1
|
Wen H, Tang J, Cui Y, Hou M, Zhou J. m6A modification-mediated BATF2 suppresses metastasis and angiogenesis of tongue squamous cell carcinoma through inhibiting VEGFA. Cell Cycle 2023; 22:100-116. [PMID: 35949109 PMCID: PMC9769451 DOI: 10.1080/15384101.2022.2109897] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/08/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
The aim is to explore the underlying mechanism of basic leucine zipper ATF-like transcription factor 2 (BATF2) in tongue squamous cell carcinoma (TSCC). The expression of BATF2 in TSCC tissues and corresponding adjacent normal TSCC tissues, human TSCC cell lines (SCC-15 and CAL-27) and human normal tongue epithelial cells NTEC was detected. Then, SCC-15 cells with stable BATF2 knockdown and CAL-27 cells with BATF2 overexpression were established to investigate the functional effect of BATF2 on TSCC. Thereafter, the effect of BATF2 on TSCC angiogenesis and BATF2 m6A methylation was also examined. BATF2 was significantly downregulated in TSCC tissues and cell lines, and BATF2 overexpression could suppress growth, metastasis and angiogenesis of TSCC. Mechanistically, vascular endothelial growth factor A (VEGFA) was identified as a downstream gene of BATF2, and it was confirmed that BATF2 suppressed growth, metastasis and angiogenesis of TSCC via inhibiting VEGFA. In addition, the N6-methyladenosine (m6A) modification of BATF2 mRNA mediated by METTL14 suppressed its expression in TSCC. METTL14/BATF2 axis could serve as a novel promising therapeutic candidate against angiogenesis for TSCC.
Collapse
Affiliation(s)
- Haojie Wen
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Jinyong Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Yi Cui
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Minhua Hou
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Juan Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| |
Collapse
|
2
|
Angiogenesis Driven by the CEBPD–hsa-miR-429–VEGFA Signaling Axis Promotes Urothelial Carcinoma Progression. Cells 2022; 11:cells11040638. [PMID: 35203290 PMCID: PMC8870255 DOI: 10.3390/cells11040638] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Background and Purpose: This research aimed to excavate the alternative mechanism of CEBPD on tumor growth and explore the biological significance of the CEBPD/hsa-miR-429/VEGFA axis on angiogenesis in urothelial carcinoma (UC). Methods: Quantitative RT-PCR, immunoblotting assay and tube formation examined the effect of hsa-miR-429 mimic or/and inhibitor on VEGFA expression and angiogenesis in CEBPD-overexpressing UC-derived cells. The association between CEBPD, hsa-miR-429, VEGFA and microvascular density (MVD) and clinical outcome were evaluated in 296 patients with UBUC and 340 patients with UTUC, respectively. Results: The increase in the transcript and protein of VEGFA as well as HUVECs tube formation was diminished upon the treatment of hsa-miR-429 mimic in CEBPD-overexpressing BFTC909 and TCCSUP. Nevertheless, the inhibited regulation of hsa-miR-429 mimic on the expression of VEGFA and ability of HUVECs tube formation was rescued by the combined incubation with hsa-miR-429 inhibitor in these two UC-derived cell lines. Furthermore, the clinical correlations showed that the higher level of VEGFA or MVD has a positive correlation with the expression of CEBPD and a negative relation to hsa-miR-429 and leads to tumor aggressiveness with worse disease-specific, metastasis-free survival in UBUC and UTUC cohorts. Conclusions: We decipher the oncogenic mechanism of CEBPD on angiogenesis through the hsa-miR-429 inhibition to stabilize the expression of VEGFA in UC. The novel research unveiled the modulation of the CEBPD/hsa-miR-429/VEGFA axis on the progression of UC and could be accessible to theranostic biomarkers.
Collapse
|
3
|
Li H, Zhang X, Lin X, Zhuang S, Wu Y, Liu Z, Rong J, Zhao J. CaCO 3 nanoparticles pH-sensitively induce blood coagulation as a potential strategy for starving tumor therapy. J Mater Chem B 2020; 8:1223-1234. [PMID: 31950968 DOI: 10.1039/c9tb02684c] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Based on the concept of starving tumor therapy, in this study we put forward a new idea that the pH-sensitive Ca2+ delivery of calcium carbonate nanoparticles (CaCO3 NPs) induced blood coagulation of tumor vessels, and first explored the effect of CaCO3 NPs on the in vitro and in vivo blood coagulation by acid stimulus. CaCO3 NPs with a size of about 100 nm and a porous structure of several nanometers were synthesized in an emulsion system, which showed a high loading capacity (49%) of doxorubicin hydrochloride (DOX) with an encapsulation efficiency of 98% and a pH-sensitive drug delivery. The hemolysis test showed that CaCO3 NPs were blood compatible. The in vitro Ca2+ delivery and blood clotting tests indicated that CaCO3 NPs pH-sensitively released Ca2+, and caused rapid blood coagulation at pH 5.0 but no thrombus at pH 7.4. Confocal laser scanning microscopy showed that after uptake by MCF-7 or MDA-MB-231 breast cancer cells, CaCO3 NPs mainly distributed in endosomes/lysosomes within the initial 2 h and then decomposed by acid stimulus, leading to the intracellular delivery of Ca2+ that subsequently migrated outside the cells. CaCO3 NPs were nontoxic to NIH3T3 mouse fibroblasts, but highly toxic to both MCF-7 and MDA-MB-231 cells after loading DOX. After topical administration into the breast tumors of mice, CaCO3 NPs evoked significant thrombosis and hemorrhage of tumor vasculature by hematoxylin-eosin and Masson's trichrome staining. These results indicated that CaCO3 NPs could induce blood coagulation via acid stimulus, showing potential applications in blocking tumor vessels for starving tumor therapy.
