 10 days. Folic acid (0-10 μM) was treated to HepG2 cells. PPST (phenol catalyzing), MPST (dopamine and monoamine), DHEAST (dehydroepiandrosterone and DHEA), and EST (estradiol sulfating) protein expressions (western-blot) were tested in HepG2 cells. Present results suggest that nolatrexed significantly increased sulfotransferases expressions in rat (protein, STa, F = 4.87, P < 0.05/mRNA, AST-IV, F = 6.702, P < 0.014; Student's t test, P < 0.01-0.05) and HepG2 cells. Folic acid increased sulfotransferases activity/protein in gender-dependant manner. Both folic and folinic acid increased several human sulfotransferases isoforms with varied level of significance (least or no increase at highest dose) in HepG2 cells pointing its dose-dependent multiphasic responses. The clinical importance of this study may be furthered in the verification of sulfation metabolism of several exogenous/endogenous molecules, drug-drug interaction and their influences on cancer pathophysiological processes. Further studies are necessary.
Collapse
Affiliation(s)
- Smarajit Maiti
- Cell and Molecular Therapeutics Laboratory, Department of Biochemistry and Biotechnology, Oriental Institute of Science and Technology
- Epidemiology and Human Health Division, Founder and Secretary, Agricure Biotech Research Society
| | - Sangita MaitiDutta
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, India
| | - Guangping Chen
- Venture I OSU Laboratory, Oklahoma Technology & Research Park, Innovation Way, Stillwater, Oklahoma, USA
| |
Collapse
|
3
|
Kotipalli A, Banerjee R, Kasibhatla SM, Joshi R. Analysis of H3K4me3-ChIP-Seq and RNA-Seq data to understand the putative role of miRNAs and their target genes in breast cancer cell lines. Genomics Inform 2021; 19:e17. [PMID: 34261302 PMCID: PMC8261273 DOI: 10.5808/gi.21020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/25/2021] [Indexed: 11/26/2022] Open
Abstract
Breast cancer is one of the leading causes of cancer in women all over the world and accounts for ~25% of newly observed cancers in women. Epigenetic modifications influence differential expression of genes through non-coding RNA and play a crucial role in cancer regulation. In the present study, epigenetic regulation of gene expression by in-silico analysis of histone modifications using chromatin immunoprecipitation sequencing (ChIP-Seq) has been carried out. Histone modification data of H3K4me3 from one normal-like and four breast cancer cell lines were used to predict miRNA expression at the promoter level. Predicted miRNA promoters (based on ChIP-Seq) were used as a probe to identify gene targets. Five triple-negative breast cancer (TNBC)‒specific miRNAs (miR153-1, miR4767, miR4487, miR6720, and miR-LET7I) were identified and corresponding 13 gene targets were predicted. Eight miRNA promoter peaks were predicted to be differentially expressed in at least three breast cancer cell lines (miR4512, miR6791, miR330, miR3180-3, miR6080, miR5787, miR6733, and miR3613). A total of 44 gene targets were identified based on the 3′-untranslated regions of downregulated mRNA genes that contain putative binding targets to these eight miRNAs. These include 17 and 15 genes in luminal-A type and TNBC respectively, that have been reported to be associated with breast cancer regulation. Of the remaining 12 genes, seven (A4GALT, C2ORF74, HRCT1, ZC4H2, ZNF512, ZNF655, and ZNF608) show similar relative expression profiles in large patient samples and other breast cancer cell lines thereby giving insight into predicted role of H3K4me3 mediated gene regulation via the miRNA-mRNA axis.
Collapse
Affiliation(s)
- Aneesh Kotipalli
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Pune 411008, India
| | - Ruma Banerjee
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Pune 411008, India
| | - Sunitha Manjari Kasibhatla
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Pune 411008, India
| | - Rajendra Joshi
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Pune 411008, India
| |
Collapse
|
4
|
Balyan R, Cai M, Zhao W, Dai Z, Zhai Y, Chen G. Repeated restraint stress upregulates rat sulfotransferase 1A1. J Basic Clin Physiol Pharmacol 2018; 30:265-273. [PMID: 30864418 DOI: 10.1515/jbcpp-2016-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 11/15/2018] [Indexed: 11/15/2022]
Abstract
BackgroundSulfotransferases (SULTs) are phase II drug-metabolizing enzymes. SULTs also regulate the biological activities of biological signaling molecules, such as various hormones, bile acids, and monoamine neurotransmitters; therefore, they play critical roles in the endocrine and nervous systems. People are subject to various kinds of physical, chemical, toxicological, physiological, and psychological stresses at one time or another. The study of the effects produced by stress may lead to finding novel remedies for many disease conditions. The effect of repeated restraint stress on rat SULT expression has not been studied. MethodsThis study involves the effect of repeated restraint stress on SULT1A1 expressions. Male Sprague-Dawley rats (n=4) were subjected to repeated restraint stress 2 h/day for 7 days. Protein and RNA expression of SULT1A1 were analyzed by western blot and quantitative real time reverse transcription polymerase chain reaction, respectively, in important tissues. ResultsWe observed that repeated restraint stress increased the expression of SULT1A1 in the liver, adrenal glands, cerebellum, hypothalamus, and cerebral cortex in male rats. Patterns of enhanced expression were observed at both mRNA and protein level, indicating that repeated restraint stress stimulates enzyme expression at the transcriptional level. ConclusionsChanges of SULT1A1 expression in important tissues caused by repeated restraint stress will have a significant effect on drug metabolism and xenobiotics detoxification. The significant changes in endocrine glands and brain sections may also cause disturbances in hormone homeostasis, therefore leading to disease conditions. This report provides clues for the understanding of the effect of stresses on health.
Collapse
Affiliation(s)
- Rajiv Balyan
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Ma Cai
- College of Life Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, China
| | - Wenhong Zhao
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, China
| | - Zhao Dai
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, China
| | - Yujia Zhai
- Department of Anesthesiology, The Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Guangping Chen
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74074, USA, Phone: +405-744-2349
| |
Collapse
|
5
|
Wang S, Yuan X, Lu D, Guo L, Wu B. Farnesoid X receptor regulates SULT1E1 expression through inhibition of PGC1α binding to HNF4α. Biochem Pharmacol 2017; 145:202-209. [DOI: 10.1016/j.bcp.2017.08.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/29/2017] [Indexed: 02/02/2023]
|