1
|
Liu X, Falconer RA. Liposomal Nanocarriers to Enhance Skin Delivery of Chemotherapeutics in Cancer Therapy. Bioengineering (Basel) 2025; 12:133. [PMID: 40001653 PMCID: PMC11851846 DOI: 10.3390/bioengineering12020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Cancer chemotherapeutics administered to cancer patients via traditional oral or parenteral routes often encounter poor bioavailability and severe systemic side effects. Skin delivery is a promising alternative route with reduced side effects and improved therapeutic efficacy and has gained significant attention in recent years. With conventional or deformable liposomal nanocarriers as a skin permeation strategy, cancer chemotherapeutics can be delivered via skin route, offering an option for more efficient therapy. This review summarizes the recent advances in liposome nanocarrier efficacy to enhance the skin delivery of chemotherapeutics with a wide range of physicochemical properties (log Poct from -0.89 to 5.93, MW from 130 to 1415) in targeting local skin cancer, breast cancer, and tumor metastasis and delivering the drug to systemic circulation to treat distal cancers. The potential mechanisms of skin permeation enhancement by different type of liposomes are also discussed in this review.
Collapse
Affiliation(s)
- Xiangli Liu
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK;
| | | |
Collapse
|
2
|
Bhavsar J, Kasture K, Salvi BV, Shende P. Strategies for transportation of peptides across the skin for treatment of multiple diseases. Ther Deliv 2025; 16:63-86. [PMID: 39411995 PMCID: PMC11703487 DOI: 10.1080/20415990.2024.2411943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/30/2024] [Indexed: 01/02/2025] Open
Abstract
An established view in genetic engineering dictates an increase in the discovery of therapeutic peptides to enable the treatment of multiple diseases. The use of hypodermic needle for delivery of proteins and peptides occurs due to the hydrophilic nature, sensitivity toward proteolytic enzymes and high molecular weight. The non-invasive nature of the transdermal delivery technique offers multiple advantages over the invasive route to release drugs directly into the systemic circulation to enhance bioavailability, better patient compliance, reduced toxicity and local irritability. The transdermal route seems highly desirable from the pharmaco-therapeutic and patient compliance point of view, however, the lipophilic barrier of skin restricts the application. The use of several techniques like electrical methods (iontophoresis, sonophoresis etc.), chemical penetration enhancers (e.g. protease inhibitors, penetration enhancers, etc.) and nanocarriers (dendrimers, lipid nanocapsules, etc.) are utilized to improve the passage of drug molecules across the biomembranes. Additionally, such clinical interventions facilitate the physicochemical characteristics of peptides, to enable effective preservation, conveyance and release of therapeutic agents. Moreover, strategies ensure the attainment of the intended targets and enhance treatment outcomes for multiple diseases. This review article focuses on the techniques of peptide transportation across the skin to advance the delivery approaches and therapeutic efficiency.
Collapse
Affiliation(s)
- Janhavi Bhavsar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Kaustubh Kasture
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Bhagyashree V Salvi
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
3
|
Chen L, Cui L, Ran J, Liu Z, Zhu X. Transdermal delivery of botulinum toxin-A through phosphatidylcholine/cholesterol nanoliposomes for treatment of post-acne scarring. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:41. [PMID: 39073502 PMCID: PMC11286643 DOI: 10.1007/s10856-024-06810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024]
Abstract
As an acne sequela, post-acne scarring (PSA) has huge negative impact on sufferers' quality of life because of aesthetical embarrassment. Transdermal delivery of botulinum toxin-A (BTXA) is a promising strategy for PAS treatment, but currently reported approaches are far from satisfactory. In this work, phosphatidylcholine/cholesterol (PC/Chol) nanoliposomes were utilized for encapsulation and transdermal delivery of BTXA. The composition, structure, morphology, size, size distribution, etc. of as-prepared BTXA@liposome nanoparticles were investigated in detail. Simulated transdermal delivery assay indicated that the diffusion depth of the BXTA@liposome nanoparticles was nearly 8 times that of pure BTXA and reached 380 μm. 12 facial PSA patients were recruited to evaluate the curative effect of the BTXA@liposome nanoparticles on PSA. Through ECCA (échelle d'évaluation clinique des cicatrices d'acné) scoring and self-evaluation of patients, the resultant data indicated that compared to hyaluronic acid (HA) hydrogel treatment the BTXA@liposome/HA hydrogel treatment could better relieve PSA to some extent but didn't show significant advantage. Further work is needed to verify the feasibility and curative effect of this method in PSA treatment in the future.
Collapse
Affiliation(s)
- Lannan Chen
- Department of Medical Cosmetology, The First Clinical Medical College of China Three Gorges University, Yichang Central People's Hospital, Institute of Medical Cosmetology, China Three Gorges University, Yichang, China
| | - Lei Cui
- Department of Medical Cosmetology, The First Clinical Medical College of China Three Gorges University, Yichang Central People's Hospital, Institute of Medical Cosmetology, China Three Gorges University, Yichang, China.
| | - Jiabing Ran
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang, China.
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, China.
| | - Zhengrui Liu
- Department of Medical Cosmetology, The First Clinical Medical College of China Three Gorges University, Yichang Central People's Hospital, Institute of Medical Cosmetology, China Three Gorges University, Yichang, China
| | - Xiongbin Zhu
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, China
| |
Collapse
|
4
|
Nguyen-Thi PT, Vo TK, Le HT, Nguyen NTT, Nguyen TT, Van Vo G. Translation from Preclinical Research to Clinical Trials: Transdermal Drug Delivery for Neurodegenerative and Mental Disorders. Pharm Res 2024; 41:1045-1092. [PMID: 38862719 DOI: 10.1007/s11095-024-03718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/19/2024] [Indexed: 06/13/2024]
Abstract
Neurodegenerative diseases (NDs), particularly dementia, provide significant problems to worldwide healthcare systems. The development of therapeutic materials for various diseases has a severe challenge in the form of the blood-brain barrier (BBB). Transdermal treatment has recently garnered widespread favor as an alternative method of delivering active chemicals to the brain. This approach has several advantages, including low invasiveness, self-administration, avoidance of first-pass metabolism, preservation of steady plasma concentrations, regulated release, safety, efficacy, and better patient compliance. Topics include the transdermal method for therapeutic NDs, their classification, and the mechanisms that allow the medicine to enter the bloodstream through the skin. The paper also discusses the obstacles and potential outcomes of transdermal therapy, emphasizing the benefits and drawbacks of different approaches.
Collapse
Affiliation(s)
| | - Tuong Kha Vo
- Department of Sports Medicine, University of Medicine and Pharmacy (VNU-UMP), Vietnam National University Hanoi, Hanoi, 100000, Vietnam
| | - Huong Thuy Le
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam
| | - Nhat Thang Thi Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420, Vietnam.
| | - Thuy Trang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420, Vietnam
| | - Giau Van Vo
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
5
|
Mehrdadi S. Lipid-Based Nanoparticles as Oral Drug Delivery Systems: Overcoming Poor Gastrointestinal Absorption and Enhancing Bioavailability of Peptide and Protein Therapeutics. Adv Pharm Bull 2024; 14:48-66. [PMID: 38585451 PMCID: PMC10997935 DOI: 10.34172/apb.2024.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 08/09/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
Delivery and formulation of oral peptide and protein therapeutics have always been a challenge for the pharmaceutical industry. The oral bioavailability of peptide and protein therapeutics mainly relies on their gastrointestinal solubility and permeability which are affected by their poor membrane penetration, high molecular weight and proteolytic (chemical and enzymatic) degradation resulting in limited delivery and therapeutic efficacy. The present review article highlights the challenges and limitations of oral delivery of peptide and protein therapeutics focusing on the application, potential and importance of solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as lipid-based drug delivery systems (LBDDSs) and their advantages and drawbacks. LBDDSs, due to their lipid-based matrix can encapsulate both lipophilic and hydrophilic drugs, and by reducing the first-pass effect and avoiding proteolytic degradation offer improved drug stability, dissolution rate, absorption, bioavailability and controlled drug release. Furthermore, their small size, high surface area and surface modification increase their mucosal adhesion, tissue-targeted distribution, physiological function and half-life. Properties such as simple preparation, high-scale manufacturing, biodegradability, biocompatibility, prolonged half-life, lower toxicity, lower adverse effects, lipid-based structure, higher drug encapsulation rate and various drug release profile compared to other similar carrier systems makes LBDDSs a promising drug delivery system (DDS). Nevertheless, undesired physicochemical features of peptide and protein drug development and discovery such as plasma stability, membrane permeability and circulation half-life remain a serious challenge which should be addressed in future.