Collapse
Affiliation(s)
- Huiru Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| | - Xinyue Zhang
- Guangzhoujinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Xilin Lin
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| | - Shuqiang Zhuang
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| | - Yan Wu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| | - Zhong Liu
- Guangzhoujinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Jianhua Rong
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| | - Jianhao Zhao
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Lun W, Wu X, Deng Q, Zhi F. MiR-218 regulates epithelial-mesenchymal transition and angiogenesis in colorectal cancer via targeting CTGF. Cancer Cell Int 2018; 18:83. [PMID: 29977158 PMCID: PMC5994014 DOI: 10.1186/s12935-018-0575-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 05/26/2018] [Indexed: 12/24/2022] Open
Abstract
Background Endothelial-to-mesenchymal transition (EMT) and angiogenesis play important roles in colorectal cancer (CRC) development. Connective tissue growth factor (CTGF) has been reported to promote several kinds of cancer progression and miR-218 has been identified as a tumor suppressor miRNA. However, little is known about the function of miR-218 in CRC. Here we investigated the effects of miR-218 on EMT and angiogenesis process in CRC cells. As well, the relation between miR-218 and CTGF was identified. The mechanism of miR-218’s function was illustrated. Methods CRC cell lines were transfected with miR-218 mimics. Proliferation, migration and angiogenesis were identified by MTT assay, Transwell assay, colony formation assay and tube formation assay. Protein and mRNA expression levels of associated genes were measured by Western blotting and RT-PCR. Dual luciferase assay was used to determine the relation of miR-218 and CTGF. Results miR-218 was down-regulated in CRC cell lines and over expression of miR-218 could significantly inhibit EMT and angiogenesis. CTGF was a direct target of miR-218. Up regulation of CTGF level after miR-218 transfection could sufficiently rescue the suppression effects on EMT and angiogenesis. Conclusion miR-218 directly targets CTGF and inhibits its expression, leading to suppression on EMT and angiogenesis of CRC cells. miR-218 might be used as potential therapeutic strategy for CRC treatment.
Collapse
Affiliation(s)
- Weijian Lun
- Guangdong Provincial Key Laboratory of Gastroenterology, Inst. of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Xiongjian Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Inst. of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Qiliang Deng
- Guangdong Provincial Key Laboratory of Gastroenterology, Inst. of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Inst. of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|
5
|
Zhang X, Dong J, He Y, Zhao M, Liu Z, Wang N, Jiang M, Zhang Z, Liu G, Liu H, Nie Y, Fan D, Tie J. miR-218 inhibited tumor angiogenesis by targeting ROBO1 in gastric cancer. Gene 2017; 615:42-49. [PMID: 28323002 DOI: 10.1016/j.gene.2017.03.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/22/2017] [Accepted: 03/16/2017] [Indexed: 12/20/2022]
Abstract
Aberrant expression of miRNAs is involved in several carcinogenic processes, including tumor growth, metastasis and angiogenesis. The aim of this study was to determine the role of miR-218 in gastric cancer angiogenesis. In situ hybridization was performed on a set of tissue microarray samples to assess the difference in miR-218 expression in vessels between tumor tissues and normal gastric mucosa. In vitro, ectopic expression of miR-218 disturbed the tubular structure and inhibited the migration of endothelial cells. Motility and tube formation were rescued when miR-218 was downregulated. Moreover, miR-218 suppressed endothelial cell sprouting in a fibrin bead sprouting assay. Subsequently, we identified ROBO1 as a target of miR-218 in endothelial cells and determined it was responsible for the effect of miR-218 on tumor angiogenesis. In vivo, local injection of mature miR-218 in xenografted tumors disrupted the vessel plexus and thus inhibited tumor growth. Taken together, our study demonstrated an anti-angiogenic role of miR-218 in gastric cancer and indicated that delivery of miR-218 may be a potential therapeutic strategy to inhibit tumor angiogenesis.
