1
|
Liang Q, Xiang H, Xin M, Li R, Zhou Y, Pang D, Jia X, Yuan H, Chao D. A wearable iontophoresis enables dual-responsive transdermal delivery for atopic dermatitis treatment. J Colloid Interface Sci 2025; 678:908-919. [PMID: 39222610 DOI: 10.1016/j.jcis.2024.08.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Atopic dermatitis is a chronic, inflammation skin disease that remains a major public health challenge. The current drug-loading hydrogel dressings offer numerous benefits with enhanced loading capacity and a moist-rich environment. However, their development is still limited by the accessibility of a suitable driven source outside the clinical environment for precise control over transdermal delivery kinetics. Here, we prepare a sulfonated poly(3,4-ethylenedioxythiophene) (PEDOT) polyelectrolyte hydrogel drug reservoir that responds to different stimuli-both endogenous cue (body temperature) and exogenous cue (electrical stimulation), for wearable on-demand transdermal delivery with enhanced efficacy. Functioned as both the drug reservoir and cathode in a Zn battery-powered iontophoresis patch, this dual-responsive hydrogel achieves high drug release efficiency (68.4 %) at 37 °C. Evaluation in hairless mouse skin demonstrates the efficacy of this technology by facilitating transdermal transport of 12.2 μg cm-2 dexamethasone phosphate when discharged with a 103 Ω external resistor for 3 h. The Zn battery-driven iontophoresis results in an effective treatment of atopic dermatitis, displaying reductions in epidermal thickness, mast cell infiltration inhibition, and a decrease in IgE levels. This work provides a new treatment modality for chronic epidermal diseases that require precise drug delivery in a non-invasive way.
Collapse
Affiliation(s)
- Qin Liang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Hongyong Xiang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Meiying Xin
- Jilin Provincial Key Laboratory of Pediatric Neurology, Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Runan Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Yan Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Daxin Pang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Hongming Yuan
- College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Danming Chao
- College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Mo C, Zhang W, Zhu K, Du Y, Huang W, Wu Y, Song J. Advances in Injectable Hydrogels Based on Diverse Gelation Methods for Biomedical Imaging. SMALL METHODS 2024; 8:e2400076. [PMID: 38470225 DOI: 10.1002/smtd.202400076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Indexed: 03/13/2024]
Abstract
The injectable hydrogels can deliver the loads directly to the predetermined sites and form reservoirs to increase the enrichment and retention of the loads in the target areas. The preparation and injection of injectable hydrogels involve the sol-gel transformation of hydrogels, which is affected by factors such as temperature, ions, enzymes, light, mechanics (self-healing property), and pH. However, tracing the injection, degradation, and drug release from hydrogels based on different ways of gelation is a major concern. To solve this problem, contrast agents are introduced into injectable hydrogels, enabling the hydrogels to be imaged under techniques such as fluorescence imaging, photoacoustic imaging, magnetic resonance imaging, and radionuclide imaging. This review details methods for causing the gelation of imageable hydrogels; discusses the application of injectable hydrogels containing contrast agents in various imaging techniques, and finally explores the potential and challenges of imageable hydrogels based on different modes of gelation.
Collapse
Affiliation(s)
- Chunxiang Mo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Weiyao Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Ying Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| |
Collapse
|
3
|
Dou R, Li Z, Zhu G, Lin C, Liu FX, Wang B. Operando Decoding Ion-Conductive Switch in Stimuli-Responsive Hydrogel by Nanodiamond-Based Quantum Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406944. [PMID: 39312463 DOI: 10.1002/advs.202406944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/26/2024] [Indexed: 09/25/2024]
Abstract
Thermal-responsive hydrogels are developed as ion-conductive switchs for energy storage devices, however, the molecule mechanism of switch on/off remains unclear. Here, poly(N-isopropylacrylamide-co-acrylamide) hydrogel is synthesized as a model material and nanodiamond (ND) based quantum sensing for phase change study is developed. First, micro-scale phase separation with cross-linked mesh structure after sol-gel transition is visualized in situ and water molecules are trapped by polymer chains and on a chemically "frozen" state. Then, the nano-scale inhomogeneous distributions of viscosity, thermal conductivity and ionic mobility in hydrogel at high temperature are observed by measuring the rotation, translation and zero-field splitting of NDs. Besides, the ionic mobility of hydrogel is found to be dependent not only on temperature but also on polymer concentration. These observations suggested that the physical "wall" induced by inhomogeneous phase separation at microscopic scale blocked the ion conduction pathways, providing a potential intrinsic explanation for ion migration shut-down of ionic hydrogels at high temperature.
Collapse
Affiliation(s)
- Ruqiang Dou
- Research Institute of Interdisciplinary Sciences & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523808, China
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Zan Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Guoli Zhu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Chao Lin
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Frank X Liu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Biao Wang
- Research Institute of Interdisciplinary Sciences & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523808, China
- School of Physics and Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
4
|
Lipowska-Kur D, Otulakowski Ł, Szeluga U, Jelonek K, Utrata-Wesołek A. Diverse Strategies to Develop Poly(ethylene glycol)-Polyester Thermogels for Modulating the Release of Antibodies. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4472. [PMID: 39336212 PMCID: PMC11433636 DOI: 10.3390/ma17184472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024]
Abstract
In this work, we present basic research on developing thermogel carriers containing high amounts of model antibody immunoglobulin G (IgG) with potential use as injectable molecules. The quantities of IgG loaded into the gel were varied to evaluate the possibility of tuning the dose release. The gel materials were based on blends of thermoresponsive and degradable ABA-type block copolymers composed of poly(lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PLGA-PEG-PLGA) or poly(lactide-co-caprolactone)-b-poly(ethylene glycol)-b-(lactide-co-caprolactone) (PLCL-PEG-PLCL). Primarily, the gels with various amounts of IgG were obtained via thermogelation, where the only factor inducing gel formation was the change in temperature. Next, to control the gels' mechanical properties, degradation rate, and the extent of antibody release, we have tested two approaches. The first one involved the synergistic physical and chemical crosslinking of the copolymers. To achieve this, the hydroxyl groups located at the ends of the PLGA-PEG-PLGA chain were modified into acrylate groups. In this case, the thermogelation was accompanied by chemical crosslinking through the Michael addition reaction. Such an approach increased the dynamic mechanical properties of the gels and simultaneously prolonged their decomposition time. An alternative solution was to suspend crosslinked PEG-polyester nanoparticles loaded with IgG in a PLGA-PEG-PLGA gelling copolymer. We observed that loading IgG into thermogels lowered the gelation temperature (TGEL) value and increased the storage modulus of the gels, as compared with gels without IgG. The prepared gel materials were able to release the IgG from 8 up to 80 days, depending on the gel formulation and on the amount of loaded IgG. The results revealed that additional, chemical crosslinking of the thermogels and also suspension of particles in the polymer matrix substantially extended the duration of IgG release. With proper matching of the gel composition, environmental conditions, and the type and amount of active substances, antibody-containing thermogels can serve as effective IgG delivery materials.
Collapse
Affiliation(s)
- Daria Lipowska-Kur
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland; (Ł.O.); (U.S.); (K.J.)
| | | | | | | | - Alicja Utrata-Wesołek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland; (Ł.O.); (U.S.); (K.J.)
| |
Collapse
|
5
|
Kuhn PM, Chen S, Venkatraman A, Abadir PM, Walston JD, Kokkoli E. Co-Delivery of Valsartan and Metformin from a Thermosensitive Hydrogel-Nanoparticle System Promotes Collagen Production in Proliferating and Senescent Primary Human Dermal Fibroblasts. Biomacromolecules 2024; 25:5702-5717. [PMID: 39186039 DOI: 10.1021/acs.biomac.3c01461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Aging negatively impacts skin health, notably through the senescent cell phenotype, which reduces collagen production and leads to thinner, more fragile skin prone to injuries and chronic wounds. We designed a drug delivery system that addresses these age-related issues using a hybrid hydrogel-nanoparticle system that utilizes a poly(δ-valerolactone-co-lactide)-b-poly(ethylene-glycol)-b-poly(δ-valerolactone-co-lactide) (PVLA-PEG-PVLA) hydrogel. This hydrogel allows for the local, extended release of therapeutics targeting both proliferating and senescent cells. The PVLA-PEG-PVLA hydrogel entrapped valsartan, and metformin-loaded liposomes functionalized with a fibronectin-mimetic peptide, PR_b. Metformin acts as a senomorphic, reversing aspects of cellular senescence, and valsartan, an angiotensin receptor blocker, promotes collagen production. This combination treatment partially reversed the senescent phenotype and improved collagen production in senescent dermal fibroblasts from both young and old adults. Our codelivery hydrogel-nanoparticle system offers a promising treatment for improving age-related dermal pathologies.
Collapse
Affiliation(s)
- Paul M Kuhn
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Siwei Chen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Aditya Venkatraman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Peter M Abadir
- Division of Geriatrics and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, United States
| | - Jeremy D Walston
- Division of Geriatrics and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, United States
| | - Efrosini Kokkoli
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Zeng L, Kang D, Zhu L, Zhou Z, Li Y, Ling W, Zhang Y, Yu DG, Kim I, Song W. Poly(phenylalanine) and poly(3,4-dihydroxy-L-phenylalanine): Promising biomedical materials for building stimuli-responsive nanocarriers. J Control Release 2024; 372:810-828. [PMID: 38968969 DOI: 10.1016/j.jconrel.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Cancer is a serious threat to human health because of its high annual mortality rate. It has attracted significant attention in healthcare, and identifying effective strategies for the treatment and relief of cancer pain requires urgency. Drug delivery systems (DDSs) offer the advantages of excellent efficacy, low cost, and low toxicity for targeting drugs to tumor sites. In recent decades, copolymer carriers based on poly(phenylalanine) (PPhe) and poly(3,4-dihydroxy-L-phenylalanine) (PDopa) have been extensively investigated owing to their good biocompatibility, biodegradability, and controllable stimulus responsiveness, which have resulted in DDSs with loading and targeted delivery capabilities. In this review, we introduce the synthesis of PPhe and PDopa, highlighting the latest proposed synthetic routes and comparing the differences in drug delivery between PPhe and PDopa. Subsequently, we summarize the various applications of PPhe and PDopa in nanoscale-targeted DDSs, providing a comprehensive analysis of the drug release behavior based on different stimulus-responsive carriers using these two materials. In the end, we discuss the challenges and prospects of polypeptide-based DDSs in the field of cancer therapy, aiming to promote their further development to meet the growing demands for treatment.
