1
|
Silva MLS. Lectin-modified drug delivery systems - Recent applications in the oncology field. Int J Pharm 2024; 665:124685. [PMID: 39260750 DOI: 10.1016/j.ijpharm.2024.124685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Chemotherapy with cytotoxic drugs remains the core treatment for cancer but, due to the difficulty to find general and usable biochemical differences between cancer cells and normal cells, many of these drugs are associated with lack of specificity, resulting in side effects and collateral cytotoxicity that impair patients' adherence to therapy. Novel cancer treatments in which the cytotoxic effect is maximized while adverse effects are reduced can be implemented by developing targeted therapies that exploit the specific features of cancer cells, such as the typical expression of aberrant glycans. Modification of drug delivery systems with lectins is one of the strategies to implement targeted chemotherapies, as lectins are able to specifically recognize and bind to cancer-associated glycans expressed at the surface of cancer cells, guiding the drug treatment towards these cells and not affecting healthy ones. In this paper, recent advances on the development of lectin-modified drug delivery systems for targeted cancer treatments are thoroughly reviewed, with a focus on their properties and performance in diverse applications, as well as their main advantages and limitations. The synthesis and analytical characterization of the cited lectin-modified drug delivery systems is also briefly described. A comparison with free-drug treatments and with antibody-modified drug delivery systems is presented, emphasizing the advantages of lectin-modified drug delivery systems. Main constraints and potential challenges of lectin-modified drug delivery systems, including key difficulties for clinical translation of these systems, and the required developments in this area, are also signalled.
Collapse
Affiliation(s)
- Maria Luísa S Silva
- Centro de Estudos Globais, Universidade Aberta, Rua da Escola Politécnica 147, 1269-001 Lisboa, Portugal.
| |
Collapse
|
2
|
Jiang M, Xie Y, Wang P, Du M, Wang Y, Yan S. Research Progress of Triptolide Against Fibrosis. Drug Des Devel Ther 2024; 18:3255-3266. [PMID: 39081704 PMCID: PMC11287200 DOI: 10.2147/dddt.s467929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Fibrosis leads to organ failure and death, which is the final stage of many chronic diseases. Triptolide (TPL) is a terpenoid extracted from the traditional Chinese medicine Tripterygium wilfordii Hook. F (TwHF). Triptolide and its derivatives (Omtriptolide, Minnelide, (5R)-5-hydroxytriptolide) have been proven to have a variety of pharmacological effects. This study comprehensively reviewed the antifibrotic mechanism of TPL and its derivatives, and discussed the application of advanced nanoparticles (NPs) drug delivery system in the treatment of fibrotic diseases by TPL. The results show that TPL can inhibit immune inflammatory response, relieve oxidative stress and endoplasmic reticulum stress (ERS), regulate collagen deposition and inhibit myofibroblast production to play an anti-fibrosis effect and reduce organ injury. A low dose of TPL has no obvious toxicity. Under pathological conditions, a toxic dose of TPL has a protective effect on organs. The emergence of TPL derivatives (especially Minnelide) and NPs drug delivery systems promotes the anti-fibrosis effect of TPL and reduces its toxicity, which may be the main direction of anti-fibrosis research in the future.
Collapse
Affiliation(s)
- Minmin Jiang
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Yongxia Xie
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Ping Wang
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Mengyu Du
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Ying Wang
- Department of International Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Shuxun Yan
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| |
Collapse
|
3
|
Nica I, Volovat C, Boboc D, Popa O, Ochiuz L, Vasincu D, Ghizdovat V, Agop M, Volovat CC, Lupascu Ursulescu C, Lungulescu CV, Volovat SR. A Holographic-Type Model in the Description of Polymer-Drug Delivery Processes. Pharmaceuticals (Basel) 2024; 17:541. [PMID: 38675501 PMCID: PMC11053585 DOI: 10.3390/ph17040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
A unitary model of drug release dynamics is proposed, assuming that the polymer-drug system can be assimilated into a multifractal mathematical object. Then, we made a description of drug release dynamics that implies, via Scale Relativity Theory, the functionality of continuous and undifferentiable curves (fractal or multifractal curves), possibly leading to holographic-like behaviors. At such a conjuncture, the Schrödinger and Madelung multifractal scenarios become compatible: in the Schrödinger multifractal scenario, various modes of drug release can be "mimicked" (via period doubling, damped oscillations, modulated and "chaotic" regimes), while the Madelung multifractal scenario involves multifractal diffusion laws (Fickian and non-Fickian diffusions). In conclusion, we propose a unitary model for describing release dynamics in polymer-drug systems. In the model proposed, the polymer-drug dynamics can be described by employing the Scale Relativity Theory in the monofractal case or also in the multifractal one.
