1
|
Schacht JP, Kubicki M, Anton RF. A randomized trial of the effects of COMT inhibition on subjective response to alcohol: Moderation by baseline COMT activity and mediation of alcohol self-administration. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:178-187. [PMID: 38206282 DOI: 10.1111/acer.15227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 11/07/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Poor inhibitory control and enhanced subjective response to alcohol are interrelated risk factors for alcohol use disorder (AUD) that share underlying neural substrates, including dopamine signaling in the right prefrontal cortex, a potential target for pharmacological intervention. Cortical dopamine inactivation is primarily regulated by catechol-O-methyltransferase (COMT), an enzyme with large variation in activity as a function of the COMT rs4680 (val158met) single nucleotide polymorphism. In a previous randomized, placebo-controlled trial of the COMT inhibitor tolcapone (200 mg TID) in non-treatment-seeking participants with AUD, we found that tolcapone, relative to placebo, reduced alcohol self-administration only among rs4680 val-allele homozygotes, whose COMT activity is higher than in met-allele carriers. METHODS We conducted secondary analyses of the effects of tolcapone and baseline COMT activity, as indexed by both rs4680 genotype and an enzymatic activity assay, on the subjective response to alcohol in a bar-laboratory paradigm among 60 participants in the previous trial. RESULTS Tolcapone did not affect alcohol-induced stimulation or sedation more than placebo. However, baseline COMT activity moderated the effects of the drug on both outcomes, such that tolcapone-treated participants with higher baseline COMT activity had less stimulation (p = 0.008) and sedation (p = 0.053) than participants with lower baseline COMT activity and those treated with placebo. Additionally, alcohol-induced stimulation significantly mediated the interacting effects of baseline COMT activity and tolcapone on bar-laboratory self-administration. CONCLUSIONS Tolcapone may reduce subjective response to alcohol more effectively among individuals with preexisting high COMT activity an effect that could account for the drug's reduction of alcohol consumption among these individuals.
Collapse
Affiliation(s)
- Joseph P Schacht
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Matthew Kubicki
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Raymond F Anton
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
2
|
Schacht JP, Yeongbin Im, Hoffman M, Voronin KE, Book SW, Anton RF. Effects of pharmacological and genetic regulation of COMT activity in alcohol use disorder: a randomized, placebo-controlled trial of tolcapone. Neuropsychopharmacology 2022; 47:1953-1960. [PMID: 35523943 PMCID: PMC9073504 DOI: 10.1038/s41386-022-01335-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 11/09/2022]
Abstract
Alcohol Use Disorder (AUD) is characterized by loss of control over drinking. Behavioral control is mediated, in part, by cortical dopamine signaling. Inhibition of catechol-O-methyltransferase (COMT), the enzyme primarily responsible for cortical dopamine inactivation, may increase cortical dopamine, especially among individuals with genetically mediated lower dopaminergic tone, such as COMT rs4680 (val158met) val-allele homozygotes. This study was a randomized, placebo-controlled, pharmacogenetic trial of the COMT inhibitor tolcapone. Ninety non-treatment-seeking AUD individuals were prospectively genotyped for rs4680 and randomized to tolcapone (200 mg t.i.d.) or placebo for 8 days. At baseline and on day 7, peripheral COMT activity was assayed, and participants completed an fMRI alcohol cue-reactivity task; on day 8, they completed a bar-lab paradigm. Primary outcomes were: (1) natural drinking during the medication period; (2) alcohol self-administration in the bar lab; and (3) alcohol cue-elicited cortical (right inferior frontal gyrus [rIFG]) and ventral striatal activation. At baseline, the rs4680 val-allele had an additive effect on COMT activity. Tolcapone, relative to placebo, reduced COMT activity in all genotype groups. COMT genotype moderated tolcapone's effect on drinking during the medication period and in the bar lab, such that tolcapone, relative to placebo, reduced drinking only among val-allele homozygotes. Tolcapone did not affect cue-elicited ventral striatal activation but reduced rIFG activation; less rIFG activation on day 7 was associated with less drinking during the medication period. Taken together, these data suggest that COMT inhibition may reduce drinking specifically among individuals genetically predisposed to excessive COMT activity and potentially low cortical dopamine tone.ClinicalTrials.gov identifier: NCT02949934 https://clinicaltrials.gov/ct2/show/NCT02949934.