Collapse
Affiliation(s)
- Lingcong Zeng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Dandan Kang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Linglin Zhu
- Oncology Department of Huadong Hospital, Minimally Invasive Tumor Treatment Center, No. 139 Yan'an West Road, Jing'an District, Shanghai, China 200040
| | - Zunkang Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yichong Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Wei Ling
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, PR China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
7
|
Kuhn PM, Russo GC, Crawford AJ, Venkatraman A, Yang N, Starich BA, Schneiderman Z, Wu PH, Vo T, Wirtz D, Kokkoli E. Local, Sustained, and Targeted Co-Delivery of MEK Inhibitor and Doxorubicin Inhibits Tumor Progression in E-Cadherin-Positive Breast Cancer. Pharmaceutics 2024; 16:981. [PMID: 39204325 PMCID: PMC11357614 DOI: 10.3390/pharmaceutics16080981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Effectively utilizing MEK inhibitors in the clinic remains challenging due to off-target toxicity and lack of predictive biomarkers. Recent findings propose E-cadherin, a breast cancer diagnostic indicator, as a predictor of MEK inhibitor success. To address MEK inhibitor toxicity, traditional methodologies have systemically delivered nanoparticles, which require frequent, high-dose injections. Here, we present a different approach, employing a thermosensitive, biodegradable hydrogel with functionalized liposomes for local, sustained release of MEK inhibitor PD0325901 and doxorubicin. The poly(δ-valerolactone-co-lactide)-b-poly(ethylene-glycol)-b-poly(δ-valerolactone-co-lactide) triblock co-polymer gels at physiological temperature and has an optimal degradation time in vivo. Liposomes were functionalized with PR_b, a biomimetic peptide targeting the α5β1 integrin receptor, which is overexpressed in E-cadherin-positive triple negative breast cancer (TNBC). In various TNBC models, the hydrogel-liposome system delivered via local injection reduced tumor progression and improved animal survival without toxic side effects. Our work presents the first demonstration of local, sustained delivery of MEK inhibitors to E-cadherin-positive tumors alongside traditional chemotherapeutics, offering a safe and promising therapeutic strategy.
Collapse
Affiliation(s)
- Paul M. Kuhn
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gabriella C. Russo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ashleigh J. Crawford
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Aditya Venkatraman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Nanlan Yang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bartholomew A. Starich
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Zachary Schneiderman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Pei-Hsun Wu
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Thi Vo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Physical Sciences—Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Efrosini Kokkoli
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
8
|
Wang J, Yang W, Li Y, Ma X, Xie Y, Zhou G, Liu S. Dual-Temperature/pH-Sensitive Hydrogels with Excellent Strength and Toughness Crosslinked Using Three Crosslinking Methods. Gels 2024; 10:480. [PMID: 39057503 PMCID: PMC11275505 DOI: 10.3390/gels10070480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Hydrogels are widely used as excellent drug carriers in the field of biomedicine. However, their application in medicine is limited by their poor mechanical properties and softness. To improve the mechanical properties of hydrogels, a novel triple-network amphiphilic hydrogel with three overlapping crosslinking methods using a one-pot free-radical polymerization was synthesized in this study. Temperature-sensitive and pH-sensitive monomers were incorporated into the hydrogel to confer stimulus responsiveness, making the hydrogel stimuli-responsive. The successful synthesis of the hydrogel was confirmed using techniques, such as proton nuclear magnetic resonance spectroscopy (1H NMR), Fourier-transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). In order to compare and analyze the properties of physically crosslinked hydrogels, physically-chemically double-crosslinked hydrogels, and physically-chemically clicked triple-crosslinked hydrogels, various tests were conducted on the gels' morphology, swelling behavior, thermal stability, mechanical properties, and drug loading capacity. The results indicate that the triple-crosslinked hydrogel maintains low swelling, high mechanical strength, and good thermal stability while not significantly compromising its drug delivery capability.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shouxin Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China; (J.W.); (W.Y.); (Y.L.); (X.M.); (Y.X.); (G.Z.)
| |
Collapse
|
9
|
Roig X, Halbaut L, Elmsmari F, Pareja R, Arrien A, Duran-Sindreu F, Delgado LM, Espina M, García ML, Sánchez JAG, Sánchez-López E. Calcium hydroxide-loaded nanoparticles dispersed in thermosensitive gel as a novel intracanal medicament. Int Endod J 2024; 57:907-921. [PMID: 38374518 DOI: 10.1111/iej.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/13/2024] [Accepted: 01/27/2024] [Indexed: 02/21/2024]
Abstract
AIM Design, produce and assess the viability of a novel nanotechnological antibacterial thermo-sensible intracanal medicament This involves encapsulating calcium hydroxide (Ca(OH)2) within polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) and dispersing them in a thermosensitive gel (Ca(OH)2-NPs-gel). In addition, perform in vitro and ex vivo assessments to evaluate tissue irritation and penetration capacity into dentinal tubules in comparison to free Ca(OH)2. METHODOLOGY Reproducibility of Ca(OH)₂-NPs was confirmed by obtaining the average size of the NPs, their polydispersity index, zeta potential and entrapment efficiency. Moreover, rheological studies of Ca(OH)2-NPs-gel were carried out with a rheometer, studying the oscillatory stress sweep, the mean viscosity value, frequency and temperature sweeps. Tolerance was assessed using the membrane of an embryonated chicken egg. In vitro Ca(OH)2 release was studied by direct dialysis in an aqueous media monitoring the amount of Ca(OH)2 released. Six extracted human teeth were used to study the depth of penetration of fluorescently labelled Ca(OH)2-NPs-gel into the dentinal tubules and significant differences against free Ca(OH)2 were calculated using one-way anova. RESULTS Ca(OH)2-NPs-gel demonstrated to be highly reproducible with an average size below 200 nm, a homogeneous NPs population, negative surface charge and high entrapment efficiency. The analysis of the thermosensitive gel allowed us to determine its rheological characteristics, showing that at 10°C gels owned a fluid-like behaviour meanwhile at 37°C they owned an elastic-like behaviour. Ca(OH)2-NPs-gel showed a prolonged drug release and the depth of penetration inside the dentinal tubules increased in the most apical areas. In addition, it was found that this drug did not produce irritation when applied to tissues such as eggs' chorialantoidonic membrane. CONCLUSION Calcium hydroxide-loaded PLGA NPs dispersed in a thermosensitive gel may constitute a suitable alternative as an intracanal antibacterial medicament.
Collapse
Affiliation(s)
- Xavier Roig
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Lyda Halbaut
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Firas Elmsmari
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Rubén Pareja
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland
| | - Aizea Arrien
- Department of Endodontics, Faculty of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Fernando Duran-Sindreu
- Department of Endodontics, Faculty of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Luis María Delgado
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - María Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | | | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, Barcelona, Spain
| |
Collapse
|
10
|
Ji G, Li Y, Zhang Z, Li H, Sun P. Recent advances of novel targeted drug delivery systems based on natural medicine monomers against hepatocellular carcinoma. Heliyon 2024; 10:e24667. [PMID: 38312669 PMCID: PMC10834828 DOI: 10.1016/j.heliyon.2024.e24667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the most prevalent type of liver cancer, is often diagnosed at an advanced stage. Surgical interventions are often ineffective, leading HCC patients to rely on systemic chemotherapy. Unfortunately, commonly used chemotherapeutic drugs have limited efficacy and can adversely affect vital organs, causing significant physical and psychological distress for patients. Natural medicine monomers (NMMs) have shown promising efficacy and safety profiles in HCC treatment, garnering attention from researchers. In recent years, the development of novel targeted drug delivery systems (TDDS) combining NMMs with nanocarriers has emerged. These TDDS aim to concentrate drugs effectively in HCC cells by manipulating the characteristics of nanomedicines, leveraging receptor and ligand interactions, and utilizing endogenous stimulatory responses to promote specific nanomedicines distribution. This comprehensive review presents recent research on TDDS for HCC treatment using NMMs from three perspectives: passive TDDS, active TDDS, and stimuli-responsive drug delivery systems (SDDS). It consolidates the current state of research on TDDS for HCC treatment with NMMs and highlights the potential of these innovative approaches in improving treatment outcomes. Moreover, the review also identifies research gaps in the related fields to provide references for future targeted therapy research in HCC.
Collapse
Affiliation(s)
- Guanjie Ji
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yue Li
- Department of Clinical Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhiyue Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Hui Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Ping Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Grade Three Laboratory of Traditional Chinese Medicine Preparation of the National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| |
Collapse
|
11
|
Liu Z, Du Y, Xu S, Li M, Lu X, Tian G, Ye J, Zhao B, Wei P, Wang Y. Histatin 1-modified SIS hydrogels enhance the sealing of peri-implant mucosa to prevent peri-implantitis. iScience 2023; 26:108212. [PMID: 37965149 PMCID: PMC10641262 DOI: 10.1016/j.isci.2023.108212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Dental implants make it possible to replace teeth in more sophisticated ways. Nevertheless, peri-implantitis is one of the leading causes of implant failure, which can be avoided with proper soft tissue sealing. The aim of this study was to achieve the promotion of the synthesis of peri-implant epithelial hemidesmosome through Histatin 1 and porcine small intestinal submucosa (SIS) hydrogel to form a good peri-implant seal. The results show that hydrogel can improve the biological barrier function around implants by combining antibacterial, promoting soft tissue healing and promoting epithelial bonding. This means that the morphology and anti-infection ability of soft tissue are enhanced, which ensures the long-term stability of the implant.SIS-Hst1 hydrogel has certain clinical application in the prevention and early treatment of peri-implantitis. In conclusion, Hst1-SIS hydrogel, as a local administration system, provides experimental evidence for the prevention of peri-implant disease.