Collapse
Affiliation(s)
- Soheil Mehrdadi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| |
Collapse
|
6
|
Demartis S, Rassu G, Mazzarello V, Larrañeta E, Hutton A, Donnelly RF, Dalpiaz A, Roldo M, Guillot AJ, Melero A, Giunchedi P, Gavini E. Delivering hydrosoluble compounds through the skin: what are the chances? Int J Pharm 2023; 646:123457. [PMID: 37788729 DOI: 10.1016/j.ijpharm.2023.123457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Affiliation(s)
- S Demartis
- Department of Chemical, Mathematical, Natural and Physical Sciences, University of Sassari, Sassari 07100, Italy
| | - G Rassu
- Department of Medicine and Surgery, University of Sassari, Sassari 07100, Italy
| | - V Mazzarello
- Department of Medicine and Surgery, University of Sassari, Sassari 07100, Italy
| | - E Larrañeta
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, UK
| | - A Hutton
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, UK
| | - R F Donnelly
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, UK
| | - A Dalpiaz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, I-44121 Ferrara, Italy
| | - M Roldo
- School of Pharmacy and Biomedical Sciences, St Michael's Building, White Swan Road, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - A J Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - A Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - P Giunchedi
- Department of Medicine and Surgery, University of Sassari, Sassari 07100, Italy
| | - E Gavini
- Department of Medicine and Surgery, University of Sassari, Sassari 07100, Italy.
| |
Collapse
|
7
|
He J, Zhang Y, Yu X, Xu C. Wearable patches for transdermal drug delivery. Acta Pharm Sin B 2023; 13:2298-2309. [PMID: 37425057 PMCID: PMC10326306 DOI: 10.1016/j.apsb.2023.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 07/11/2023] Open
Abstract
Transdermal drug delivery systems (TDDs) avoid gastrointestinal degradation and hepatic first-pass metabolism, providing good drug bioavailability and patient compliance. One emerging type of TDDs is the wearable patch worn on the skin surface to deliver medication through the skin. They can generally be grouped into passive and active types, depending on the properties of materials, design principles and integrated devices. This review describes the latest advancement in the development of wearable patches, focusing on the integration of stimulus-responsive materials and electronics. This development is deemed to provide a dosage, temporal, and spatial control of therapeutics delivery.
Collapse
Affiliation(s)
- Jiahui He
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Yuyue Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong 999077, China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
8
|
Alkandari AF, Alawadhi AA, Alawadhi FA, Mousa A, Madhyastha S. Erythematous Linear Lesion on the Course of Superficial Fibular Nerve After the Topical Application of Black Henna: A Case Report. Cureus 2023; 15:e36697. [PMID: 37113365 PMCID: PMC10128101 DOI: 10.7759/cureus.36697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2023] [Indexed: 03/29/2023] Open
Abstract
Henna is commonly used in body arts, where it produces orange-brown color. It is often mixed with chemicals such as para-phenylenediamine (PPD) to fasten the dyeing process and produce a black color. However, PPD has many allergic and toxic effects. We present a case of henna-induced cutaneous neuritis, which is not reported before. A 27-year-old female presented to our hospital, complaining of pain in her left great toe after applying black henna. Upon examination, the proximal nail fold was inflamed, and an erythematous non-palpable tender lesion was noticed on the dorsum of the foot. The lesion had an inverted-Y shape that was confined to the course of the superficial fibular nerve. Cutaneous nerve inflammation was favored after excluding all the anatomical structures in the region. Black henna should be avoided since it contains PPD, which can be absorbed through the skin and affect the underlying cutaneous nerves.
Collapse
|
9
|
Tansathien K, Ngawhirunpat T, Rangsimawong W, Patrojanasophon P, Opanasopit P, Nuntharatanapong N. In Vitro Biological Activity and In Vivo Human Study of Porcine-Placenta-Extract-Loaded Nanovesicle Formulations for Skin and Hair Rejuvenation. Pharmaceutics 2022; 14:pharmaceutics14091846. [PMID: 36145597 PMCID: PMC9501513 DOI: 10.3390/pharmaceutics14091846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine placenta extract (PPE) contains many water-soluble macromolecular compounds, such as proteins and growth factors, which have limited transportation through the skin. This study aimed to assess the effect of porcine-placenta-extract (PPE)-loaded nano-transdermal systems for skin repair and hair growth promotion. The potentials of the nanoformulation for cytotoxicity, cell proliferation, intracellular reactive oxygen species (ROS) reduction, lipoxygenase inhibition, intracellular inflammatory cytokine reduction, and cell aggregation were evaluated. PPE-entrapped niosome nanovesicles were produced by thin-film hydration and probe-sonication methods, followed by incorporation in a skin serum formulation. The physicochemical properties of the formulation were examined, and the efficacy of the serum formulation was elucidated in humans. The results showed that PPE had no toxicity and was able to induce cell growth and cell aggregation. In addition, PPE significantly decreased intracellular ROS, inhibited lipoxygenase activity, and reduced the production of intracellular tumor necrosis factor-α. In the in vivo human study, the PPE nanovesicles-loaded serum could improve skin properties by increasing skin hydration. Moreover, it was capable of promoting hair growth by increasing hair elongation and melanin index after application for one month. Consequently, the PPE nanovesicles-loaded serum was effective for skin anti-aging and hair rejuvenation.
Collapse
Affiliation(s)
- Kritsanaporn Tansathien
- Pharmaceutical Development of Green Innovation Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovation Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Worranan Rangsimawong
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovation Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovation Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Correspondence: (P.O.); (N.N.); Tel.: +66-(034)-255800 (P.O. & N.N.); Fax: +66-(034)-255801 (P.O. & N.N.)
| | - Nopparat Nuntharatanapong
- Pharmaceutical Development of Green Innovation Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Correspondence: (P.O.); (N.N.); Tel.: +66-(034)-255800 (P.O. & N.N.); Fax: +66-(034)-255801 (P.O. & N.N.)
| |
Collapse
|
10
|
Ali FR, Shoaib MH, Ali SA, Yousuf RI, Siddiqui F, Raja R, Jamal HS, Saleem MT, Ahmed K, Imtiaz MS, Ahmad M, Sarfaraz S, Ahmed FR. A nanoemulsion based transdermal delivery of insulin: Formulation development, optimization, in-vitro permeation across Strat-M® membrane and its pharmacokinetic/pharmacodynamic evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Chen J, Bian J, Hantash BM, Albakr L, Hibbs DE, Xiang X, Xie P, Wu C, Kang L. Enhanced skin retention and permeation of a novel peptide via structural modification, chemical enhancement, and microneedles. Int J Pharm 2021; 606:120868. [PMID: 34242628 DOI: 10.1016/j.ijpharm.2021.120868] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/14/2021] [Accepted: 07/03/2021] [Indexed: 01/27/2023]
Abstract
Hyperpigmentation is a common skin condition with serious psychosocial consequences. Decapeptide-12, a novel peptide, has been found to be safer than hydroquinone in reducing melanin content, with efficacy up to more than 50% upon 16 weeks of twice-daily treatment. However, the peptide suffers from limited transcutaneous penetration due to its hydrophilicity and high molecular weight. Therefore, decapeptide-12 was modified by adding a palmitate chain in an attempt to overcome this limitation. Molecular docking results showed that the two peptides exhibited similar biological activity towards tyrosinase. We also tested the effect of chemical penetration enhancers and microneedles to deliver the two peptides into and through skin, using an in vitro human skin permeation method. It was shown that the palm-peptide achieved the best skin retention owing to the increased lipophilicity. In addition, skin permeation of the palm-peptides was enhanced by the chemical skin penetration enhancers, namely, oleic acid and menthol. Skin permeation of the native peptide was enhanced by the microneedle patch but not the chemical skin penetration enhancers. Cutaneous absorption of the palm-peptides was estimated to have achieved its therapeutic concentration within skin. The combinatory approach of using molecular modification, chemical penetration enhancement, and microneedle patch proves to be useful to enhanceskin permeation of the peptides.
Collapse
Affiliation(s)
- Jungen Chen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, JS 210009, China
| | - Junxing Bian
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Basil M Hantash
- Escape Therapeutics Inc., 3800 Geer Road, Suite 200, Turlock, CA 95382, USA
| | - Lamyaa Albakr
- Department of Pharmaceutics, King Saud University, 11454 Riyadh, Saudi Arabia
| | - David E Hibbs
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Xiaoqiang Xiang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Peng Xie
- School of Pharmacy, Fudan University, Shanghai 201203, China; China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Chunyong Wu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, JS 210009, China.