Collapse
Affiliation(s)
- Joseph P Schacht
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Yeongbin Im
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Michaela Hoffman
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Konstantin E Voronin
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Sarah W Book
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Raymond F Anton
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
3
|
Norona LM, Fullerton A, Lawson C, Leung L, Brumm J, Kiyota T, Maher J, Khojasteh C, Proctor WR. In vitro assessment of farnesoid X receptor antagonism to predict drug-induced liver injury risk. Arch Toxicol 2020; 94:3185-3200. [PMID: 32583097 DOI: 10.1007/s00204-020-02804-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/15/2020] [Indexed: 11/29/2022]
Abstract
Drug-induced liver injury (DILI) continues to be a major cause of drug attrition and restrictive labeling. Given the importance of farnesoid X receptor (FXR) in bile acid homeostasis, drug-related FXR antagonism may be an important mechanism of DILI. However, a comprehensive assessment of this phenomenon broadly in the context of DILI is lacking. As such, we used an orthogonal approach comprising a FXR target gene assay in primary human hepatocytes and a commercially available FXR reporter assay to investigate the potential FXR antagonistic effects of an extensive test set of 159 compounds with and without association with clinical DILI. Data were omitted from analysis based on the presence of cytotoxicity to minimize false positive assay signals and other complications in data interpretation. Based on the experimental approaches employed and corresponding data, the prevalence of FXR antagonism was relatively low across this broad DILI test set, with 16-24% prevalence based on individual assay results or combined signals in both assays. Moreover, FXR antagonism was not highly predictive for identifying clinically relevant hepatotoxicants retrospectively, where FXR antagonist classification alone had minimal to moderate predictive value as represented by positive and negative likelihood ratios of 2.24-3.84 and 0.72-0.85, respectively. The predictivity did not increase significantly when considering only compounds with high clinical exposure (maximal or efficacious plasma exposures > 1.0 μM). In contrast, modest gains in predictive value of FXR antagonism were observed considering compounds that also inhibit bile salt export pump. In addition, we have identified novel FXR antagonistic effects of well-studied hepatotoxic drugs, including bosentan, tolcapone and ritonavir. In conclusion, this work represents a comprehensive evaluation of FXR antagonism in the context of DILI, including its overall predictivity and challenges associated with detecting this phenomenon in vitro.
Collapse
Affiliation(s)
- Leah M Norona
- Predictive Toxicology, Safety Assessment, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Aaron Fullerton
- Predictive Toxicology, Safety Assessment, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Chris Lawson
- Predictive Toxicology, Safety Assessment, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Leslie Leung
- Predictive Toxicology, Safety Assessment, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Jochen Brumm
- Non-Clinical Biostatistics, Product Development, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Tomomi Kiyota
- Predictive Toxicology, Safety Assessment, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Jonathan Maher
- Predictive Toxicology, Safety Assessment, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - William R Proctor
- Predictive Toxicology, Safety Assessment, Genentech, Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
4
|
Müller T. Pharmacokinetics and pharmacodynamics of levodopa/carbidopa cotherapies for Parkinson’s disease. Expert Opin Drug Metab Toxicol 2020; 16:403-414. [DOI: 10.1080/17425255.2020.1750596] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weißensee, Berlin, Germany
| |
Collapse
|
5
|
Longo DM, Yang Y, Watkins PB, Howell BA, Siler SQ. Elucidating Differences in the Hepatotoxic Potential of Tolcapone and Entacapone With DILIsym(®), a Mechanistic Model of Drug-Induced Liver Injury. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2016; 5:31-9. [PMID: 26844013 PMCID: PMC4728295 DOI: 10.1002/psp4.12053] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/02/2015] [Indexed: 12/18/2022]
Abstract
Tolcapone and entacapone are catechol‐O‐methyltransferase (COMT) inhibitors developed as adjunct therapies for treating Parkinson's disease. While both drugs have been shown to cause mitochondrial dysfunction and inhibition of the bile salt export protein (BSEP), liver injury has only been associated with the use of tolcapone. Here we used a multiscale, mechanistic model (DILIsym®) to simulate the response to tolcapone and entacapone. In a simulated population (SimPops™) receiving recommended doses of tolcapone (200 mg t.i.d.), increases in serum alanine transaminase (ALT) >3× the upper limit of normal (ULN) were observed in 2.2% of the population. In contrast, no simulated patients receiving recommended doses of entacapone (200 mg 8× day) experienced serum ALT >3× ULN. Further, DILIsym® analyses revealed patient‐specific risk factors that may contribute to tolcapone‐mediated hepatotoxicity. In summary, the simulations demonstrated that differences in mitochondrial uncoupling potency and hepatic exposure primarily account for the difference in hepatotoxic potential for tolcapone and entacapone.