Collapse
Affiliation(s)
- Zihao Liu
- Zhongnuo Dental Hospital, Tianjin Nankai District, Tianjin 300101, China
| | - Yaqi Du
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Shendan Xu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Minting Li
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Xuemei Lu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Guangjie Tian
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Jing Ye
- Department of Stomatology, Tianjin Hospital, Tianjin 300211, China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd., Beijing 102600, China
| | - Pengfei Wei
- Beijing Biosis Healing Biological Technology Co., Ltd., Beijing 102600, China
| | - Yonglan Wang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| |
Collapse
|
12
|
Gu R, Zhou H, Zhang Z, Lv Y, Pan Y, Li Q, Shi C, Wang Y, Wei L. Research progress related to thermosensitive hydrogel dressings in wound healing: a review. NANOSCALE ADVANCES 2023; 5:6017-6037. [PMID: 37941954 PMCID: PMC10629053 DOI: 10.1039/d3na00407d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/27/2023] [Indexed: 11/10/2023]
Abstract
Wound healing is a dynamic and complex process in which the microenvironment at the wound site plays an important role. As a common material for wound healing, dressings accelerate wound healing and prevent external wound infections. Hydrogels have become a hot topic in wound-dressing research because of their high water content, good biocompatibility, and adjustable physical and chemical properties. Intelligent hydrogel dressings have attracted considerable attention because of their excellent environmental responsiveness. As smart polymer hydrogels, thermosensitive hydrogels can respond to small temperature changes in the environment, and their special properties make them superior to other hydrogels. This review mainly focuses on the research progress in thermosensitive intelligent hydrogel dressings for wound healing. Polymers suitable for hydrogel formation and the appropriate molecular design of the hydrogel network to achieve thermosensitive hydrogel properties are discussed, followed by the application of thermosensitive hydrogels as wound dressings. We also discuss the future perspectives of thermosensitive hydrogels as wound dressings and provide systematic theoretical support for wound healing.
Collapse
Affiliation(s)
- Ruting Gu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Haiqing Zhou
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Zirui Zhang
- Emergency Departments, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Yun Lv
- School of Nursing, Qingdao University Qingdao 266000 China
| | - Yueshuai Pan
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Qianqian Li
- Ophthalmology Department, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Changfang Shi
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Yanhui Wang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Lili Wei
- Office of the Dean, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| |
Collapse
|
13
|
Wang W, Zhang G, Wang Y, Ran J, Chen L, Wei Z, Zou H, Cai Y, Han W. An injectable and thermosensitive hydrogel with nano-aided NIR-II phototherapeutic and chemical effects for periodontal antibacteria and bone regeneration. J Nanobiotechnology 2023; 21:367. [PMID: 37805588 PMCID: PMC10559606 DOI: 10.1186/s12951-023-02124-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023] Open
Abstract
Periodontitis is a common public health problem worldwide and an inflammatory disease with irregular defect of alveolar bone caused by periodontal pathogens. Both antibacterial therapy and bone regeneration are of great importance in the treatment of periodontitis. In this study, injectable and thermosensitive hydrogels with 3D networks were used as carriers for controlled release of osteo-inductive agent (BMP-2) and Near Infrared Region-II (NIR-II) phototherapy agents (T8IC nano-particles). T8IC nano-particles were prepared by reprecipitation and acted as photosensitizer under 808 nm laser irradiation. Besides, we promoted photodynamic therapy (PDT) through adding H2O2 to facilitate the antibacterial effect instead of increasing the temperature of photothermal therapy (PTT). Hydrogel + T8IC + Laser + BMP-2 + H2O2 incorporated with mild PTT (45 °C), enhanced PDT and sustained release of BMP-2. It was present with excellent bactericidal effect, osteogenic induction and biosafety both in vitro and in vivo. Besides, immunohistochemistry staining and micro-CT analyses had confirmed that PTT and PDT could promote bone regeneration through alleviating inflammation state. Altogether, this novel approach with synergistic antibacterial effect, anti-inflammation and bone regeneration has a great potential for the treatment of periodontitis in the future.
Collapse
Affiliation(s)
- Weixiang Wang
- Fourth Clinical Division, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Guorong Zhang
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Yanyi Wang
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Jianchuan Ran
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Lin Chen
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Zheng Wei
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Huihui Zou
- Pediatric Dentistry, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Wei Han
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
- Pediatric Dentistry, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| |
Collapse
|
14
|
Yin L, Zhang K, Sun W, Zhang Y, Wang Y, Qin J. Carboxymethylcellulose based self-healing hydrogel with coupled DOX as Camptothecin loading carrier for synergetic colon cancer treatment. Int J Biol Macromol 2023; 249:126012. [PMID: 37517758 DOI: 10.1016/j.ijbiomac.2023.126012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
The self-healing hydrogels have important applications in biomedication as drug release carrier. In this research, the Doxorubicin (DOX) was coupled onto oxidized carboxymethylcellulose (CMC) (CMC-Ald) to fabricate self-healing hydrogel with intrinsic antitumor property and loaded with Camptothecin (CPT) for synergetic antitumor treatment. The DOX coupled CMC-Ald (CMC-AD) was reacted with poly(aspartic hydrazide) (PAH) to fabricate injectable self-healing hydrogel. The coupled DOX avoided the burst release of the drug and the 100 % CPT loaded hydrogel could take the advantages of both drugs to enhance the synergetic antitumor therapeutic effect. The in vitro and in vivo results revealed the CPT loaded CMC-AD/PAH hydrogel showed enhanced antitumor property and reduced biotoxicity of the drugs. These properties demonstrate that the CMC-AD/PAH hydrogel has great application prospects in biomedication.
Collapse
Affiliation(s)
- Liping Yin
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Kaiyue Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Weichen Sun
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yu Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yong Wang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China
| | - Jianglei Qin
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China.
| |
Collapse
|
15
|
Ibne Mahbub MS, Kim YJ, Choi H, Lee BT. Papaverine loaded injectable and thermosensitive hydrogel system for improving survival of rat dorsal skin flaps. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:28. [PMID: 37209216 PMCID: PMC10199301 DOI: 10.1007/s10856-023-06732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/02/2023] [Indexed: 05/22/2023]
Abstract
Vasospasm during reconstructive microsurgery is a common, uncertain, and devastating phenomena concerning flap survival. Topical vasodilators as antispasmodic agents are widely used to reduce vasospasm and enhance microvascular anastomosis in reconstructive microsurgery. In this study, thermo-responsive hydrogel (CNH) was fabricated by grafting chitosan (CS) and hyaluronic acid (HA) to poly(N-isopropylacrylamide) (PNIPAM). Papaverine, an anti-spasmodic agent, was then loaded to evaluate its effect on rat skin flap survival. Post-operative flap survival area and water content of rat dorsal skin flap were measured at 7 days after intradermal application of control hydrogel (CNHP0.0) and papaverine loaded hydrogel (CNHP0.4). Tissue malondialdehyde (MDA) content and superoxide dismutase (SOD) activity was measured using enzyme linked immunosorbent assay (ELISA) to determine oxidative stress in flaps. Hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) were performed to evaluate flap angiogenesis and inflammatory markers. Results showed that CNHP0.4 hydrogel could reduce tissue edema (35.63 ± 4.01%), improve flap survival area (76.30 ± 5.39%), increase SOD activity and decrease MDA content. Consequently, it also increased mean vessel density, upregulated expression of CD34 and VEGF, decreased macrophage infiltration, and reduced CD68 and CCR7 expression based on IHC staining. Overall, these results indicate that CNHP0.4 hydrogel can enhance angiogenesis with anti-oxidative and anti-inflammatory effects and promote skin flap survival by preventing vascular spasm.
Collapse
Affiliation(s)
- Md Sowaib Ibne Mahbub
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Yeong Jin Kim
- Department of Plastic & Reconstructive Surgery, Soonchunhyang University Hospital, Cheonan, South Korea
| | - Hwanjun Choi
- Department of Plastic & Reconstructive Surgery, Soonchunhyang University Hospital, Cheonan, South Korea.
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea.
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea.
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea.
| |
Collapse
|
16
|
Xu R, Tian J, Song Y, Dong S, Zhang Y. Multiple Responsive Hydrogel Films Based on Dynamic Phenylboronate Bond Linkages with Simple but Practical Linear Response Mode and Excellent Glucose/Fructose Response Speed. Polymers (Basel) 2023; 15:polym15091998. [PMID: 37177146 PMCID: PMC10181213 DOI: 10.3390/polym15091998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Multiple responsive hydrogels are usually constructed by the addition of many different functional groups. Generally, these groups have different responsive behaviors which lead to interleaved and complex modes of the multi-response system. It is difficult to get a practical application. In this study, we show that multi-response hydrogels can also be constructed using dynamic bonds as crosslinks. The multiple responsive hydrogel films with thicknesses on the sub-micrometer or micrometer scale can be fabricated from P(DMAA-3-AAPBA), a copolymer of N,N-dimethylacrylamide, 3-(acrylamido)phenylboronic acid, and poly(vinylalcohol) (PVA) though a simple layer-by-layer (LbL) technique. The driving force for the film build up is the in situ-formed phenylboronate ester bonds between the two polymers. The films exhibit Fabry-Perot fringes on their reflection spectra which can be used to calculate the equilibrium swelling degree (SDe) of the film so as to characterize its responsive behaviors. The results show that the films are responsive to temperature, glucose, and fructose with simple and practical linear response modes. More importantly, the speed of which the films respond to glucose or fructose is quite fast, with characteristic response times of 45 s and 7 s, respectively. These quick response films may have potential for real-time, continuous glucose or fructose monitoring. With the ability to bind with these biologically important molecules, one can expect that hydrogels may find more applications in biomedical areas in the future.
Collapse
Affiliation(s)
- Rong Xu
- China Academy of Aviation Manufacturing Technology, Beijing 100024, China
| | - Jiafeng Tian
- China Academy of Aviation Manufacturing Technology, Beijing 100024, China
| | - Yusheng Song
- China Academy of Aviation Manufacturing Technology, Beijing 100024, China
| | - Shihui Dong
- China Academy of Aviation Manufacturing Technology, Beijing 100024, China
| | - Yongjun Zhang
- School of Chemistry, Tiangong University, Tianjin 300387, China
| |
Collapse
|
17
|
Slavkova M, Tzankov B, Popova T, Voycheva C. Gel Formulations for Topical Treatment of Skin Cancer: A Review. Gels 2023; 9:gels9050352. [PMID: 37232944 DOI: 10.3390/gels9050352] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Skin cancer, with all its variations, is the most common type of cancer worldwide. Chemotherapy by topical application is an attractive strategy because of the ease of application and non-invasiveness. At the same time, the delivery of antineoplastic agents through the skin is difficult because of their challenging physicochemical properties (solubility, ionization, molecular weight, melting point) and the barrier function of the stratum corneum. Various approaches have been applied in order to improve drug penetration, retention, and efficacy. This systematic review aims at identifying the most commonly used techniques for topical drug delivery by means of gel-based topical formulations in skin cancer treatment. The excipients used, the preparation approaches, and the methods characterizing gels are discussed in brief. The safety aspects are also highlighted. The combinatorial formulation of nanocarrier-loaded gels is also reviewed from the perspective of improving drug delivery characteristics. Some limitations and drawbacks in the identified strategies are also outlined and considered within the future scope of topical chemotherapy.