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
12
|
Zhi D, Yang T, Zhang T, Yang M, Zhang S, Donnelly RF. Microneedles for gene and drug delivery in skin cancer therapy. J Control Release 2021; 335:158-177. [DOI: 10.1016/j.jconrel.2021.05.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/14/2022]
|
13
|
Multifunctional Tyrosinase Inhibitor Peptides with Copper Chelating, UV-Absorption and Antioxidant Activities: Kinetic and Docking Studies. Foods 2021; 10:foods10030675. [PMID: 33810046 PMCID: PMC8004729 DOI: 10.3390/foods10030675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022] Open
Abstract
Nature-derived tyrosinase inhibitors are of great industrial interest. Three monophenolase inhibitor peptides (MIPs) and three diphenolase inhibitor peptides (DIPs) from a previous study were investigated for their in vitro tyrosinase inhibitory effects, mode of inhibition, copper-chelating activity, sun protection factor (SPF) and antioxidant activities. DIP1 was found to be the most potent tyrosinase inhibitor (IC50 = 3.04 ± 0.39 mM), which could be due to the binding interactions between its aromatic amino acid residues (Y2 and D7) with tyrosinase hotspots (H85, V248, H258, H263, F264, R268, V283 and E322) and its ability to chelate copper ion within the substrate-binding pocket. The conjugated planar rings of tyrosine and tryptophan may interact with histidine within the active site to provide stability upon enzyme-peptide binding. This postulation was later confirmed as the Lineweaver-Burk analysis had identified DIP1 as a competitive inhibitor and DIP1 also showed 36.27 ± 1.17% of copper chelating activity. In addition, DIP1 provided the highest SPF value (11.9 ± 0.04) as well as ferric reducing antioxidant power (FRAP) (5.09 ± 0.13 mM FeSO4), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) (11.34 ± 0.90%) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) (29.14 ± 1.36%) free radical scavenging activities compared to other peptides. These results demonstrated that DIP1 could be a multifunctional anti-tyrosinase agent with pharmaceutical and cosmeceutical applications.
Collapse
|
14
|
Dabholkar N, Gorantla S, Waghule T, Rapalli VK, Kothuru A, Goel S, Singhvi G. Biodegradable microneedles fabricated with carbohydrates and proteins: Revolutionary approach for transdermal drug delivery. Int J Biol Macromol 2020; 170:602-621. [PMID: 33387545 DOI: 10.1016/j.ijbiomac.2020.12.177] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
There has been a surge in the use of transdermal drug delivery systems (TDDS) for the past few years. The market of TDDS is expected to reach USD 7.1 billion by 2023, from USD 5.7 billion in 2018, at a CAGR of 4.5%. Microneedles (MNs) are a novel class of TDDS with advantages of reduced pain, low infection risk, ease of application, controlled release of therapeutic agents, and enhanced bioavailability. Biodegradable MNs fabricated from natural polymers have become the center of attention among formulation scientists because of their recognized biodegradability, biocompatibility, ease of fabrication, and sustainable character. In this review, we summarize the various polysaccharides and polypeptide based biomaterials that are used to fabricate biodegradable MNs. Particular emphasis is given to cellulose and its derivatives, starch, and complex carbohydrate polymers such as alginates, chitosan, chondroitin sulfate, xanthan gum, pullulan, and hyaluronic acid. Additionally, novel protein-based polymers such as zein, collagen, gelatin, fish scale and silk fibroin (polyamino acid) biopolymers application in transdermal drug delivery have also been discussed. The current review will provide a unique perspective to the readers on the developments of biodegradable MNs composed of carbohydrates and protein polymers with their clinical applications and patent status.
Collapse
Affiliation(s)
- Neha Dabholkar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| | - Srividya Gorantla
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| | - Tejashree Waghule
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| | - Vamshi Krishna Rapalli
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| | - Avinash Kothuru
- Department of Electrical and Electronics Engineering, Principal Investigator: MEMS, Microfluidics and Nanoelectronics Lab, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Hyderabad, India
| | - Sanket Goel
- Department of Electrical and Electronics Engineering, Principal Investigator: MEMS, Microfluidics and Nanoelectronics Lab, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Hyderabad, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India.
| |
Collapse
|
15
|
Zeb A, Rana I, Choi HI, Lee CH, Baek SW, Lim CW, Khan N, Arif ST, Sahar NU, Alvi AM, Shah FA, Din FU, Bae ON, Park JS, Kim JK. Potential and Applications of Nanocarriers for Efficient Delivery of Biopharmaceuticals. Pharmaceutics 2020; 12:E1184. [PMID: 33291312 PMCID: PMC7762162 DOI: 10.3390/pharmaceutics12121184] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
During the past two decades, the clinical use of biopharmaceutical products has markedly increased because of their obvious advantages over conventional small-molecule drug products. These advantages include better specificity, potency, targeting abilities, and reduced side effects. Despite the substantial clinical and commercial success, the macromolecular structure and intrinsic instability of biopharmaceuticals make their formulation and administration challenging and render parenteral delivery as the only viable option in most cases. The use of nanocarriers for efficient delivery of biopharmaceuticals is essential due to their practical benefits such as protecting from degradation in a hostile physiological environment, enhancing plasma half-life and retention time, facilitating absorption through the epithelium, providing site-specific delivery, and improving access to intracellular targets. In the current review, we highlight the clinical and commercial success of biopharmaceuticals and the overall applications and potential of nanocarriers in biopharmaceuticals delivery. Effective applications of nanocarriers for biopharmaceuticals delivery via invasive and noninvasive routes (oral, pulmonary, nasal, and skin) are presented here. The presented data undoubtedly demonstrate the great potential of combining nanocarriers with biopharmaceuticals to improve healthcare products in the future clinical landscape. In conclusion, nanocarriers are promising delivery tool for the hormones, cytokines, nucleic acids, vaccines, antibodies, enzymes, and gene- and cell-based therapeutics for the treatment of multiple pathological conditions.
Collapse
Affiliation(s)
- Alam Zeb
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Isra Rana
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Ho-Ik Choi
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Cheol-Ho Lee
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Seong-Woong Baek
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Chang-Wan Lim
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Namrah Khan
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Sadia Tabassam Arif
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Najam us Sahar
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Arooj Mohsin Alvi
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Fakhar ud Din
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Ok-Nam Bae
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Jeong-Sook Park
- Institute of Drug Research and Development, College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Jin-Ki Kim
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| |
Collapse
|
16
|
Microneedle Mediated Transdermal Delivery of Protein, Peptide and Antibody Based Therapeutics: Current Status and Future Considerations. Pharm Res 2020; 37:117. [PMID: 32488611 PMCID: PMC7266419 DOI: 10.1007/s11095-020-02844-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/21/2020] [Indexed: 02/08/2023]
Abstract
The success of protein, peptide and antibody based therapies is evident - the biopharmaceuticals market is predicted to reach $388 billion by 2024 [1], and more than half of the current top 20 blockbuster drugs are biopharmaceuticals. However, the intrinsic properties of biopharmaceuticals has restricted the routes available for successful drug delivery. While providing 100% bioavailability, the intravenous route is often associated with pain and needle phobia from a patient perspective, which may translate as a reluctance to receive necessary treatment. Several non-invasive strategies have since emerged to overcome these limitations. One such strategy involves the use of microneedles (MNs), which are able to painlessly penetrate the stratum corneum barrier to dramatically increase transdermal drug delivery of numerous drugs. This review reports the wealth of studies that aim to enhance transdermal delivery of biopharmaceutics using MNs. The true potential of MNs as a drug delivery device for biopharmaceuticals will not only rely on acceptance from prescribers, patients and the regulatory authorities, but the ability to upscale MN manufacture in a cost-effective manner and the long term safety of MN application. Thus, the current barriers to clinical translation of MNs, and how these barriers may be overcome are also discussed.
Collapse
|
17
|
Siemiradzka W, Dolińska B, Ryszka F. Development and Study of Semi-Solid Preparations Containing the Model Substance Corticotropin (ACTH): Convenience Application in Neurodegenerative Diseases. Molecules 2020; 25:molecules25081824. [PMID: 32316183 PMCID: PMC7222002 DOI: 10.3390/molecules25081824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/22/2022] Open
Abstract
Corticotropin (ACTH, previously an adrenocorticotropic hormone) is used in the diagnosis and treatment of pituitary gland disorders, adrenal cortex disorders, and other diseases, including autoimmune polymyositis, systemic lupus erythematosus, rheumatoid arthritis, Crohn’s disease, and ulcerative colitis. So far, the ointment dosage form containing ACTH for use on the skin is unknown. Therefore, it seems appropriate to develop a semi-solid formulation with corticotropin. Emulsion ointments were prepared using an Unguator based on the cream base Lekobaza® containing corticotropin in different concentrations, and then the physical and chemical parameters of the ointment formulations, such as pH, spreadability, rheological properties, and texture analysis, were evaluated. In addition, a USP apparatus 2 with enhancer cells was utilized to study the in vitro drug release characteristics of the selected formulations. All the ointments obtained were characterized by good spreadability and viscosity. An analysis of the ointment texture was performed and the dependence of the tested parameters on the ACTH content in the ointment was demonstrated. Examination of the structure of the ointment showed that a high concentration of ACTH increases the hardness and adhesiveness of the ointment. In turn, it adversely affects the cohesiveness and elasticity of the ointments tested. The results of the release study showed that ACTH is released the fastest from the formulation with the lowest concentration, while the slowest from the ointment with the highest concentration of ACTH.