Collapse
Affiliation(s)
- Irina Nica
- Department of Odontology-Periodontology, Fixed Prosthesis, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Constantin Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str, 700115 Iasi, Romania;
| | - Diana Boboc
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str, 700115 Iasi, Romania;
| | - Ovidiu Popa
- Department of Emergency Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Lacramioara Ochiuz
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Decebal Vasincu
- Department of Biophysics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Vlad Ghizdovat
- Department of Biophysics and Medical Physics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Maricel Agop
- Department of Physics, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
- Romanian Scientists Academy, 050094 Bucharest, Romania
| | - Cristian Constantin Volovat
- Department of Radiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.C.V.); (C.L.U.)
| | - Corina Lupascu Ursulescu
- Department of Radiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.C.V.); (C.L.U.)
| | | | - Simona Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str, 700115 Iasi, Romania;
| |
Collapse
|
4
|
Wileński S, Koper A, Śledzińska P, Bebyn M, Koper K. Innovative strategies for effective paclitaxel delivery: Recent developments and prospects. J Oncol Pharm Pract 2024; 30:367-384. [PMID: 38204196 DOI: 10.1177/10781552231208978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
PURPOSE Paclitaxel is an effective chemotherapeutic agent against a variety of cancer types. However, the clinical utility of paclitaxel is restricted by its poor solubility in water and high toxicity, resulting in low drug tolerance. These difficulties could be resolved by using suitable pharmacological carriers. Hence, it is essential to determine innovative methods of administering this effective medication to overcome paclitaxel's inherent limitations. METHODS An extensive literature search was conducted using multiple electronic databases to identify relevant studies published. RESULTS In this comprehensive analysis, many different paclitaxel delivery systems are covered and discussed, such as albumin-bound paclitaxel, polymeric micelles, paclitaxel-loaded liposomes, prodrugs, cyclodextrins, and peptide-taxane conjugates. Moreover, the review also covers various delivery routes of conventional paclitaxel or novel paclitaxel formulations, such as oral administration, local applications, and intraperitoneal delivery. CONCLUSION In addition to albumin-bound paclitaxel, polymeric micelles appear to be the most promising formulations for innovative drug delivery systems at present. A variety of variants of polymeric micelles are currently undergoing advanced phases of clinical trials.
Collapse
Affiliation(s)
- Sławomir Wileński
- Department of Pharmaceutical Technology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
- Central Cytostatic Drug Department, Hospital Pharmacy, The F. Lukaszczyk Oncology Centre, Bydgoszcz, Poland
| | - Agnieszka Koper
- Department of Oncology and Brachytherapy, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
- Department of Oncology, Franciszek Lukaszczyk Oncology Centre, Bydgoszcz, Poland
| | - Paulina Śledzińska
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, Bydgoszcz, Poland
| | - Marek Bebyn
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, Bydgoszcz, Poland
| | - Krzysztof Koper
- Department of Oncology, Franciszek Lukaszczyk Oncology Centre, Bydgoszcz, Poland
- Department of Clinical Oncology, and Nursing, Department of Oncological Surgery, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| |
Collapse
|
5
|
Marquez CA, Oh CI, Ahn G, Shin WR, Kim YH, Ahn JY. Synergistic vesicle-vector systems for targeted delivery. J Nanobiotechnology 2024; 22:6. [PMID: 38167116 PMCID: PMC10763086 DOI: 10.1186/s12951-023-02275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
With the immense progress in drug delivery systems (DDS) and the rise of nanotechnology, challenges such as target specificity remain. The vesicle-vector system (VVS) is a delivery system that uses lipid-based vesicles as vectors for a targeted drug delivery. When modified with target-probing materials, these vesicles become powerful vectors for drug delivery with high target specificity. In this review, we discuss three general types of VVS based on different modification strategies: (1) vesicle-probes; (2) vesicle-vesicles; and (3) genetically engineered vesicles. The synthesis of each VVS type and their corresponding properties that are advantageous for targeted drug delivery, are also highlighted. The applications, challenges, and limitations of VVS are briefly examined. Finally, we share a number of insights and perspectives regarding the future of VVS as a targeted drug delivery system at the nanoscale.