Collapse
Affiliation(s)
- Marta Slavkova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Borislav Tzankov
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Teodora Popova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Christina Voycheva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
18
|
Ahmed YW, Tsai HC, Wu TY, Darge HF, Chen YS. Role of thermal and reactive oxygen species-responsive synthetic hydrogels in localized cancer treatment (bibliometric analysis and review). MATERIALS ADVANCES 2023; 4:6118-6151. [DOI: 10.1039/d3ma00341h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Cancer is a major pharmaceutical challenge that necessitates improved care.
Collapse
Affiliation(s)
- Yohannis Wondwosen Ahmed
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
- Advanced Membrane Material Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, Republic of China
| | - Tsung-Yun Wu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
| | - Yu-Shuan Chen
- Bio Innovation Center, Buddhist Tzu Chi Medical Foundation, Taiwan, Republic of China
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
- Tzu Chi University of Science and Technology, Taiwan, Republic of China
| |
Collapse
|
19
|
Zhang D, Ding C, Duan T, Zhou Q. Applications of Hydrogels in Premature Ovarian Failure and Intrauterine Adhesion. FRONTIERS IN MATERIALS 2022; 9. [DOI: 10.3389/fmats.2022.942957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Premature ovarian failure (POF) and intrauterine adhesion (IUA) that easily lead to reduced fertility in premenopausal women are two difficult diseases to treat in obstetrics and gynecology. Hormone therapy, in vitro fertilization and surgical treatments do not completely restore fertility. The advent of hydrogels offers new hope for the treatment of POF and IUA. Hydrogels are noncytotoxic and biodegradable, and do not cause immune rejection or inflammatory reactions. Drug delivery and stem cell delivery are the main application forms. Hydrogels are a local drug delivery reservoir, and the control of drug release is achieved by changing the physicochemical properties. The porous properties and stable three-dimensional structure of hydrogels support stem cell growth and functions. In addition, hydrogels are promising biomaterials for increasing the success rate of ovarian tissue transplantation. Hydrogel-based in vitro three-dimensional culture of follicles drives the development of artificial ovaries. Hydrogels form a barrier at the site of injury and have antibacterial, antiadhesive and antistenosis properties for IUA treatment. In this review, we evaluate the physicochemical properties of hydrogels, and focus on the latest applications of hydrogels in POF and IUA. We also found the limitations on clinical application of hydrogel and provide future prospects. Artificial ovary as the future of hydrogel in POF is worth studying, and 3D bioprinting may help the mass production of hydrogels.
Collapse
|
20
|
Ghorbanizamani F, Moulahoum H, Guler Celik E, Timur S. Ionic liquids enhancement of hydrogels and impact on biosensing applications. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Kremenovic M, Chan AA, Feng B, Bäriswyl L, Robatel S, Gruber T, Tang L, Lee DJ, Schenk M. BCG hydrogel promotes CTSS-mediated antigen processing and presentation, thereby suppressing metastasis and prolonging survival in melanoma. J Immunother Cancer 2022; 10:jitc-2021-004133. [PMID: 35732347 PMCID: PMC9226922 DOI: 10.1136/jitc-2021-004133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 12/31/2022] Open
Abstract
Background The use of intralesional Mycobacterium bovis BCG (intralesional live BCG) for the treatment of metastatic melanoma resulted in regression of directly injected, and occasionally of distal lesions. However, intralesional-BCG is less effective in patients with visceral metastases and did not significantly improve overall survival. Methods We generated a novel BCG lysate and developed it into a thermosensitive PLGA-PEG-PLGA hydrogel (BCG hydrogel), which was injected adjacent to the tumor to assess its antitumor effect in syngeneic tumor models (B16F10, MC38). The effect of BCG hydrogel treatment on contralateral tumors, lung metastases, and survival was assessed to evaluate systemic long-term efficacy. Gene expression profiles of tumor-infiltrating immune cells and of tumor-draining lymph nodes from BCG hydrogel-treated mice were analyzed by single-cell RNA sequencing (scRNA-seq) and CD8+ T cell receptor (TCR) repertoire diversity was assessed by TCR-sequencing. To confirm the mechanistic findings, RNA-seq data of biopsies obtained from in-transit cutaneous metastases of patients with melanoma who had received intralesional-BCG therapy were analyzed. Results Here, we show that BCG lysate exhibits enhanced antitumor efficacy compared to live mycobacteria and promotes a proinflammatory tumor microenvironment and M1 macrophage (MΦ) polarization in vivo. The underlying mechanisms of BCG lysate-mediated tumor immunity are dependent on MΦ and dendritic cells (DCs). BCG hydrogel treatment induced systemic immunity in melanoma-bearing mice with suppression of lung metastases and improved survival. Furthermore, BCG hydrogel promoted cathepsin S (CTSS) activity in MΦ and DCs, resulting in enhanced antigen processing and presentation of tumor-associated antigens. Finally, BCG hydrogel treatment was associated with increased frequencies of melanoma-reactive CD8+ T cells. In human patients with melanoma, intralesional-BCG treatment was associated with enhanced M1 MΦ, mature DC, antigen processing and presentation, as well as with increased CTSS expression which positively correlated with patient survival. Conclusions These findings provide mechanistic insights as well as rationale for the clinical translation of BCG hydrogel as cancer immunotherapy to overcome the current limitations of immunotherapies for the treatment of patients with melanoma.
Collapse
Affiliation(s)
- Mirela Kremenovic
- Experimental Pathology, University of Bern Institute of Pathology, Bern, Switzerland.,Graduate School Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Alfred A Chan
- Division of Dermatology, Department of Medicine, The Lundquist Institute, Torrance, California, USA
| | - Bing Feng
- Institute of Bioengineering and Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, VD, Switzerland
| | - Lukas Bäriswyl
- Experimental Pathology, University of Bern Institute of Pathology, Bern, Switzerland
| | - Steve Robatel
- Experimental Pathology, University of Bern Institute of Pathology, Bern, Switzerland.,Graduate School Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Thomas Gruber
- Experimental Pathology, University of Bern Institute of Pathology, Bern, Switzerland
| | - Li Tang
- Institute of Bioengineering and Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, VD, Switzerland
| | - Delphine J Lee
- Division of Dermatology, Department of Medicine, The Lundquist Institute, Torrance, California, USA
| | - Mirjam Schenk
- Experimental Pathology, University of Bern Institute of Pathology, Bern, Switzerland
| |
Collapse
|
22
|
Abdelbasset WK, Jasim SA, Sharma SK, Margiana R, Bokov DO, Obaid MA, Hussein BA, Lafta HA, Jasim SF, Mustafa YF. Alginate-Based Hydrogels and Tubes, as Biological Macromolecule-Based Platforms for Peripheral Nerve Tissue Engineering: A Review. Ann Biomed Eng 2022; 50:628-653. [PMID: 35446001 DOI: 10.1007/s10439-022-02955-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/20/2022] [Indexed: 12/25/2022]
Abstract
Unlike the central nervous system, the peripheral nervous system (PNS) has an inherent capacity to regenerate following injury. However, in the case of large nerve defects where end-to-end cooptation of two nerve stumps is not tension-free, autologous nerve grafting is often utilized to bridge the nerve gaps. To address the challenges associated with autologous nerve grafting, neural guidance channels (NGCs) have been successfully translated into clinic. Furthermore, hydrogel-based drug delivery systems have been extensively studied for the repair of PNS injuries. There are numerous biomaterial options for the production of NGCs and hydrogels. Among different candidates, alginate has shown promising results in PNS tissue engineering. Alginate is a naturally occurring polysaccharide which is biocompatible, non-toxic, non-immunogenic, and possesses modifiable properties. In the current review, applications, challenges, and future perspectives of alginate-based NGCs and hydrogels in the repair of PNS injuries will be discussed.
Collapse
Affiliation(s)
- Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, P.O. Box. 173, Al-Kharj, 11942, Saudi Arabia. .,Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, 12613, Egypt.
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-anbar-Ramadi, Iraq
| | - Satish Kumar Sharma
- Pharmacology Department, Glocal School of Pharmacy, The Glocal University, Saharanpur, India
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia. .,Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia. .,Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, Russian Federation, 119991.,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr, Moscow, Russian Federation, 109240
| | - Maithm A Obaid
- College of Pharmacy, National University of Science and Technology, Thi Qar, Iraq
| | | | | | - Sara Firas Jasim
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| |
Collapse
|
23
|
Ullah A, Lim SI. Bioinspired tunable hydrogels: An update on methods of preparation, classification, and biomedical and therapeutic applications. Int J Pharm 2022; 612:121368. [PMID: 34896566 DOI: 10.1016/j.ijpharm.2021.121368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Hydrogels exhibit water-insoluble three-dimensional polymeric networks capable of absorbing large amounts of biological fluids. Both natural and synthetic polymers are used for the preparation of hydrogel networks. Such polymeric networks are fabricated through chemical or physical mechanisms of crosslinking. Chemical crosslinking is accomplished mainly through covalent bonding, while physical crosslinking involves self-healing secondary forces like H-bonding, host-guest interactions, and antigen-antibody interactions. The building blocks of the hydrogels play an important role in determining the mechanical, biological, and physicochemical properties. Hydrogels are used in a variety of biomedical applications like diagnostics (biodetection and bioimaging), delivery of therapeutics (drugs, immunotherapeutics, and vaccines), wound dressing and skin materials, cardiac complications, contact lenses, tissue engineering, and cell culture because of the inherent characteristics like enhanced water uptake and structural similarity with the extracellular matrix (ECM). This review highlights the recent trends and advances in the roles of hydrogels in biomedical and therapeutic applications. We also discuss the classification and methods of hydrogels preparation. A brief outlook on the future directions of hydrogels is also presented.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University Dera Ismail Khan 29050, Khyber Pakhtunkhwa, Pakistan
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
24
|
Nazary Abrbekoh F, Salimi L, Saghati S, Amini H, Fathi Karkan S, Moharamzadeh K, Sokullu E, Rahbarghazi R. Application of microneedle patches for drug delivery; doorstep to novel therapies. J Tissue Eng 2022; 13:20417314221085390. [PMID: 35516591 PMCID: PMC9065468 DOI: 10.1177/20417314221085390] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
In the past decade, microneedle-based drug delivery systems showed promising approaches to become suitable and alternative for hypodermic injections and can control agent delivery without side effects compared to conventional approaches. Despite these advantages, the procedure of microfabrication is facing some difficulties. For instance, drug loading method, stability of drugs, and retention time are subjects of debate. Besides, the application of novel refining fabrication methods, types of materials, and instruments are other issues that need further attention. Herein, we tried to summarize recent achievements in controllable drug delivery systems (microneedle patches) in vitro and in vivo settings. In addition, we discussed the influence of delivered drugs on the cellular mechanism and immunization molecular signaling pathways through the intradermal delivery route. Understanding the putative efficiency of microneedle patches in human medicine can help us develop and design sophisticated therapeutic modalities.