Collapse
Affiliation(s)
- Wioletta Siemiradzka
- Department of Pharmaceutical Technology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland;
- Correspondence: ; Tel.: +48-322699820; Fax: +48-322699821
| | - Barbara Dolińska
- Department of Pharmaceutical Technology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland;
- “Biochefa” Pharmaceutical Research and Production Plant, 41-200 Sosnowiec, Poland;
| | - Florian Ryszka
- “Biochefa” Pharmaceutical Research and Production Plant, 41-200 Sosnowiec, Poland;
| |
Collapse
|
18
|
Targeted cutaneous delivery of etanercept using Er:YAG fractional laser ablation. Int J Pharm 2020; 580:119234. [DOI: 10.1016/j.ijpharm.2020.119234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/09/2020] [Accepted: 03/14/2020] [Indexed: 01/14/2023]
|
19
|
Yao W, Li D, Zhao Y, Zhan Z, Jin G, Liang H, Yang R. 3D Printed Multi-Functional Hydrogel Microneedles Based on High-Precision Digital Light Processing. MICROMACHINES 2019; 11:E17. [PMID: 31877987 PMCID: PMC7019295 DOI: 10.3390/mi11010017] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/26/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022]
Abstract
Traditional injection and extraction devices often appear painful and cumbersome for patients. In recent years, polymer microneedles (MNs) have become a novel tool in the field of clinical medicine and health. However, the cost of building MNs into any shapes still remains a challenge. In this paper, we proposed hydrogel microneedles fabricated by high-precision digital light processing (H-P DLP) 3D printing system. Benefits from the sharp protuberance and micro-porous of the hydrogel microneedle, the microneedle performed multifunctional tasks such as drug delivery and detection with minimally invasion. Critical parameters for the fabrication process were analyzed, and the mechanical properties of MNs were measured to find a balance between precision and stiffness. Results shows that the stiffness and precision were significantly influenced by exposure time of each layer, and optimized printing parameters provided a balance between precision and stiffness. Bio-compatible MNs based on our H-P DLP system was able to execute drug injection and drug detection in our experiments. This work provided a low-cost and fast method to build MNs with 3D building, qualified the mechanical performance, drug injection, drug detection ability of MNs, and may be helpful for the potential clinical application.
Collapse
Affiliation(s)
- Wei Yao
- Department of Biomedical Engineering, Anhui Medical University and Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, China; (W.Y.); (D.L.)
| | - Didi Li
- Department of Biomedical Engineering, Anhui Medical University and Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, China; (W.Y.); (D.L.)
| | - Yuliang Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China;
| | - Zhikun Zhan
- Key Lab of Industrial Computer Control Engineering of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China;
| | - Guoqing Jin
- Robotics and Microsystems Center, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215021, China;
| | - Haiyi Liang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei 230027, China;
- IAT-Chungu Joint Laboratory for Additive Manufacturing, Anhui Chungu 3D printing Institute of Intelligent Equipment and Industrial Technology, Wuhu 241200, China
| | - Runhuai Yang
- Department of Biomedical Engineering, Anhui Medical University and Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, China; (W.Y.); (D.L.)
| |
Collapse
|
20
|
del Río-Sancho S, Castro-López V, Alonso MJ. Enhancing cutaneous delivery with laser technology: Almost there, but not yet. J Control Release 2019; 315:150-165. [DOI: 10.1016/j.jconrel.2019.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/30/2022]
|
21
|
Fractional laser ablation for the targeted cutaneous delivery of an anti-CD29 monoclonal antibody - OS2966. Sci Rep 2019; 9:1030. [PMID: 30705293 PMCID: PMC6355906 DOI: 10.1038/s41598-018-36966-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
Monoclonal antibodies targeting cytokines are administered parenterally for the systemic treatment of severe psoriasis. However, systemic exposure to the biologic increases the risk of side-effects including immunosuppression, whereas only a small fraction of the active molecules actually reaches the target organ, the skin. This preclinical study examines the feasibility of delivering a humanized anti-CD29 monoclonal antibody (OS2966) topically to skin using minimally-invasive fractional laser ablation. This approach would enable the targeted use of a biologic for the treatment of recalcitrant psoriatic plaques in patients with less widespread disease while minimizing the risk of systemic exposure. First, the effect of a wide range of laser poration conditions on skin permeation and deposition of OS2966 was tested in vitro to determine optimal microporation parameters. Subsequently, confocal laser scanning microscopy was employed to visualize the distribution of fluorescently-labelled OS2966 in skin. The results demonstrated that delivery of OS2966 into and across skin was feasible. Above fluences of 35.1 J/cm2, skin deposition and permeation were statistically superior to passive delivery reaching values up to 3.7 ± 1.2 µg/cm2 at the most aggressive condition. Selective targeting of the skin was also possible since ≥70% of the OS2966 was delivered locally to the skin. Although nanogramme quantities were able to permeate across skin, these amounts were orders of magnitude lower than levels seen following subcutaneous or intravenous injection and would result in minimal systemic exposure in vivo. The diffusion of fluorescently-labelled OS2966 into the skin surrounding the pores was clearly higher than in intact skin and demonstrated the feasibility of delivering the antibody at least as deep as the dermo-epithelial junction, a critical border region where inflammatory cells cross to promote disease progression. These preliminary results confirm that fractional laser ablation can be used for the cutaneous delivery of OS2966 and now preclinical/clinical studies are required to demonstrate therapeutic efficacy.
Collapse
|
22
|
Lee J, Kwon K, Kim M, Min J, Hwang NS, Kim WS. Transdermal iontophoresis patch with reverse electrodialysis. Drug Deliv 2017; 24:701-706. [PMID: 28426265 PMCID: PMC8241008 DOI: 10.1080/10717544.2017.1282555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/11/2017] [Indexed: 11/01/2022] Open
Abstract
Reverse electrodialysis (RED) technology generates energy from the salinity gradient by contacting waters with different salinity. Herein, we develop the disposable skin patch using this eco-friendly energy. The current density, which can be controlled easily without special circuit, is enough to iontophoretic drug delivery. In vitro study, this iontophoretic system enhanced the transdermal delivery of peptide, which is difficult to penetrate the skin barrier by simple diffusion. We design the disposable iontophoretic skin patch using RED system and suggest this patch can be apply on new cosmetic patch or disposable drug patch.
Collapse
Affiliation(s)
- Joon Lee
- Biosensor Laboratories Incoperated, Seoul National University, Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea, and
| | - Kilsung Kwon
- Biosensor Laboratories Incoperated, Seoul National University, Seoul, Republic of Korea
| | - Minyoung Kim
- Biosensor Laboratories Incoperated, Seoul National University, Seoul, Republic of Korea
| | - Joonhong Min
- Department of Dermatology, Sungkyunkwan University School of Medicine, Kangbuk Samsung Hospital, Seoul, Republic of Korea
| | - Nathaniel S. Hwang
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea, and
| | - Won-serk Kim
- Department of Dermatology, Sungkyunkwan University School of Medicine, Kangbuk Samsung Hospital, Seoul, Republic of Korea
| |
Collapse
|
23
|
A Nanoscale Polymeric Penetration Enhancer Based on Polylysine for Topical Delivery of Proteins and Peptides. J Pharm Sci 2016; 105:3585-3593. [DOI: 10.1016/j.xphs.2016.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 07/25/2016] [Accepted: 08/25/2016] [Indexed: 11/22/2022]
|
24
|
Rocco D, Ross J, Murray PE, Caccetta R. Acyl lipidation of a peptide: effects on activity and epidermal permeability in vitro. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2203-9. [PMID: 27468224 PMCID: PMC4944909 DOI: 10.2147/dddt.s104111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Short-chain lipid conjugates can increase permeability of a small peptide across human epidermis; however, the emerging lipoaminoacid (LAA) conjugation technique is costly and can deliver mixed synthetic products of varied biological potential. LAA conjugation using a racemic mixture produces a mixture of D- and L-stereoisomers. Individual enantiomers can be produced at an extra cost. We investigated an affordable technique that produces only one synthetic product: short-chain (C7-C8) acyl lipidation. Acyl lipidation of Ala-Ala-Pro-Val, an inhibitor of human neutrophil elastase (HNE; believed to lead to abnormal tissue destruction and disease development), was investigated as an alternative to LAA conjugation. The current study aimed to assess the effects of acyl lipidation (either at the N-terminal or at the C-terminal) on neutrophil elastase activity in vitro and on transdermal delivery ex vivo. The inhibitory capacity of the acyl conjugates was compared to LAA conjugates (conjugated at the N-terminal) of the same peptide. The L-stereoisomer appears to rapidly degrade, but it represents a significantly (P<0.05) better inhibitor of HNE than the parent peptide (Ala-Ala-Pro-Val). Although the D-stereoisomer appears to permeate human epidermal skin sections in a better fashion than the L-stereoisomer, it is not a significantly better inhibitor of HNE than the parent peptide. Acyl lipidation (with a C7 lipid chain) at either end of the peptide substantially enhances the permeability of the peptide across human skin epidermis as well as significantly (P<0.005) increases its elastase inhibitory potential. Therefore, our current study indicates that acyl lipidation of a peptide is a more economical and effective alternative to LAA conjugation.