Collapse
Affiliation(s)
- Xiangyuan Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jiaqiang Dong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yan He
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ming Zhao
- Yan'an University, Yan'an 716000, China
| | - Zhen Liu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Na Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Mingzuo Jiang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhe Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Gang Liu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Haiming Liu
- College of Computer Science and Technology, Jilin University, Changchun 120012, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Jun Tie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
6
|
Li ZJ, Cho CH. Peptides as targeting probes against tumor vasculature for diagnosis and drug delivery. J Transl Med 2012; 10 Suppl 1:S1. [PMID: 23046982 PMCID: PMC3445867 DOI: 10.1186/1479-5876-10-s1-s1] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Tumor vasculature expresses a distinct set of molecule signatures on the endothelial cell surface different from the resting blood vessels of other organs and tissues in the body. This makes them an attractive target for cancer therapy and molecular imaging. The current technology using the in vivo phage display biopanning allows us to quickly isolate and identify peptides potentially homing to various tumor blood vessels. Tumor-homing peptides in conjugation with chemotherapeutic drugs or imaging contrast have been extensively tested in various preclinical and clinical studies. These tumor-homing peptides have valuable potential as targeting probes for tumor molecular imaging and drug delivery. In this review, we summarize the recent advances about the applications of tumor-homing peptides selected by in vivo phage display library screening against tumor vasculature. We also introduce the characteristics of the latest discovered tumor-penetrating peptides in their potential clinical applications.
Collapse
Affiliation(s)
- Zhi Jie Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR.
| | | |
Collapse
|
7
|
Herringson TP, Altin JG. Effective tumor targeting and enhanced anti-tumor effect of liposomes engrafted with peptides specific for tumor lymphatics and vasculature. Int J Pharm 2011; 411:206-14. [PMID: 21443937 DOI: 10.1016/j.ijpharm.2011.03.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/10/2011] [Accepted: 03/21/2011] [Indexed: 10/18/2022]
Abstract
The use of liposomes to target drugs to tumors represents an attractive therapeutic strategy, especially when used with convenient targeting moieties such as peptides. Here we explored several peptides for their ability to target liposomes to tumors. The metal chelator lipid 3(nitrilotriacetic acid)-ditetradecylamine (NTA(3)-DTDA) was incorporated into liposomes to enable the engraftment of His-tagged peptides containing targeting motifs specific for tumor vasculature markers VEGFR-1 (p39-Flt-1) and neuropilin-1 (p24-NRP-1), or a motif known to accumulate in hypoxic areas of tumors (p47-LyP-1). Peptide-engrafted liposomes were examined for their biodistribution and anti-tumor effects after i.v. administration. Our results show that radiolabelled liposomes engrafted with either p24-NRP-1 or p47-LyP-1 and then injected into mice bearing subcutaneous B16-F1 tumors, show increased accumulation in the tumor. For p24-NRP-1-liposomes, tumor targeting was significantly increased when the stabilizing lipid phosphatidylethanolamine polyethylene glycol-750 (PE-PEG(750)) was used instead of PE-PEG(2000) in the liposome lipid mixture. Importantly, compared to the controls, p24-NRP-1 liposomes containing 10 mol% PE-PEG(750) and loaded with doxorubicin significantly inhibited the rate of tumor growth in the tumor-bearing mice. Our findings demonstrate that the use of drug-containing liposomes incorporating NTA(3)-DTDA and engrafted with NRP-1 targeting peptide is a convenient strategy to enhance the therapeutic effect of non-targeted doxorubicin.
Collapse
Affiliation(s)
- Thomas P Herringson
- Division of Biomedical Science and Biochemistry, Research School of Biology, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT 0200, Australia
| | | |
Collapse
|
8
|
Yang X, Zhu H, Hu Z. Dendritic cells transduced with TEM8 recombinant adenovirus prevents hepatocellular carcinoma angiogenesis and inhibits cells growth. Vaccine 2010; 28:7130-5. [PMID: 20650339 DOI: 10.1016/j.vaccine.2010.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/03/2010] [Accepted: 07/06/2010] [Indexed: 12/23/2022]
Abstract
Recent evidence suggested that angiogenesis played a pivotal role in the development of hepatocellular carcinoma cells (HCC), thus the therapy strategy targeting antiangiogenesis has been regarded as promising method for HCC therapy. Tumor endothelial marker 8 (TEM8) is a recently described protein that is preferentially expressed within tumor endothelium. However, the antiangiogenesis therapy of HCC based on TEM8 has not been reported. In this study, the recombinant adenovirus encoding TEM8 was constructed, and the DCs were transduced with the Ad-TEM8. In addition, the modified DCs were transferred into the BALB/c mice to determine whether DCs transduced with TEM8 could elicit a potent antitumor immunogenic response in vivo. The results demonstrated that DCs transduced with Ad-TEM8 induced specific CTLs effectively, which could secrete IFN-γ and lyse HCC. Furthermore, the modified DCs could effectively protect BALB/c mice from lethal challenges against HCC, reduce tumor growth and increase the mice life span by decreasing tumor vasculature density. These data suggest that the Ad-TEM8 modified DCs may induce antitumor immunity by disrupting tumor vasculature and may thus be used as an efficient therapy strategy to influence tumor development in clinical applications.
Collapse
Affiliation(s)
- Xuemei Yang
- Respiratory Department of Daping Hospital, Third Military, Medical University, Chongqing 400042, China
| | | | | |
Collapse
|