Collapse
Affiliation(s)
| | - Leila Salimi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sonia Fathi Karkan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Keyvan Moharamzadeh
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Emel Sokullu
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Şahin FC, Şimşek C, Erbil C. Study on preparation, compression strength and theophylline/diclofenac sodium release ability of NIPAAm/DMAPMAAm hydrogels. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2021; 32:2267-2292. [PMID: 34436978 DOI: 10.1080/09205063.2021.1967700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
The present study was undertaken to investigate the effect of the composition of the polymerization medium and the type of drug/drug loading process on the mechanical strengths and release profiles of poly(N-isopropylacrylamide-co-N-[3-(dimethylamino)propyl] methacrylamide) P(NIPAAm-co-DMAPMAAm) hydrogels. In line with this goal firstly, the temperature- and pH-responsive hydrogels of NIPAAm and DMAPMAAm were synthesized in three different media at 60 °C: pH 7.4 phosphate-buffered saline (PBS), pH 7.4 phosphate buffer without NaCl/KCl (PB), and distilled-deionized water (pH ≈ 5.5 DDW). The result is that the presence of anionic species such as phosphate (HPO42-/H2PO4-) and chloride (Cl-) ions in the solution affects on their basic network properties such as volumetric swelling ratio and compression modulus. To evaluate their intermolecular interactions with protonated DMAPMAAm units and drug molecules, depending on composition, type of loading process and drug structure, each of the hydrogels was loaded with diclofenac sodium (DFNa) and theophylline (Thp) by using both diffusion and in situ loading methods. DFNa and Thp release profiles in pH 7.4 PBS at 37 °C were analysed by using zero-order, first-order, Higuchi, Korsmeyer-Peppas, and Peppas-Sahlin models. It has been observed that for the first 60% of DFNa and Thp releases from P(NIPAAm-co-DMAPMAAm) hydrogels synthesized in PB at 60 °C, the contribution of the chain relaxation for the copolymer hydrogels loaded during gelation process was higher than the ones loaded by diffusion process.
Collapse
Affiliation(s)
| | - Ceyda Şimşek
- Chemistry Department, Istanbul Technical University, Istanbul, Turkey
| | - Candan Erbil
- Chemistry Department, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
26
|
Teoh JH, Tay SM, Fuh J, Wang CH. Fabricating scalable, personalized wound dressings with customizable drug loadings via 3D printing. J Control Release 2021; 341:80-94. [PMID: 34793918 DOI: 10.1016/j.jconrel.2021.11.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022]
Abstract
In recent times, 3D printing has been gaining traction as a fabrication platform for customizable drug dosages as a form of personalized medicine. While this has been recently demonstrated as oral dosages, there is potential to provide the same customizability and personalization as topical applications for wound healing. In this paper, the application of 3D printing to fabricate hydrogel wound dressings with customizable architectures and drug dosages was investigated. Chitosan methacrylate was synthesized and mixed with Lidocaine Hydrochloride and Levofloxacin respectively along with a photoinitiator before being used to print wound dressings of various designs. These designs were then investigated for their effect on drug release rates and profiles. Our results show the ability of 3D printing to customize drug dosages and drug release rates through co-loading different drugs at various positions and varying the thickness of drug-free layers over drug-loaded layers in the wound dressing respectively. Two scale-up approaches were also investigated for their effects on drug release rates from the wound dressing. The influence that each wound dressing design has on the release profile of drugs was also shown by fitting them with drug release kinetic models. This study thus shows the feasibility of utilizing 3D printing to fabricate wound dressings with customizable shapes, drug dosage and drug release rates that can be tuned according to the patient's requirements.
Collapse
Affiliation(s)
- Jia Heng Teoh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Sook Muay Tay
- Department of Surgical Intensive Care, Division of Anaesthesiology and Perioperative Medicine, Singapore General Hospital, Outram Road, 169608, Singapore
| | - Jerry Fuh
- Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| |
Collapse
|
27
|
Hahn D, Sonntag JM, Lück S, Maitz MF, Freudenberg U, Jordan R, Werner C. Poly(2-alkyl-2-oxazoline)-Heparin Hydrogels-Expanding the Physicochemical Parameter Space of Biohybrid Materials. Adv Healthc Mater 2021; 10:e2101327. [PMID: 34541827 PMCID: PMC11481032 DOI: 10.1002/adhm.202101327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/10/2021] [Indexed: 12/19/2022]
Abstract
Poly(ethylene glycol) (PEG)-glycosaminoglycan (GAG) hydrogel networks are established as very versatile biomaterials. Herein, the synthetic gel component of the biohybrid materials is systematically varied by combining different poly(2-alkyl-2-oxazolines) (POx) with heparin applying a Michael-type addition crosslinking scheme: POx of gradated hydrophilicity and temperature-responsiveness provides polymer networks of distinctly different stiffness and swelling. Adjusting the mechanical properties and the GAG concentration of the gels to similar values allows for modulating the release of GAG-binding growth factors (VEGF165 and PDGF-BB) by the choice of the POx and its temperature-dependent conformation. Adsorption of fibronectin, growth of fibroblasts, and bacterial adhesion scale with the hydrophobicity of the gel-incorporated POx. In vitro hemocompatibility tests with freshly drawn human whole blood show advantages of POx-based gels compared to the PEG-based reference materials. Biohybrid POx hydrogels can therefore enable biomedical technologies requiring GAG-based materials with customized and switchable physicochemical characteristics.
Collapse
Affiliation(s)
- Dominik Hahn
- Leibniz Institute of Polymer Research DresdenMax‐Bergmann Center of Biomaterials DresdenHohe Str. 601069DresdenGermany
| | - Jannick M. Sonntag
- Dresden Initiative for Bioactive Interfaces & MaterialsTechnische Universität DresdenMommsenstr. 401069DresdenGermany
- Professur für Makromolekulare ChemieFaculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Steffen Lück
- Dresden Initiative for Bioactive Interfaces & MaterialsTechnische Universität DresdenMommsenstr. 401069DresdenGermany
- Professur für Makromolekulare ChemieFaculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Manfred F. Maitz
- Leibniz Institute of Polymer Research DresdenMax‐Bergmann Center of Biomaterials DresdenHohe Str. 601069DresdenGermany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research DresdenMax‐Bergmann Center of Biomaterials DresdenHohe Str. 601069DresdenGermany
| | - Rainer Jordan
- Dresden Initiative for Bioactive Interfaces & MaterialsTechnische Universität DresdenMommsenstr. 401069DresdenGermany
- Professur für Makromolekulare ChemieFaculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Carsten Werner
- Leibniz Institute of Polymer Research DresdenMax‐Bergmann Center of Biomaterials DresdenHohe Str. 601069DresdenGermany
- Center for Regenerative Therapies Dresden (CRTD)Fetscherstr. 10501307DresdenGermany
| |
Collapse
|
28
|
Liu SJ, Liao SC. Surface Modification of Bamboo Charcoal by O 2 Plasma Treatment and UV-Grafted Thermo-Sensitive AgNPs Hydrogel to Improve Antibacterial Properties in Biomedical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2697. [PMID: 34685136 PMCID: PMC8537071 DOI: 10.3390/nano11102697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/28/2022]
Abstract
With the advancement of science and modern medical technology, more and more medical materials and implants are used in medical treatment and to improve human life. The safety of invasive medical materials and the prevention of infection are gradually being valued. Therefore, avoiding operation failure or wound infection and inflammation caused by surgical infection is one of the most important topics in current medical technology. Silver nanoparticles (AgNPs) have minor irritation and toxicity to cells and have a broad-spectrum antibacterial effect without causing bacterial resistance and other problems. They are also less toxic to the human body. Bamboo charcoal (BC) is a bioinert material with a porous structure, light characteristics, and low density, like bone quality. It can be used as a lightweight bone filling material. However, it does not have any antibacterial function. This study synthesized AgNPs under the ultraviolet (UV) photochemical method by reducing silver nitrate with sodium citrate. The formation and distribution of AgNPs were confirmed by UV-visible spectroscopy and X-ray diffraction measurement (XRD). The BC was treated by O2 plasma to increase the number of polar functional groups on the surface. Then, UV light-induced graft polymerization of N-isopropyl acrylamide (NIPAAm) and AgNPs were applied onto the BC to immobilize thermos-/antibacterial composite hydrogels on the BC surface. The structures and properties of thermos-/antibacterial composite hydrogel-modified BC surface were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared spectrum (FT-IR), and X-ray photoelectron spectroscopy (XPS). The results show that thermos-/antibacterial composite hydrogels were then successfully grafted onto BC. SEM observations showed that the thermos-/antibacterial composite hydrogels formed a membrane structure between the BC. The biocompatibility of the substrate was evaluated by Alamar Blue cell viability assay and antibacterial test in vitro.