Collapse
Affiliation(s)
- Daniel Rocco
- School of Pharmacy; Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - James Ross
- School of Pharmacy; Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | | | - Rima Caccetta
- School of Pharmacy; Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| |
Collapse
|
25
|
Alkilani AZ, McCrudden MTC, Donnelly RF. Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the stratum corneum. Pharmaceutics 2015; 7:438-70. [PMID: 26506371 PMCID: PMC4695828 DOI: 10.3390/pharmaceutics7040438] [Citation(s) in RCA: 570] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/29/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023] Open
Abstract
The skin offers an accessible and convenient site for the administration of medications. To this end, the field of transdermal drug delivery, aimed at developing safe and efficacious means of delivering medications across the skin, has in the past and continues to garner much time and investment with the continuous advancement of new and innovative approaches. This review details the progress and current status of the transdermal drug delivery field and describes numerous pharmaceutical developments which have been employed to overcome limitations associated with skin delivery systems. Advantages and disadvantages of the various approaches are detailed, commercially marketed products are highlighted and particular attention is paid to the emerging field of microneedle technologies.
Collapse
Affiliation(s)
- Ahlam Zaid Alkilani
- School of Pharmacy, 97 Lisburn Road, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
- Faculty of Pharmacy, Zarqa University, Zarqa 132222, Jordan.
| | - Maelíosa T C McCrudden
- School of Pharmacy, 97 Lisburn Road, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Ryan F Donnelly
- School of Pharmacy, 97 Lisburn Road, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
26
|
Aghazadeh-Habashi A, Yang Y, Tang K, Lőbenberg R, Doschak MR. Transdermal drug delivery: feasibility for treatment of superficial bone stress fractures. Drug Deliv Transl Res 2015; 5:540-51. [DOI: 10.1007/s13346-015-0257-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Bak A, Leung D, Barrett SE, Forster S, Minnihan EC, Leithead AW, Cunningham J, Toussaint N, Crocker LS. Physicochemical and formulation developability assessment for therapeutic peptide delivery--a primer. AAPS JOURNAL 2014; 17:144-55. [PMID: 25398427 DOI: 10.1208/s12248-014-9688-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/09/2014] [Indexed: 12/12/2022]
Abstract
Peptides are an important class of endogenous ligands that regulate key biological cascades. As such, peptides represent a promising therapeutic class with the potential to alleviate many severe disease states. Despite their therapeutic potential, peptides frequently pose drug delivery challenges to scientists. This review introduces the physicochemical, biophysical, biopharmaceutical, and formulation developability aspects of peptides pertinent to the drug discovery-to-development interface. It introduces the relevance of these properties with respect to the delivery modalities available for peptide pharmaceuticals, with the parenteral route being the most prevalent route of administration. This review also presents characterization strategies for oral delivery of peptides with the aim of illuminating developability issues with the drug candidate. A brief overview of other routes of administration, including inhaled, transdermal, and intranasal routes, is provided as these routes are generally preferred by patients over injectables. Finally, this review presents formulation techniques to mitigate some of the developability obstacles associated with peptide delivery. The authors emphasize opportunities for the thoughtful application of pharmaceutical science to the development of peptide drugs and to the general advancement of this promising class of pharmaceuticals.
Collapse
Affiliation(s)
- Annette Bak
- Discovery Pharmaceutical Sciences, Merck & Co, Kenilworth, New Jersey, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ruan R, Jin P, Zhang L, Wang C, Chen C, Ding W, Wen L. Peptide-Chaperone-Directed Transdermal Protein Delivery Requires Energy. Mol Pharm 2014; 11:4015-22. [DOI: 10.1021/mp500277g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | - Chuanjun Chen
- Department
of Oral and Maxillofacial Surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230027, China
| | | | | |
Collapse
|
29
|
Bhatnagar S, Schiffter H, Coussios CC. Exploitation of acoustic cavitation-induced microstreaming to enhance molecular transport. J Pharm Sci 2014; 103:1903-12. [PMID: 24719277 DOI: 10.1002/jps.23971] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/07/2014] [Accepted: 03/25/2014] [Indexed: 11/05/2022]
Abstract
Ultrasound (US) exposure of soft tissues, such as the skin, has been shown to increase permeability, enhancing the passage of drug molecules via passive processes such as diffusion. However, US regimes have not been exploited to enhance active convective transport of drug molecules from a donor layer, such as a gel, into another medium. A layered tissue-mimicking material (TMM) was used as a model for a drug donor layer and underlying soft tissue to test penetration of agents in response to a range of US parameters. Influence of agent molecular mass (3-2000 kDa), US frequency (0.256/1.1 MHz) and US pressure (0-10 MPa) on transport was characterised. Agents of four different molecular sizes were embedded within the TMM with or without cavitation nuclei (CN) and US applied to achieve inertial cavitation. Post-insonation, samples were analysed to determine the concentration and penetration distance of agent transported. US exposure substantially enhanced transport. At both US frequencies, enhancement of transport was significantly higher (p < 0.05) above the cavitation threshold, and CN reduced the pressure at which cavitation, and therefore transport, was achieved. Acoustic cavitation activity and related phenomena was the predominant transport mechanism, and addition of CN significantly enhanced transport within a range of clinically applicable acoustic pressures. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci.
Collapse
Affiliation(s)
- Sunali Bhatnagar
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
30
|
Abstract
The beginning of the 21st century saw numerous protein and peptide therapeuticals both on the market and entering the final stages of clinical studies. They represent a new category of biologically originated drugs termed biologics or biologicals. Their main advantages over conventional drugs can be summarized by their high selectivity and potent therapeutic efficacy coupled with limited side effects. In addition, they exhibit more predictable behavior under in vivo conditions. However, up to now most of the formulations of biologics are designed and destined for the parenteral route of administration. As a consequence, many suffer from short plasma half-lives, resulting in their frequent administration and ultimately poor patient compliance. This review represents an attempt to address some of the challenges and promises in the product development of biologics both for parenteral and noninvasive administration. Some of the products currently in the pipeline of pharmaceutical development and corresponding perspectives are discussed in more detail.
Collapse
Affiliation(s)
- Nataša Skalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø, Tromsø, Norway
| |
Collapse
|
31
|
Abstract
Recent advances in the fields of molecular biology and biotechnology have allowed for the large-scale production and subsequent exploitation of the therapeutic potential of protein- and peptide-based drugs. The facilitation of delivery of this class of drugs must be tailored to meet the requirements and often the limitations dictated by the route of delivery chosen. The aim of this review is to comprehensively discuss several routes of drug delivery, detailing the uses and exploitation of each, from origins to present day approaches. Specific reference is made to the compatibility or incompatibility of each approach in the facilitation of the delivery of drugs of protein origin. Additionally, the physiological nature of the delivery route and the inherent physiological obstacles that must be considered when determining the most suitable approach to drug design and delivery enhancement are also addressed. Examples of novel protein-based drug designs and delivery methodologies that illustrate such enhancement strategies are explored.