Collapse
Affiliation(s)
- D M Longo
- Hamner-UNC Institute for Drug Safety Sciences, Hamner Institutes for Health Sciences, Research Triangle Park North Carolina USA; DILIsym® Services, Research Triangle Park North Carolina USA
| | - Y Yang
- Hamner-UNC Institute for Drug Safety Sciences, Hamner Institutes for Health Sciences, Research Triangle Park North Carolina USA
| | - P B Watkins
- Hamner-UNC Institute for Drug Safety Sciences, Hamner Institutes for Health Sciences, Research Triangle Park North Carolina USA; DILIsym® Services, Research Triangle Park North Carolina USA
| | - B A Howell
- Hamner-UNC Institute for Drug Safety Sciences, Hamner Institutes for Health Sciences, Research Triangle Park North Carolina USA; DILIsym® Services, Research Triangle Park North Carolina USA
| | - S Q Siler
- Hamner-UNC Institute for Drug Safety Sciences, Hamner Institutes for Health Sciences, Research Triangle Park North Carolina USA; DILIsym® Services, Research Triangle Park North Carolina USA
| |
Collapse
|
6
|
Kang KS, Wen Y, Yamabe N, Fukui M, Bishop SC, Zhu BT. Dual beneficial effects of (-)-epigallocatechin-3-gallate on levodopa methylation and hippocampal neurodegeneration: in vitro and in vivo studies. PLoS One 2010; 5:e11951. [PMID: 20700524 PMCID: PMC2916818 DOI: 10.1371/journal.pone.0011951] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 07/08/2010] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND A combination of levodopa (L-DOPA) and carbidopa is the most commonly-used treatment for symptom management in Parkinson's disease. Studies have shown that concomitant use of a COMT inhibitor is highly beneficial in controlling the wearing-off phenomenon by improving L-DOPA bioavailability as well as brain entry. The present study sought to determine whether (-)-epigallocatechin-3-gallate (EGCG), a common tea polyphenol, can serve as a naturally-occurring COMT inhibitor that also possesses neuroprotective actions. METHODOLOGY/PRINCIPAL FINDINGS Using both in vitro and in vivo models, we investigated the modulating effects of EGCG on L-DOPA methylation as well as on chemically induced oxidative neuronal damage and degeneration. EGCG strongly inhibited human liver COMT-mediated O-methylation of L-DOPA in a concentration-dependent manner in vitro, with an average IC50 of 0.36 microM. Oral administration of EGCG moderately lowered the accumulation of 3-O-methyldopa in the plasma and striatum of rats treated with L-DOPA+carbidopa. In addition, EGCG also reduced glutamate-induced oxidative cytotoxicity in cultured HT22 mouse hippocampal neuronal cells through inactivation of the nuclear factor kappaB-signaling pathway. Under in vivo conditions, administration of EGCG exerted a strong protective effect against kainic acid-induced oxidative neuronal death in the hippocampus of rats. CONCLUSIONS/SIGNIFICANCE These observations suggest that oral administration of EGCG may have significant beneficial effects in Parkinson's patients treated with L-DOPA and carbidopa by exerting a modest inhibition of L-DOPA methylation plus a strong neuroprotection against oxidative damage and degeneration.
Collapse
Affiliation(s)
- Ki Sung Kang
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Yujing Wen
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Noriko Yamabe
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Masayuki Fukui
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Stephanie C. Bishop
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Bao Ting Zhu
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|