Collapse
Affiliation(s)
- Shih-Ju Liu
- Design and Materials for Medical Equipment and Devices, Da-Yeh University Changhua, Changhua 515006, Taiwan;
| | - Shu-Chuan Liao
- Department of Biomedical Engineering, Da-Yeh University Changhua, Changhua 515006, Taiwan
| |
Collapse
|
29
|
Synthesis, physical and mechanical properties of amphiphilic hydrogels based on polycaprolactone and polyethylene glycol for bioapplications: A review. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Patel N, Ji N, Wang Y, Li X, Langley N, Tan C. Subcutaneous Delivery of Albumin: Impact of Thermosensitive Hydrogels. AAPS PharmSciTech 2021; 22:120. [PMID: 33782742 DOI: 10.1208/s12249-021-01982-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/04/2021] [Indexed: 12/19/2022] Open
Abstract
Albumin demonstrates remarkable promises as a versatile carrier for therapeutic and diagnostic agents. However, noninvasive delivery of albumin-based therapeutics has been largely unexplored. In this study, injectable thermosensitive hydrogels were evaluated as sustained delivery systems for Cy5.5-labeled bovine serum albumin (BSA-Cy5.5). These hydrogels were prepared using aqueous solutions of Poloxamer 407 (P407) or poly(lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly(lactide-co-glycolide) (PLGA-PEG-PLGA), which could undergo temperature-triggered phase transition and spontaneously solidify into hydrogels near body temperature, serving as in situ depot for tunable cargo release. In vitro, these hydrogels were found to release BSA-Cy5.5 in a sustained manner with the release half-life of BSA-Cy5.5 from P407 and PLGA-PEG-PLGA hydrogels at 16 h and 105 h, respectively. Without affecting the bioavailability, subcutaneous administration of BSA-Cy5.5-laden P407 hydrogel resulted in delayed BSA-Cy5.5 absorption, which reached the maximum plasma level (Tmax) at 24 h, whereas the Tmax for subcutaneously administered free BSA-Cy5.5 solution was 8 h. Unexpectedly, subcutaneously injected BSA-Cy5.5-laden PLGA-PEG-PLGA hydrogel did not yield sustained BSA-Cy5.5 plasma level, the bioavailability of which was significantly lower than that of P407 hydrogel (p < 0.05). The near-infrared imaging of BSA-Cy5.5-treated mice revealed that a notable portion of BSA-Cy5.5 remained trapped within the subcutaneous tissues after 6 days following the subcutaneous administration of free solution or hydrogels, suggesting the discontinuation of BSA-Cy5.5 absorption irrespective of the formulations. These results suggest the opportunities of developing injectable thermoresponsive hydrogel formulations for subcutaneous delivery of albumin-based therapeutics.
Collapse
|
31
|
Shabana AM, Kambhampati SP, Hsia RC, Kannan RM, Kokkoli E. Thermosensitive and biodegradable hydrogel encapsulating targeted nanoparticles for the sustained co-delivery of gemcitabine and paclitaxel to pancreatic cancer cells. Int J Pharm 2021; 593:120139. [PMID: 33278494 DOI: 10.1016/j.ijpharm.2020.120139] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 01/12/2023]
Abstract
Pancreatic cancer represents a life threatening disease with rising mortality. Although the synergistic combination of gemcitabine and albumin-bound paclitaxel has proven to enhance the median survival rates as compared to gemcitabine alone, their systemic and repeated co-administration has been associated with serious toxic side effects and poor patient compliance. For this purpose, we designed a thermosensitive and biodegradable hydrogel encapsulating targeted nanoparticles for the local and sustained delivery of gemcitabine (GEM) and paclitaxel (PTX) to pancreatic cancer. GEM and PTX were loaded into PR_b-functionalized liposomes targeting integrin α5β1, which was shown to be overexpressed in pancreatic cancer. PR_b is a fibronectin-mimetic peptide that binds to α5β1 with high affinity and specificity. The PR_b liposomes were encapsulated into a poly(δ-valerolactone-co-D,L-lactide)-b-poly(ethylene glycol)-b-poly(δ-valerolactone-co-D,L-lactide) (PVLA-PEG-PVLA) hydrogel and demonstrated sustained release of both drugs compared to PR_b-functionalized liposomes free in solution or free drugs in the hydrogel. Moreover, the hydrogel-nanoparticle system was proven to be very efficient towards killing monolayers of human pancreatic cancer cells (PANC-1), and showed a significant reduction in the growth pattern of PANC-1 tumor spheroids as compared to hydrogels encapsulating non-targeted liposomes with GEM/PTX or free drugs, after a one week treatment period. Our hybrid hydrogel-nanoparticle system is a promising platform for the local and sustained delivery of GEM/PTX to pancreatic cancer, with the goal of maximizing the therapeutic efficacy of this synergistic drug cocktail while potentially minimizing toxic side effects and eliminating the need for repeated co-administration.
Collapse
Affiliation(s)
- Ahmed M Shabana
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, United States; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Siva P Kambhampati
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Ru-Ching Hsia
- Department of Neural and Pain Sciences, Electron Microscopy Core Imaging Facility, University of Maryland Baltimore Dental School, Baltimore, MD 21201, United States
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Efrosini Kokkoli
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, United States; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, United States.
| |
Collapse
|
32
|
Wang M, Zhan J, Xu L, Wang Y, Lu D, Li Z, Li J, Luo F, Tan H. Synthesis and characterization of PLGA-PEG-PLGA based thermosensitive polyurethane micelles for potential drug delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:613-634. [PMID: 33218294 DOI: 10.1080/09205063.2020.1854413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polyurethane nanomicelle is a promising functional drug delivery system. In this work, the polyurethane (P3-PU) was synthesized from PLGA1200-PEG1450-PLGA1200 (P3, a thermosensitive and biodegradable triblock copolymer) and L-lysine ester diisocyanate (LDI). Then, reactive benzaldehyde was further imported to terminate P3-PU to obtain benzaldehyde modified polyurethane (P3-PUDA). The micelles, temperature-sensitive P3-PU nanomicelle and P3-PUDA nanomicelle, were systematically investigated, including the size, stability, temperature sensitivity, drug loading and release behavior, cytotoxic on human hepatocytes (L02), and inhibitory effect on human hepatocellular carcinoma cells (HepG2). The results show the thermosensitive behavior of the micelles can be adjusted by the terminal group. The polyurethane micelles with a uniform size between 20 nm and 30 nm showed excellent stability and good biocompatibility to L02 cells. Besides, in vitro experiments showed that Dox-loaded P3-PUDA micelles exhibited faster and higher release rate at 37 °C and better inhibitory effect on HepG2 than the Dox-loaded P3-PU micelles. Moreover, the achieved benzaldehyde modified polyurethanes also provides various possibilities to adjust further to enlarge its applications. Therefore, the polyurethane micelles will have great potential in the field of drug carriers.
Collapse
Affiliation(s)
- Min Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Jianghao Zhan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Laijun Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Yanjun Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Dan Lu
- Department of Otorhinolaryngology, Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Li L, Zhang X, Pi C, Yang H, Zheng X, Zhao L, Wei Y. Review of Curcumin Physicochemical Targeting Delivery System. Int J Nanomedicine 2020; 15:9799-9821. [PMID: 33324053 PMCID: PMC7732757 DOI: 10.2147/ijn.s276201] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Curcumin (CUR), as a traditional Chinese medicine monomer extracted from the rhizomes of some plants in Ginkgo and Araceae, has shown a wide range of therapeutic and pharmacological activities such as anti-tumor, anti-inflammatory, anti-oxidation, anti-virus, anti-liver fibrosis, anti-atherosclerosis, and anti-Alzheimer’s disease. However, some issues significantly affect its biological activity, such as low aqueous solubility, physico-chemical instability, poor bioavailability, and low targeting efficacy. In order to further improve its curative effect, numerous efficient drug delivery systems have been carried out. Among them, physicochemical targeting preparations could improve the properties, targeting ability, and biological activity of CUR. Therefore, in this review, CUR carrier systems are discussed that are driven by physicochemical characteristics of the microenvironment (eg, pH variation of tumorous tissues), affected by external influences like magnetic fields and vehicles formulated with thermo-sensitive materials.
Collapse
Affiliation(s)
- Lanmei Li
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China.,Nanchong Key Laboratory of Individualized Drug Therapy, Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan 637000, People's Republic of China
| | - Xiaomei Zhang
- Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese MateriaMedica, Chongqing 400065, People's Republic of China
| | - Chao Pi
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Hongru Yang
- Department of Oncology of Luzhou People's Hospital, Luzhou, Sichuan 646000, People's Republic of China
| | - Xiaoli Zheng
- Basic Medical College of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Ling Zhao
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yumeng Wei
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
34
|
Sustained-release hydrogels of ivermectin as alternative systems to improve the treatment of cutaneous leishmaniasis. Ther Deliv 2020; 11:779-790. [PMID: 33198601 DOI: 10.4155/tde-2020-0090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Leishmaniasis is a neglected tropical disease and its cutaneous form manifests as ulcers or nodules, generally in exposed parts of the body. This work aimed to develop ivermectin (IVM) thermosensitive hydrogels as topical formulations to improve cutaneous leishmaniasis treatment. Materials & methods: Hydrogels based on poloxamers 407 and 188 with different concentrations of IVM were prepared and rheologically characterized. The IVM release profiles were obtained and mathematically analyzed using the Lumped model. Results: The formulation containing 1.5% w/w of IVM presented an adequate gelling temperature, an optimal complex viscosity and elastic modulus. Hydrogels allowed to modulate the release of IVM. Conclusion: IVM thermosensitive hydrogels can be considered a valuable alternative to improve the treatment of cutaneous leishmaniasis.
Collapse
|
35
|
Polyvinylpyrrolidone-graft-poly(2-hydroxyethylmethacrylate) hydrogel membranes for encapsulated forms of drugs. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02335-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Stănescu PO, Radu IC, Drăghici C, Teodorescu M. Controlling the thermal response of poly(N-isopropylacrylamide)-poly(ethylene glycol)- poly(N-isopropylacrylamide) triblock copolymers in aqueous solution by means of additives. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
37
|
A Sacrificial PLA Block Mediated Route to Injectable and Degradable PNIPAAm-Based Hydrogels. Polymers (Basel) 2020; 12:polym12040925. [PMID: 32316376 PMCID: PMC7240404 DOI: 10.3390/polym12040925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm)-based injectable hydrogels represent highly attractive materials in tissue engineering and drug/vaccine delivery but face the problem of long-term bioaccumulation due to non-degradability. In this context, we developed an amphiphilic poly(D,L-lactide)-b-poly(NIPAAm-co-polyethylene glycol methacrylate) (PLA-b-P(NIPAAm-co-PEGMA)) copolymer architecture, through a combination of ring-opening and nitroxide-mediated polymerizations, undergoing gelation in aqueous solution near 30 °C. Complete hydrogel mass loss was observed under physiological conditions after few days upon PLA hydrolysis. This was due to the inability of the resulting P(NIPAAm-co-PEGMA) segment, that contains sufficiently high PEG content, to gel. The copolymer was shown to be non-toxic on dendritic cells. These results thus provide a new way to engineer safe PNIPAAm-based injectable hydrogels with PNIPAAm-reduced content and a degradable feature.