Collapse
|
32
|
Lapteva M, Kalia YN. Microstructured bicontinuous phase formulations: their characterization and application in dermal and transdermal drug delivery. Expert Opin Drug Deliv 2013; 10:1043-59. [DOI: 10.1517/17425247.2013.783008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Park KY, Jang WS, Lim YY, Ahn JH, Lee SJ, Kim CW, Kim SE, Kim BJ, Kim MN. Safety evaluation of stamp type digital microneedle devices in hairless mice. Ann Dermatol 2013; 25:46-53. [PMID: 23467706 PMCID: PMC3582927 DOI: 10.5021/ad.2013.25.1.46] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 11/05/2011] [Accepted: 12/12/2011] [Indexed: 11/18/2022] Open
Abstract
Background Microneedles provide a minimally invasive means to transport molecules into the skin. A number of specific strategies have been employed to use microneedles for transdermal delivery. Objective The purpose of this study was to investigate the safety of two new digital microneedle devices (Digital Hand® and Digital Pro®; Bomtech Electronics Co., Ltd., Seoul, Korea) for the perforation of skin in skin-hairless-1 mice. This device replaces conventional needles and is designed specifically for intradermal delivery. Methods We used two newly developed digital microneedle devices to perforate the skin of skin-hairless-1 mice. We conducted a comparative study of the two digital microneedle devices and DTS® (Disk type-microneedle Therapy System; DTS lab., Seoul, Korea). To evaluate skin stability, we performed visual and dermatoscopic inspections, measurements of transepidermal water loss, and biopsies. Results The two novel digital microneedle devices did not induce significant abnormalities of the skin on visual or dermatoscopic inspection, regardless of needle size (0.25~2.0 mm). No significant histopathological changes, such as inflammatory cell infiltration, desquamation of the stratum corneum, or disruption of the basal layer, were observed. The digital microneedle devices and microneedle therapy system produced similar results on measures of skin stability. Conclusion These two novel digital microneedle devices are safe transdermal drug delivery systems.
Collapse
Affiliation(s)
- Kui Young Park
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Donnelly RF, Singh TRR, Garland MJ, Migalska K, Majithiya R, McCrudden CM, Kole PL, Mahmood TMT, McCarthy HO, Woolfson AD. Hydrogel-Forming Microneedle Arrays for Enhanced Transdermal Drug Delivery. ADVANCED FUNCTIONAL MATERIALS 2012; 22:4879-4890. [PMID: 23606824 PMCID: PMC3627464 DOI: 10.1002/adfm.201200864] [Citation(s) in RCA: 409] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/06/2012] [Indexed: 05/17/2023]
Abstract
Unique microneedle arrays prepared from crosslinked polymers, which contain no drug themselves, are described. They rapidly take up skin interstitial fluid upon skin insertion to form continuous, unblockable, hydrogel conduits from attached patch-type drug reservoirs to the dermal microcirculation. Importantly, such microneedles, which can be fabricated in a wide range of patch sizes and microneedle geometries, can be easily sterilized, resist hole closure while in place, and are removed completely intact from the skin. Delivery of macromolecules is no longer limited to what can be loaded into the microneedles themselves and transdermal drug delivery is now controlled by the crosslink density of the hydrogel system rather than the stratum corneum, while electrically modulated delivery is also a unique feature. This technology has the potential to overcome the limitations of conventional microneedle designs and greatly increase the range of the type of drug that is deliverable transdermally, with ensuing benefits for industry, healthcare providers and, ultimately, patients.
Collapse
Affiliation(s)
- Ryan F Donnelly
- School of Pharmacy, Queens University Belfast 97 Lisburn Road, Belfast BT9 7BL, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bachhav YG, Heinrich A, Kalia YN. Controlled intra- and transdermal protein delivery using a minimally invasive Erbium:YAG fractional laser ablation technology. Eur J Pharm Biopharm 2012. [PMID: 23207321 DOI: 10.1016/j.ejpb.2012.11.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aim of the study was (i) to investigate the feasibility of using fractional laser ablation to create micropore arrays in order to deliver proteins into and across the skin and (ii) to demonstrate how transport rates could be controlled by variation of poration and formulation conditions. Four proteins with very different structures and properties were investigated - equine heart cytochrome c (Cyt c; 12.4 kDa), recombinant human growth hormone expressed in Escherichia coli (hGH; 22 kDa), urinary follicle stimulating hormone (FSH; 30 kDa) and FITC-labelled bovine serum albumin (FITC-BSA; 70 kDa). The transport experiments were performed using a scanning Er:YAG diode pumped laser (P.L.E.A.S.E.®; Precise Laser Epidermal System). The distribution of FITC-BSA in the micropores following P.L.E.A.S.E.® poration was visualised by using confocal laser scanning microscopy (CLSM). Porcine skin was used for the device parameter and CLSM studies; its validity as a model was confirmed by subsequent comparison with transport of Cyt c and FITC-BSA across P.L.E.A.S.E.® porated human skin. No protein transport (deposition or permeation) was observed across intact skin; however, P.L.E.A.S.E.® poration enabled total delivery after 24h of 48.2±8.9, 8.1±4.2, 0.2±0.1 and 273.3±30.6 μg/cm(2) for Cyt c, hGH, FSH and FITC-BSA, respectively, using 900 pores/135.9 cm(2). Calculation of permeability coefficients showed that there was no linear dependence of transport on molecular weight ((1.6±0.3), (0.1±0.05), (0.08±0.03) and (0.9±0.1)×10(-3) cm/h, for Cyt c, hGH, FSH and FITC-BSA, respectively); indeed, a U-shaped curve was observed. This suggested that molecular weight was not a sufficiently sensitive descriptor and that transport was more likely to be determined by the surface properties of the respective proteins since these would govern interactions with the local microenvironment. Increasing pore density (i.e. the number of micropores per unit area) had a statistically significant effect on the cumulative permeation of both Cyt c (at 100, 150, 300 and 600 pores/cm(2), permeation was 11.2±2.4, 15.3±11.8, 33.8±10.5 and 51.2±15.8 4 μg/cm(2), respectively) and FITC-BSA (at 50, 100, 150 and 300 pores/cm(2), it was 58.5±15.3, 132.6±40.0, 192.7±24.4, 293.3±76.5 μg/cm(2), respectively). Linear relationships were established in both cases. However, only the delivery of FITC-BSA was improved upon increasing fluence (53.3±22.5, 293.3±76.5, 329.6±11.5 and 222.1±29.4 μg/cm(2) at 22.65, 45.3, 90.6 and 135.9 J/cm(2), respectively). The impact of fluence - and hence pore depth - on transport will depend on the relative diffusivities of the protein in the micropore and in the 'bulk' epidermis/dermis. Experiments with Cyt c and FSH confirmed that delivery was dependent upon concentration, and it was shown that therapeutic delivery of the latter was feasible. Cumulative permeation of Cyt c and FITC-BSA was also shown to be statistically equivalent across porcine and human skin. In conclusion, it was demonstrated that laser microporation enabled protein delivery into and across the skin and that this could be modulated via the poration parameters and was also dependent upon the concentration gradient in the pore. However, the role of protein physicochemical properties and their influence on transport rates remains to be elucidated and will be explored in future studies.
Collapse
Affiliation(s)
- Y G Bachhav
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
36
|
Boehm RD, Miller PR, Singh R, Shah A, Stafslien S, Daniels J, Narayan RJ. Indirect rapid prototyping of antibacterial acid anhydride copolymer microneedles. Biofabrication 2012; 4:011002. [PMID: 22287512 DOI: 10.1088/1758-5082/4/1/011002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Microneedles are needle-like projections with microscale features that may be used for transdermal delivery of a variety of pharmacologic agents, including antibacterial agents. In the study described in this paper, an indirect rapid prototyping approach involving a combination of visible light dynamic mask micro-stereolithography and micromolding was used to prepare microneedle arrays out of a biodegradable acid anhydride copolymer, Gantrez(®) AN 169 BF. Fourier transform infrared spectroscopy, energy dispersive x-ray spectrometry and nanoindentation studies were performed to evaluate the chemical and mechanical properties of the Gantrez(®) AN 169 BF material. Agar plating studies were used to evaluate the in vitro antimicrobial performance of these arrays against Bacillus subtilis, Candida albicans, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Large zones of growth inhibition were noted for Escherichia coli, S. aureus, Enterococcus faecalis and B. subtilis. The performance of Gantrez(®) AN 169 BF against several bacteria suggests that biodegradable acid anhydride copolymer microneedle arrays prepared using visible light dynamic mask micro-stereolithography micromolding may be useful for treating a variety of skin infections.