Collapse
Affiliation(s)
- Christine Ardelle Marquez
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Cho-Im Oh
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Gna Ahn
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
- Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Woo-Ri Shin
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
- Department of Bioengineering, University of Pennsylvania, 210 S 33rd St, Philadelphia, PA, 19104, USA
| | - Yang-Hoon Kim
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
- Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Ji-Young Ahn
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
- Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
6
|
Naghib SM, Mohammad-Jafari K. Microfluidics-mediated Liposomal Nanoparticles for Cancer Therapy: Recent Developments on Advanced Devices and Technologies. Curr Top Med Chem 2024; 24:1185-1211. [PMID: 38424436 DOI: 10.2174/0115680266286460240220073334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Liposomes, spherical particles with phospholipid double layers, have been extensively studied over the years as a means of drug administration. Conventional manufacturing techniques like thin-film hydration and extrusion have limitations in controlling liposome size and distribution. Microfluidics enables superior tuning of parameters during the self-assembly of liposomes, producing uniform populations. This review summarizes microfluidic methods for engineering liposomes, including hydrodynamic flow focusing, jetting, micro mixing, and double emulsions. The precise control over size and lamellarity afforded by microfluidics has advantages for cancer therapy. Liposomes created through microfluidics and designed to encapsulate chemotherapy drugs have exhibited several advantageous properties in cancer treatment. They showcase enhanced permeability and retention effects, allowing them to accumulate specifically in tumor tissues passively. This passive targeting of tumors results in improved drug delivery and efficacy while reducing systemic toxicity. Promising results have been observed in pancreatic, lung, breast, and ovarian cancer models, making them a potential breakthrough in cancer therapy. Surface-modified liposomes, like antibodies or carbohydrates, also achieve active targeting. Overall, microfluidic fabrication improves reproducibility and scalability compared to traditional methods while maintaining drug loading and biological efficacy. Microfluidics-engineered liposomal formulations hold significant potential to overcome challenges in nanomedicine-based cancer treatment.
Collapse
Affiliation(s)
- Seyed Morteza Naghib
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| | - Kave Mohammad-Jafari
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| |
Collapse
|
7
|
Iman M, Moosavian SA, Zamani P, Jaafari MR. Preparation of AS1411 aptamer-modified PEGylated liposomal doxorubicin and evaluation of its anti-cancer effects in vitro and in vivo. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
8
|
Syed MH, Zahari MAKM, Khan MMR, Beg MDH, Abdullah N. An overview on recent biomedical applications of biopolymers: Their role in drug delivery systems and comparison of major systems. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Strategies for Solubility and Bioavailability Enhancement and Toxicity Reduction of Norcantharidin. Molecules 2022; 27:molecules27227740. [PMID: 36431851 PMCID: PMC9693198 DOI: 10.3390/molecules27227740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Cantharidin (CTD) is the main active ingredient isolated from Mylabris, and norcantharidin (NCTD) is a demethylated derivative of CTD, which has similar antitumor activity to CTD and lower toxicity than CTD. However, the clinical use of NCTD is limited due to its poor solubility, low bioavailability, and toxic effects on normal cells. To overcome these shortcomings, researchers have explored a number of strategies, such as chemical structural modifications, microsphere dispersion systems, and nanodrug delivery systems. This review summarizes the structure-activity relationship of NCTD and novel strategies to improve the solubility and bioavailability of NCTD as well as reduce the toxicity. This review can provide evidence for further research of NCTD.
Collapse
|
10
|
Sun R, Dai J, Ling M, Yu L, Yu Z, Tang L. Delivery of triptolide: a combination of traditional Chinese medicine and nanomedicine. J Nanobiotechnology 2022; 20:194. [PMID: 35443712 PMCID: PMC9020428 DOI: 10.1186/s12951-022-01389-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
As a natural product with various biological activities, triptolide (TP) has been reported in anti-inflammatory, anti-tumor and anti-autoimmune studies. However, the narrow therapeutic window, poor water solubility, and fast metabolism limit its wide clinical application. To reduce its adverse effects and enhance its efficacy, research and design of targeted drug delivery systems (TDDS) based on nanomaterials is one of the most viable strategies at present. This review summarizes the reports and studies of TDDS combined with TP in recent years, including passive and active targeting of drug delivery systems, and specific delivery system strategies such as polymeric micelles, solid lipid nanoparticles, liposomes, and stimulus-responsive polymer nanoparticles. The reviewed literature presented herein indicates that TDDS is a multifunctional and efficient method for the delivery of TP. In addition, the advantages and disadvantages of TDDS are sorted out, aiming to provide reference for the combination of traditional Chinese medicine and advanced nano drug delivery systems (NDDS) in the future.