Collapse
|
38
|
Pertici V, Trimaille T, Gigmes D. Inputs of Macromolecular Engineering in the Design of Injectable Hydrogels Based on Synthetic Thermoresponsive Polymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b00705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vincent Pertici
- Aix-Marseille Univ, CNRS, Institut de Chimie Radicalaire, ICR UMR 7273, 13397 Marseille, France
| | - Thomas Trimaille
- Aix-Marseille Univ, CNRS, Institut de Chimie Radicalaire, ICR UMR 7273, 13397 Marseille, France
| | - Didier Gigmes
- Aix-Marseille Univ, CNRS, Institut de Chimie Radicalaire, ICR UMR 7273, 13397 Marseille, France
| |
Collapse
|
39
|
Yu P, Xie J, Chen Y, Liu J, Liu Y, Bi B, Luo J, Li S, Jiang X, Li J. A thermo-sensitive injectable hydroxypropyl chitin hydrogel for sustained salmon calcitonin release with enhanced osteogenesis and hypocalcemic effects. J Mater Chem B 2019; 8:270-281. [PMID: 31802093 DOI: 10.1039/c9tb02049g] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pharmacotherapy towards hypercalcemia treatment mainly caused by osteoporosis and bone tumor is an effective method to regulate in vivo calcium equilibrium. As a clinical therapeutic peptide, salmon calcitonin (sCT) is considered as a quick-acting medicine but it is limited by the short half-life. To address this challenge, we designed an injectable thermo-sensitive hydrogel based on hydroxypropyl chitin (HPCH) and incorporated the complex of sCT and hyaluronic acid (HA) (sCT-HA) with high association efficiency up to 96.84 ± 7.25%. This composite hydrogel showed a tunable biodegradable property. In vitro sCT release profiles revealed that this hydrogel can achieve long-term sustained sCT release (28 days) with considerable structure stability. The cellular study illustrated outstanding compatibility and osteoconductive potential of this multi-component hydrogel according to the higher ALP activity (2.10-fold), calcium expression (2.30-fold) and extracellular calcium deposition (1.10-fold) compared to that of the sCT group. In vivo sCT release confirmed that this hydrogel system realized sustained sCT release and a continuous hypocalcemic effect for as long as 28 days, and there were no inflammation and immune responses according to the histological evaluations (H&E and IgG staining). These findings demonstrate that this osteoconductive hydrogel system can provide a promising method for therapy of bone related disease.
Collapse
Affiliation(s)
- Peng Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Yu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jinming Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Yanpeng Liu
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Research Center for Clinical Pharmacy, First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, P. R. China
| | - Bo Bi
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Sheyu Li
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
40
|
Qureshi D, Nayak SK, Maji S, Anis A, Kim D, Pal K. Environment sensitive hydrogels for drug delivery applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109220] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Zheng W, Wang J, Xie L, Xie H, Chen C, Zhang C, Lin D, Cai L. An injectable thermosensitive hydrogel for sustained release of apelin-13 to enhance flap survival in rat random skin flap. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:106. [PMID: 31502009 DOI: 10.1007/s10856-019-6306-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
With the advantage of handy process, random pattern skin flaps are generally applied in limb reconstruction and wound repair. Apelin-13 is a discovered endogenous peptide, that has been shown to have potent multiple biological functions. Recently, thermosensitive gel-forming systems have gained increasing attention as wound dressings due to their advantages. In the present study, an apelin-13-loaded chitosan (CH)/β-sodium glycerophosphate (β-GP) hydrogel was developed for promoting random skin flap survival. Random skin flaps were created in 60 rats after which the animals were categorized to a control hydrogel group and an apelin-13 hydrogel group. The water content of the flap as well as the survival area were then measured 7 days post-surgery. Hematoxylin and eosin staining was used to evaluate the flap angiogenesis. Cell differentiation 34 (CD34) and vascular endothelial growth factor (VEGF) levels were detected by immunohistochemistry and Western blotting. Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were assessed by enzyme linked immunosorbent assays (ELISAs). Oxidative stress was estimated via the activity of tissue malondialdehyde (MDA) and superoxide dismutase (SOD). Our results showed that CH/β-GP/apelin-13 hydrogel could not only reduce the tissue edema, but also improve the survival area of flap. CH/β-GP/apelin-13 hydrogel also upregulated levels of VEGF protein and increased mean vessel densities. Furthermore, CH/β-GP/apelin-13 hydrogel was shown to significantly inhibit the expression of TNF-α and IL-6, along with increasing the activity of SOD and suppressing the MDA content. Taken together, these results indicate that this CH/β-GP/apelin-13 hydrogel may be a potential therapeutic way for random pattern skin flap.
Collapse
Affiliation(s)
- Wenhao Zheng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Jinwu Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Linzhen Xie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Huanguang Xie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Chunhui Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Chuanxu Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Dingsheng Lin
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Leyi Cai
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China.
| |
Collapse
|
42
|
Zanon D, Volpato C, Addobbati R, Loiacono S, Maestro A, Barbi E, Maximova N, Mamolo MG, Zampieri D. Stability of a novel Lidocaine, Adrenaline and Tetracaine sterile thermosensitive gel: A ready-to-use formulation. Eur J Pharm Sci 2019; 136:104962. [PMID: 31233867 DOI: 10.1016/j.ejps.2019.104962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/09/2019] [Accepted: 06/17/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND Superficial wounds that require suturing are often the reason children visit the Paediatric Emergency Department. Suturing is usually accompanied by perilesional administration of lidocaine, a local anaesthetic drug that improves pain tolerance. In paediatric patients, this approach has a low compliance because lidocaine has to be injected, which in children generates fear and anxiety, a sterile anaesthetic gel could improve the child compliance. OBJECTIVE To develop a sterile and stable sterile gel capable of remaining in place over time for topical anaesthesia. METHOD Different formulations were analysed by HPLC, by UV and fluorimetric detection. Two different sterilisation methods were tested. MAIN OUTCOME To maintain the original stability of the gel also after sterilisation process. RESULTS Four different gels were prepared and analysed; the most stable gel lasts over 3 months with a degradation less than 10%. CONCLUSION The use of Poloxamer 407 guarantees stability of the preparation, showing a reduction in oxidative reaction, and gives the gel the right texture for application to a bleeding wound.
Collapse
Affiliation(s)
- Davide Zanon
- Department of Pharmacy and Clinical Pharmacology, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy.
| | - Chiara Volpato
- Department of Pharmacy and Clinical Pharmacology, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Riccardo Addobbati
- Department of Clinical Toxicology, Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Stefano Loiacono
- Department of Pharmacy and Clinical Pharmacology, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Alessandra Maestro
- Department of Pharmacy and Clinical Pharmacology, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Egidio Barbi
- Department of Pediatrics, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy; University of Trieste, Trieste, Italy
| | - Natalia Maximova
- Department Bone Marrow Transplantation, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Maria Grazia Mamolo
- Department of Chemistry and Pharmaceutical Sciences, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy
| | - Daniele Zampieri
- Department of Chemistry and Pharmaceutical Sciences, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
43
|
Dadfar SMR, Pourmahdian S, Tehranchi MM, Dadfar SM. Novel dual‐responsive semi‐interpenetrating polymer network hydrogels for controlled release of anticancer drugs. J Biomed Mater Res A 2019; 107:2327-2339. [DOI: 10.1002/jbm.a.36741] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023]
Affiliation(s)
| | - Saeed Pourmahdian
- Department of Polymer Engineering and Color TechnologyAmirkabir University of Technology Tehran Iran
- Laser and Plasma Research InstituteShahid Beheshti University Tehran Iran
| | - Mohammad Mehdi Tehranchi
- Laser and Plasma Research InstituteShahid Beheshti University Tehran Iran
- Department of PhysicsShahid Beheshti University Tehran Iran
| | - Seyed Mohammadali Dadfar
- Faculty of Medicine, Institute for Experimental Molecular ImagingRWTH Aachen University Aachen Germany
| |
Collapse
|
44
|
Xu X, Gu Z, Chen X, Shi C, Liu C, Liu M, Wang L, Sun M, Zhang K, Liu Q, Shen Y, Lin C, Yang B, Sun H. An injectable and thermosensitive hydrogel: Promoting periodontal regeneration by controlled-release of aspirin and erythropoietin. Acta Biomater 2019; 86:235-246. [PMID: 30611793 DOI: 10.1016/j.actbio.2019.01.001] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022]
Abstract
Periodontitis is an inflammatory disease induced by complex interactions between host immune system and plaque microorganism. Alveolar bone resorption caused by periodontitis is considered to be one of the main reasons for tooth loss in adults. To terminate the alveolar bone resorption, simultaneous anti-inflammation and periodontium regeneration is required, which has not appeared in the existing methods. In this study, chitosan (CS), β-sodium glycerophosphate (β-GP), and gelatin were used to prepare an injectable and thermosensitive hydrogel, which could continuously release aspirin and erythropoietin (EPO) to exert pharmacological effects of anti-inflammation and tissue regeneration, respectively. The releasing profile showed that aspirin and EPO could be continuously released from the hydrogels, which exhibited no toxicity both in vitro and in vivo, for at least 21 days. Immunohistochemistry staining and micro-CT analyses indicated that administration of CS/β-GP/gelatin hydrogels loaded with aspirin/EPO could terminate the inflammation and recover the height of the alveolar bone, which is further confirmed by histological observations. Our results suggested that CS/β-GP/gelatin hydrogels are easily prepared as drug-loading vectors with excellent biocompatibility, and the CS/β-GP/gelatin hydrogels loaded with aspirin/EPO are quite effective in anti-inflammation and periodontium regeneration, which provides a great potential candidate for periodontitis treatment in the dental clinic. Statement of Significance To terminate the alveolar bone resorption caused by periodontitis, simultaneous anti-inflammation and periodontium regeneration is required, which has not appeared in the existing methods. Here, (1) the chitosan (CS)/β-sodium glycerophosphate/gelatin hydrogels loaded with aspirin/erythropoietin (EPO) can form at body temperature in 5 min with excellent biocompatibility in vitro and in vivo; (2) The faster release of aspirin than EPO in the early stage is beneficial for anti-inflammation and provides a microenvironment for ensuring the regeneration function of EPO in the following step. In vivo experiments revealed that the hydrogels are effective in the control of inflammation and regeneration of the periodontium. These results indicate that our synthesized hydrogels have a great potential in the future clinical application.