Collapse
Affiliation(s)
- Ryan D Boehm
- Joint Department of Biomedical Engineering, University of North Carolina, Raleigh, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Herwadkar A, Banga AK. Peptide and protein transdermal drug delivery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2012; 9:e71-e174. [PMID: 24064275 DOI: 10.1016/j.ddtec.2011.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
38
|
Dhote V, Bhatnagar P, Mishra PK, Mahajan SC, Mishra DK. Iontophoresis: a potential emergence of a transdermal drug delivery system. Sci Pharm 2012; 80:1-28. [PMID: 22396901 PMCID: PMC3293348 DOI: 10.3797/scipharm.1108-20] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 12/13/2011] [Indexed: 12/18/2022] Open
Abstract
The delivery of drugs into systemic circulation via skin has generated much attention during the last decade. Transdermal therapeutic systems propound controlled release of active ingredients through the skin and into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. However, the excellent impervious nature of the skin offers the greatest challenge for successful delivery of drug molecules by utilizing the concepts of iontophoresis. The present review deals with the principles and the recent innovations in the field of iontophoretic drug delivery system together with factors affecting the system. This delivery system utilizes electric current as a driving force for permeation of ionic and non-ionic medications. The rationale behind using this technique is to reversibly alter the barrier properties of skin, which could possibly improve the penetration of drugs such as proteins, peptides and other macromolecules to increase the systemic delivery of high molecular weight compounds with controlled input kinetics and minimum inter-subject variability. Although iontophoresis seems to be an ideal candidate to overcome the limitations associated with the delivery of ionic drugs, further extrapolation of this technique is imperative for translational utility and mass human application.
Collapse
Affiliation(s)
- Vinod Dhote
- Mahakal Institute of Pharmaceutical Studies, Ujjain, M. P., India
| | - Punit Bhatnagar
- Mahakal Institute of Pharmaceutical Studies, Ujjain, M. P., India
| | - Pradyumna K. Mishra
- Division of Translational Research, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | | | - Dinesh K. Mishra
- Mahakal Institute of Pharmaceutical Studies, Ujjain, M. P., India
| |
Collapse
|
39
|
Kang YA, Na JI, Choi HR, Choi JW, Kang HY, Park KC. Novel anti-inflammatory peptides as cosmeceutical peptides. Peptides 2011; 32:2134-6. [PMID: 21889965 DOI: 10.1016/j.peptides.2011.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 08/19/2011] [Accepted: 08/20/2011] [Indexed: 11/26/2022]
Abstract
Ultraviolet (UV) radiation induced inflammation plays an important role in the aging of human skin. Prostaglandin (PG) E(2) is the primary mediator of UVB induced photoinflammation. We screened an internal library for dipeptides that inhibited UVB induced PGE(2) synthesis but showed no cytotoxicity toward human keratinocytes. We identified three highly active inhibitory sequences, LE (Leu+Glu), MW (Met+Trp) and MY (Met+Tyr). To evaluate their efficacy in human skin, 24 sites of abdomen skin were irradiated with a 308 nm excimer laser (300 mJ/cm(2)), after which 2% LE, MW, MY or a control were applied to the irradiated sites for 24h. The erythema index (EI) was measured before and 24h after treatment. The results showed that LE and MW significantly decreased UVB induced erythema (p=0.041 and p=0.036, respectively), but ME did not. Overall, LE and MW are candidate cosmeceutical peptides that can protect skin from UVB induced photoinflammation.
Collapse
Affiliation(s)
- Youn-A Kang
- Department of Dermatology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | | | | | | | | | | |
Collapse
|
40
|
Jitendra, Sharma PK, Bansal S, Banik A. Noninvasive routes of proteins and peptides drug delivery. Indian J Pharm Sci 2011; 73:367-75. [PMID: 22707818 PMCID: PMC3374550 DOI: 10.4103/0250-474x.95608] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 07/06/2011] [Accepted: 07/16/2011] [Indexed: 11/16/2022] Open
Abstract
Recent advances in the field of pharmaceutical biotechnology have led to the formulation of many protein and peptide-based drugs for therapeutic and clinical application. The route of administration has a significant impact on the therapeutic outcome of a drug. The needle and syringe is a well established choice of protein and peptide delivery which has some drawback related to patient and to formulation such as pain, cost, sterility etc. Thus, the noninvasive routes which were of minor importance as parts of drug delivery in the past have assumed added importance in protein and peptide drug delivery and these include nasal, ophthalmic, buccal, vaginal, transdermal and pulmonary routes. The pharmaceutical scientists have some approaches to develop the formulations for protein and peptide delivery by noninvasive routes. But, due to the physiochemical instability and enzymatic barrier of proteins and peptides there are several hurdle to develop suitable formulation. So there is need of penetration enhancers, enzyme inhibitors and suitable vehicles for noninvasive delivery to increase the bioavailability. In this review, the aim is to focus on the approaches to formulation of protein and peptide based drug administration by noninvasive route.
Collapse
Affiliation(s)
- Jitendra
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut-250 005, India
| | - P. K. Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut-250 005, India
| | - Sumedha Bansal
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut-250 005, India
| | - Arunabha Banik
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut-250 005, India
| |
Collapse
|
41
|
Boehm RD, Miller PR, Hayes SL, Monteiro-Riviere NA, Narayan RJ. Modification of microneedles using inkjet printing. AIP ADVANCES 2011; 1:22139. [PMID: 22125759 PMCID: PMC3217292 DOI: 10.1063/1.3602461] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 05/28/2011] [Indexed: 05/28/2023]
Abstract
In this study, biodegradable acid anhydride copolymer microneedles containing quantum dots were fabricated by means of visible light dynamic mask micro-stereolithography-micromolding and inkjet printing. Nanoindentation was performed to obtain the hardness and the Young's modulus of the biodegradable acid anhydride copolymer. Imaging of quantum dots within porcine skin was accomplished by means of multiphoton microscopy. Our results suggest that the combination of visible light dynamic mask micro-stereolithography-micromolding and inkjet printing enables fabrication of solid biodegradable microneedles with a wide range of geometries as well as a wide range of pharmacologic agent compositions.
Collapse
|
42
|
Human growth hormone: New delivery systems, alternative routes of administration, and their pharmacological relevance. Eur J Pharm Biopharm 2011; 78:278-88. [DOI: 10.1016/j.ejpb.2011.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 11/19/2022]
|
43
|
Ashraf MW, Tayyaba S, Nisar A, Afzulpurkar N, Bodhale DW, Lomas T, Poyai A, Tuantranont A. Design, fabrication and analysis of silicon hollow microneedles for transdermal drug delivery system for treatment of hemodynamic dysfunctions. ACTA ACUST UNITED AC 2011; 10:91-108. [PMID: 20730492 DOI: 10.1007/s10558-010-9100-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this paper, we present design, fabrication and coupled multifield analysis of hollow out-of-plane silicon microneedles with piezoelectrically actuated microfluidic device for transdermal drug delivery (TDD) system for treatment of cardiovascular or hemodynamic disorders such as hypertension. The mask layout design and fabrication process of silicon microneedles and reservoir involving deep reactive ion etching (DRIE) is first presented. This is followed by actual fabrication of silicon hollow microneedles by a series of combined isotropic and anisotropic etching processes using inductively coupled plasma (ICP) etching technology. Then coupled multifield analysis of a MEMS based piezoelectrically actuated device with integrated silicon microneedles is presented. The coupledfield analysis of hollow silicon microneedle array integrated with piezoelectric micropump has involved structural and fluid field couplings in a sequential structural-fluid analysis on a three-dimensional model of the microfluidic device. The effect of voltage and frequency on silicon membrane deflection and flow rate through the microneedle is investigated in the coupled field analysis using multiple code coupling method. The results of the present study provide valuable benchmark and prediction data to fabricate optimized designs of the silicon hollow microneedle based microfluidic devices for transdermal drug delivery applications.
Collapse
Affiliation(s)
- M W Ashraf
- School of Engineering and Technology, Asian Institute of Technology (AIT), Bangkok, Thailand.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Adhyapak A, Desai BG. Preparation and in vitro characterization of the transdermal drug delivery system containing tamoxifen citrate for breast cancer. ASIAN JOURNAL OF PHARMACEUTICS 2011. [DOI: 10.4103/0973-8398.80068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
45
|
Bachhav YG, Kalia YN. Development and validation of a rapid high-performance liquid chromatography method for the quantification of exenatide. Biomed Chromatogr 2010; 25:838-42. [PMID: 20878660 DOI: 10.1002/bmc.1526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/14/2010] [Accepted: 08/17/2010] [Indexed: 11/05/2022]
Abstract
The objective was to develop a simple HPLC method to quantify exenatide--a 39 amino acid residue incretin mimetic used in diabetes therapy. To date, only non-validated, sometimes incomplete, gradient methods have been reported in the literature. Isocratic separation was achieved using a C₄ column and a mixed solvent system, A-B-C (48:45:7, v/v/v; pH* 5.2), where A represents KH₂PO₄ (pH 4.5; 0.1 M) and MeCN (60:40, v/v), B corresponds to NaClO₄ ·H₂O (pH 6.0; 0.2 M) and MeCN (60:40, v/v), and C is water. Exenatide eluted at 3.64 min and the total run time was 6 min. The method was specific and the response was accurate, precise and linear from 0.75 to 25 µg/mL. It was used to quantify exenatide transport across intact and laser-porated porcine skin in vitro as a function of laser fluence [0 (i.e. intact skin), 9 and 15 J/cm², respectively]. Although no permeation was observed using intact skin, cumulative exenatide permeation after 8 h through laser porated skin was 9.6 ± 6.5 and 12.4 ± 6.4 µg/cm² at fluences of 9 and 15 J/cm², respectively. This is the first validated isocratic method for exenatide quantification and it may be of use in quality control analysis and with other biological matrices.