Collapse
|
45
|
Lei K, Tang L. Surgery-free injectable macroscale biomaterials for local cancer immunotherapy. Biomater Sci 2019; 7:733-749. [PMID: 30637428 DOI: 10.1039/c8bm01470a] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Immunotherapy can harness the power of host's immune system to fight cancer. In the last few decades, tremendous progress has been made in this field, with remarkable clinical successes achieved consisting of a durable response in a fraction of patients. However, there are enormous challenges to extending this therapy to the majority of cancer patients while retaining minimal adverse effects. Local immunotherapy is a promising approach for concentrating immunomodulation in situ without systemic exposure, therefore minimizing systemic toxicities. More importantly, local immunomodulation can still lead to systemic effects that confer overall anticancer immunity to eradicate disseminated diseases. To facilitate these local immunotherapies, a wide range of biomaterials have been developed as delivery systems to protect the locally injected immune-related therapeutics and extend their retention. Surgery-free injectable macroscale biomaterials are one of the most promising classes of biomaterials developed to date, as they are suitable for minimally invasive injection with needles or catheters and form a biocompatible three-dimensional matrix in situ as a drug-depot for controlled local delivery. In this mini-review, we provide an overview of the recent advancements in applying injectable macroscale biomaterials in local cancer immunotherapy by highlighting some recent examples. We compare various injectable biomaterials with different gelation mechanisms and discuss their applications in the delivery of immunomodulators, immune cells, and cancer vaccines. We also discuss current challenges and provide a perspective for the future development of injectable macroscale biomaterials in cancer immunotherapy.
Collapse
Affiliation(s)
- Kewen Lei
- Institute of Materials Science & Engineering, École polytechnique fédérale de Lausanne (EPFL), Lausanne, SwitzerlandCH-1015
| | | |
Collapse
|
46
|
Shang Y, Wang Z, Zhang R, Li X, Zhang S, Gao J, Li X, Yang Z. A novel thermogel system of self-assembling peptides manipulated by enzymatic dephosphorylation. Chem Commun (Camb) 2019; 55:5123-5126. [DOI: 10.1039/c9cc00401g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A novel thermogel system of self-assembling peptides was created by enzyme-instructed self-assembly (EISA), which was useful for 3D cell culture.
Collapse
Affiliation(s)
- Yuna Shang
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
| | - Zhongyan Wang
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
| | - Renshu Zhang
- Department Institute of Biomedical Engineering
- School of Ophthalmology & Optometry and Eye Hospital
- Wenzhou Medical University
- Wenzhou 325027
- P. R. China
| | - Xinxin Li
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
| | - Shuhao Zhang
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
| | - Xingyi Li
- Department Institute of Biomedical Engineering
- School of Ophthalmology & Optometry and Eye Hospital
- Wenzhou Medical University
- Wenzhou 325027
- P. R. China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
| |
Collapse
|
47
|
Pertici V, Pin-Barre C, Rivera C, Pellegrino C, Laurin J, Gigmes D, Trimaille T. Degradable and Injectable Hydrogel for Drug Delivery in Soft Tissues. Biomacromolecules 2018; 20:149-163. [PMID: 30376309 DOI: 10.1021/acs.biomac.8b01242] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Injectable hydrogels are promising platforms for tissue engineering and local drug delivery as they allow minimal invasiveness. We have here developed an injectable and biodegradable hydrogel based on an amphiphilic PNIPAAm- b-PLA- b-PEG- b-PLA- b-PNIPAAm pentablock copolymer synthesized by ring-opening polymerization/nitroxide-mediated polymerization (ROP/NMP) combination. The hydrogel formation at around 30 °C was demonstrated to be mediated by intermicellar bridging through the PEG central block. Such a result was particularly highlighted by the inability of a PEG- b-PLA- b-PNIPAAm triblock analog of the same composition to gelify. The hydrogels degraded through hydrolysis of the PLA esters until complete mass loss due to the diffusion of the recovered PEG and PNIPAAm/micelle based residues in the solution. Interestingly, hydrophobic molecules such as riluzole (neuroprotective drug) or cyanine 5.5 (imaging probe) could be easily loaded in the hydrogels' micelle cores by mixing them with the copolymer solution at room temperature. Drug release was correlated to polymer mass loss. The hydrogel was shown to be cytocompatible (neuronal cells, in vitro) and injectable through a small-gauge needle (in vivo in rats). Thus, this hydrogel platform displays highly attractive features for use in brain/soft tissue engineering as well as in drug delivery.
Collapse
Affiliation(s)
- Vincent Pertici
- Aix Marseille Université, CNRS, ICR , F-13397 Marseille , France
| | | | - Claudio Rivera
- Aix Marseille Université, INSERM, INMED , F-13397 Marseille , France
| | | | - Jérôme Laurin
- Aix Marseille Université, CNRS, ISM , F-13397 Marseille , France
| | - Didier Gigmes
- Aix Marseille Université, CNRS, ICR , F-13397 Marseille , France
| | - Thomas Trimaille
- Aix Marseille Université, CNRS, ICR , F-13397 Marseille , France
| |
Collapse
|
48
|
Yang M, Zhang Q, Wang Q, Sørensen KK, Boesen JT, Ma SY, Jensen KJ, Kwan KM, Ngo JCK, Chan HYE, Zuo Z. Brain-Targeting Delivery of Two Peptidylic Inhibitors for Their Combination Therapy in Transgenic Polyglutamine Disease Mice via Intranasal Administration. Mol Pharm 2018; 15:5781-5792. [PMID: 30392378 DOI: 10.1021/acs.molpharmaceut.8b00938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polyglutamine diseases are a set of progressive neurodegenerative disorders caused by misfolding and aggregation of mutant CAG RNA and polyglutamin protein. To date, there is a lack of effective therapeutics that can counteract the polyglutamine neurotoxicity. Two peptidylic inhibitors, QBP1 and P3, targeting the protein and RNA toxicities, respectively, have been previously demonstrated by us with combinational therapeutic effects on the Drosophila polyglutamine disease model. However, their therapeutic efficacy has never been investigated in vivo in mammals. The current study aims to (a) develop a brain-targeting delivery system for both QBP1 and L1P3V8 (a lipidated variant of P3 with improved stability) and (b) evaluate their therapeutic effects on the R6/2 transgenic mouse model of polyglutamine disease. Compared with intravenous administration, intranasal administration of QBP1 significantly increased its brain-to-plasma ratio. In addition, employment of a chitosan-containing in situ gel for the intranasal administration of QBP1 notably improved its brain concentration for up to 10-fold. Further study on intranasal cotreatment with the optimized formulation of QBP1 and L1P3V8 in mice found no interference on the brain uptake of each other. Subsequent efficacy evaluation of 4-week daily QBP1 (16 μmol/kg) and L1P3V8 (6 μmol/kg) intranasal cotreatment in the R6/2 mice demonstrated a significant improvement on the motor coordination and explorative behavior of the disease mice, together with a full suppression on the RNA- and protein-toxicity markers in their brains. In summary, the current study developed an efficient intranasal cotreatment of the two peptidylic inhibitors, QBP1 and L1P3V8, for their brain-targeting, and such a novel therapeutic strategy was found to be effective on a transgenic polyglutamine disease mouse model.
Collapse
Affiliation(s)
- Mengbi Yang
- School of Pharmacy , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China
| | - Qian Zhang
- School of Life Sciences , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China
| | - Qianwen Wang
- School of Pharmacy , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China
| | - Kasper K Sørensen
- Department of Chemistry , University of Copenhagen , Thorvaldsensvej 40 , 1871 Frederiksberg , Denmark
| | - Josephine T Boesen
- Department of Chemistry , University of Copenhagen , Thorvaldsensvej 40 , 1871 Frederiksberg , Denmark
| | - Sum Yi Ma
- School of Life Sciences , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China
| | - Knud J Jensen
- Department of Chemistry , University of Copenhagen , Thorvaldsensvej 40 , 1871 Frederiksberg , Denmark
| | - Kin Ming Kwan
- School of Life Sciences , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China.,Partner State Key Laboratory of Agrobiotechnology , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China
| | - Jacky Chi Ki Ngo
- School of Life Sciences , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China
| | - Ho Yin Edwin Chan
- School of Life Sciences , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China.,Gerald Choa Neuroscience Centre , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China
| | - Zhong Zuo
- School of Pharmacy , The Chinese University of Hong Kong , Shatin, Hong Kong , SAR , China
| |
Collapse
|
49
|
Synthesis and characterization of hydrolytically degradable poly(N-vinylcaprolactam) copolymers with in-chain ester groups. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4414-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
50
|
Burova TV, Grinberg VY, Grinberg NV, Dubovik AS, Moskalets AP, Papkov VS, Khokhlov AR. Salt-Induced Thermoresponsivity of a Cationic Phosphazene Polymer in Aqueous Solutions. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tatiana V. Burova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov St. 28, Moscow 119991, Russia
| | - Valerij Y. Grinberg
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov St. 28, Moscow 119991, Russia
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991, Russia
| | - Natalia V. Grinberg
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov St. 28, Moscow 119991, Russia
| | - Alexander S. Dubovik
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991, Russia
| | - Alexander P. Moskalets
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov St. 28, Moscow 119991, Russia
| | - Vladimir S. Papkov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov St. 28, Moscow 119991, Russia
| | - Alexei R. Khokhlov
- M.V. Lomonosov Moscow
State University, Leninskie Gory 1, Moscow 119991, Russia
| |
Collapse
|