Collapse
Affiliation(s)
- Yogeshwar G Bachhav
- School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
46
|
Madsen HB, Arboe-Andersen HM, Rozlosnik N, Madsen F, Ifversen P, Kasimova MR, Nielsen HM. Investigation of the interaction between modified ISCOMs and stratum corneum lipid model systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1779-89. [PMID: 20542013 DOI: 10.1016/j.bbamem.2010.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/20/2010] [Accepted: 06/02/2010] [Indexed: 11/28/2022]
Abstract
The modified ISCOMs, so-called Posintro nanoparticles, provide an opportunity for altering the surface charge of the particles, which influences their affinity for the negatively charged antigen sites, cell membranes and lipids in the skin. Hypothetically, this increases the passage of the ISCOMs (or their components) and their load through the stratum corneum. The subsequent increase in the uptake by the antigen-presenting cells results in enhanced transcutaneous immunization. To understand the nature of penetration of Posintro nanoparticles into the intercorneocyte space of the stratum corneum, the interaction between the nanoparticles and lipid model systems in form of liposomes and/or supported lipid bilayer was studied. As a lipid model we used Stratum Corneum Lipid (SCL), a mixture similar in composition to the lipids of the intercorneocyte space. By Förster Resonance Energy Transfer (FRET), Atomic Force Microscopy (AFM), Electrochemical Impedance Spectroscopy (EIS) and cryo-Transmission Electron Microscopy (cryo-TEM) it was shown that application of nanoparticles to the SCL bilayers results in lipid disturbance. Investigation of this interaction by means of Isothermal Titration Calorimetry (ITC) confirmed existence of an enthalpically unfavorable reaction. All these methods demonstrated that the strength of electrostatic repulsion between the negatively charged SCL and the nanoparticles affected their interaction, as decreasing the negative charge of the Posintro nanoparticles leads to enhanced disruption of lipid organization.
Collapse
Affiliation(s)
- Henriette Baun Madsen
- Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
47
|
Li G, Badkar A, Kalluri H, Banga AK. Microchannels created by sugar and metal microneedles: characterization by microscopy, macromolecular flux and other techniques. J Pharm Sci 2010; 99:1931-41. [PMID: 19894263 DOI: 10.1002/jps.21981] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The objective of this study was to investigate the feasibility of using microneedle technology to enhance transcutaneous permeation of human immunoglobulin G (IgG) across hairless rat skin. Microchannels created by maltose and metal (DermaRoller) microneedles were characterized by techniques such as methylene blue staining, histological examination, and calcein imaging. Methylene blue staining and histological sections of treated skin showed that maltose microneedles and DermaRoller breached the skin barrier by creating microchannels in the skin with an average depth of approximately 150 microm, as imaged by confocal microscopy. Calcein imaging and pore permeability index values suggested the uniformity of the created pores in microneedle-treated skin. Transdermal studies with IgG indicated a flux rate of 45.96 ng/cm(2)/h, in vitro, and a C(max) of 7.27 ng/mL, in vivo, for maltose microneedles-treated skin while a flux rate of 353.17 ng/cm(2)/h, in vitro, and a C(max) of 9.33 ng/mL, in vivo, was achieved for DermaRoller-treated skin. Transepidermal water loss measurements and methylene blue staining, in vivo, indicated the presence of microchannels for upto 24 h, when occluded. In conclusion, the microchannels created by maltose microneedles and DermaRoller resulted in the percutaneous enhancement of a macromolecule, human IgG.
Collapse
Affiliation(s)
- Guohua Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, USA
| | | | | | | |
Collapse
|
48
|
Gittard SD, Ovsianikov A, Chichkov BN, Doraiswamy A, Narayan RJ. Two-photon polymerization of microneedles for transdermal drug delivery. Expert Opin Drug Deliv 2010; 7:513-33. [PMID: 20205601 PMCID: PMC2844933 DOI: 10.1517/17425241003628171] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
IMPORTANCE OF THE FIELD Microneedles are small-scale devices that are finding use for transdermal delivery of protein-based pharmacologic agents and nucleic acid-based pharmacologic agents; however, microneedles prepared using conventional microelectronics-based technologies have several shortcomings, which have limited translation of these devices into widespread clinical use. AREAS COVERED IN THIS REVIEW Two-photon polymerization is a laser-based rapid prototyping technique that has been used recently for direct fabrication of hollow microneedles with a wide variety of geometries. In addition, an indirect rapid prototyping method that involves two-photon polymerization and polydimethyl siloxane micromolding has been used for fabrication of solid microneedles with exceptional mechanical properties. WHAT THE READER WILL GAIN In this review, the use of two-photon polymerization for fabricating in-plane and out-of-plane hollow microneedle arrays is described. The use of two-photon polymerization-micromolding for fabrication of solid microneedles is also reviewed. In addition, fabrication of microneedles with antimicrobial properties is discussed; antimicrobial microneedles may reduce the risk of infection associated with the formation of channels through the stratum corneum. TAKE HOME MESSAGE It is anticipated that the use of two-photon polymerization as well as two-photon polymerization-micromolding for fabrication of microneedles and other microstructured drug delivery devices will increase over the coming years.
Collapse
Affiliation(s)
- Shaun D Gittard
- University of North Carolina Chapel Hill and North Carolina State University, Joint Department of Biomedical Engineering, CB 7115, 2147 Burlington Labs, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
49
|
Yatuv R, Robinson M, Dayan I, Baru M. Enhancement of the efficacy of therapeutic proteins by formulation with PEGylated liposomes; a case of FVIII, FVIIa and G-CSF. Expert Opin Drug Deliv 2010; 7:187-201. [DOI: 10.1517/17425240903463846] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Manconia M, Pendás J, Ledón N, Moreira T, Sinico C, Saso L, Fadda AM. Phycocyanin liposomes for topical anti-inflammatory activity: in-vitro in-vivo studies. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.04.0002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Objectives
The aim of this work was to investigate the anti-inflammatory activity of C-phycocyanin (C-PC) on skin inflammation after topical administration and the influence of liposomal delivery on its pharmacokinetic properties.
Methods
Liposomes of different size and structure were prepared with different techniques using soy phosphatidylcholine and cholesterol. Vesicular dispersions were characterised by transmission electron microscopy, optical and fluorescence microscopy for vesicle formation and morphology, dynamic laser light scattering for size distribution, and Zetasizer for zeta-potential. C-PC skin penetration and permeation experiments were performed in vitro using vertical diffusion Franz cells and human skin treated with either free or liposomal drug dispersed in a Carbopol gel.
Key findings
The protein was mainly localised in the stratum corneum, while no permeation of C-PC through the whole skin thickness was detected. Two percent C-PC-encapsulating liposomes showed the best drug accumulation in the stratum corneum and the whole skin, higher than that of the corresponding free 2% C-PC gel. Moreover, skin deposition of liposomal C-PC was dose dependent since skin accumulation values increased as the C-PC concentration in liposomes increased. The topical anti-inflammatory activity of samples was evaluated in vivo as inhibition of croton oil-induced or arachidonic acid-induced ear oedema in rats.
Conclusions
The results showed that C-PC can be successfully used as an anti-inflammatory drug and that liposomal encapsulation is effective in improving its anti-inflammatory activity.
Collapse
Affiliation(s)
- Maria Manconia
- Dipartimento Farmaco Chimico Tecnologico, Universitá di Cagliari, Cagliari, Italy
| | - Jehzabel Pendás
- Departamento de Criobiología y Liofilización, National Centre for Scientific Research, Cubanacán, Habana, Cuba
| | - Nurys Ledón
- Centro de Inmunología Molecular, Ciudad Habana, Cuba
| | - Tomás Moreira
- Departamento de Criobiología y Liofilización, National Centre for Scientific Research, Cubanacán, Habana, Cuba
| | - Chiara Sinico
- Dipartimento Farmaco Chimico Tecnologico, Universitá di Cagliari, Cagliari, Italy
| | - Luciano Saso
- Dipartimento Fisiologia Umana e Farmacologia, Università di Roma Sapienza, 00185 Roma, Italy
| | - Anna Maria Fadda
- Dipartimento Farmaco Chimico Tecnologico, Universitá di Cagliari, Cagliari, Italy
| |
Collapse
|