Collapse
Affiliation(s)
- Rui Sun
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Jingyue Dai
- Department of Radiology, Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Mingjian Ling
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Ling Yu
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China.
| | - Longguang Tang
- The People's Hospital of Gaozhou, Maoming, 525200, China.
| |
Collapse
|
11
|
Critical clinical gaps in cancer precision nanomedicine development. J Control Release 2022; 345:811-818. [PMID: 35378214 DOI: 10.1016/j.jconrel.2022.03.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/18/2022]
Abstract
Active targeting strategy is adopted in nanomedicine for cancer treatment. Personalizing the nanomedicine in accordance with patients' omics, under the precision medicine platform, is met with challenges in targeting ligand and matrix material selection at nanoformulation stage. The past 5-year literatures show that the nanoparticulate targeting ligand and matrix material are not selected based upon the cancer omics profiles of patients. The expression of cancer cellular target receptors and metabolizing enzymes is primarily influenced by age, gender, race/ethnic group and geographical origin of patients. The personalized perspective of a nanomedicine cannot be realised with premature digestion of matrix and targeting ligand by specific metabolizing enzymes that are overexpressed by the patients, and unmatched targeting ligand to the majority of cell surface receptors overexpressed in cancer. Omics analysis of individual metabolizing enzyme and cancer cell surface receptor expressed in cancer facilitates targeting ligand and matrix material selection in nanomedicine development.
Collapse
|
12
|
Milan A, Mioc A, Prodea A, Mioc M, Buzatu R, Ghiulai R, Racoviceanu R, Caruntu F, Şoica C. The Optimized Delivery of Triterpenes by Liposomal Nanoformulations: Overcoming the Challenges. Int J Mol Sci 2022; 23:1140. [PMID: 35163063 PMCID: PMC8835305 DOI: 10.3390/ijms23031140] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
The last decade has witnessed a sustained increase in the research development of modern-day chemo-therapeutics, especially for those used for high mortality rate pathologies. However, the therapeutic landscape is continuously changing as a result of the currently existing toxic side effects induced by a substantial range of drug classes. One growing research direction driven to mitigate such inconveniences has converged towards the study of natural molecules for their promising therapeutic potential. Triterpenes are one such class of compounds, intensively investigated for their therapeutic versatility. Although the pharmacological effects reported for several representatives of this class has come as a well-deserved encouragement, the pharmacokinetic profile of these molecules has turned out to be an unwelcomed disappointment. Nevertheless, the light at the end of the tunnel arrived with the development of nanotechnology, more specifically, the use of liposomes as drug delivery systems. Liposomes are easily synthesizable phospholipid-based vesicles, with highly tunable surfaces, that have the ability to transport both hydrophilic and lipophilic structures ensuring superior drug bioavailability at the action site as well as an increased selectivity. This study aims to report the results related to the development of different types of liposomes, used as targeted vectors for the delivery of various triterpenes of high pharmacological interest.
Collapse
Affiliation(s)
- Andreea Milan
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Alexandra Mioc
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Alexandra Prodea
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Marius Mioc
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Roxana Buzatu
- Faculty of Dental Medicine, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Street, 300041 Timişoara, Romania
| | - Roxana Ghiulai
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Roxana Racoviceanu
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Florina Caruntu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Street, 300041 Timişoara, Romania;
| | - Codruţa Şoica
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| |
Collapse
|
13
|
Sethi A, Ahmad M, Huma T, Ahmad W. Pharmacokinetic variables of medium molecular weight cross linked chitosan nanoparticles to enhance the bioavailability of 5-fluorouracil and reduce the acute oral toxicity. Drug Deliv 2021; 28:1569-1584. [PMID: 34291722 PMCID: PMC8300936 DOI: 10.1080/10717544.2021.1944398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 11/18/2022] Open
Abstract
To prepare glutaraldehyde-based cross-linked medium molecular weight chitosan nanoparticles encapsulated with 5-Fluorouracil (5-FU), to overcome dosing frequency as well as reducing acute oral toxicity and poor bioavailability of the drug. Medium molecular weight chitosan nanoparticles (MMWCH-NPs) were prepared by reverse micelles method based on glutaraldehyde (GA) cross-linking and optimized by the process as well as formulation variables like a various drug to polymer ratio, cross-linker volumes, varying stirring speeds (rpm), different time of rotation/stirring, respectively and their effects on the mean particles size distribution and entrapment efficiency %EE and %LC of NPs. Characterization of formulations was done by FTIR studies, TEM, PXRD, TGA, Stability, and dissolution drug release studies were performed by dialysis bag technique at both pH (1.2 & 7.4) and acute oral toxicity studies in albino rabbits. The formulated nanoparticles showed a smooth morphology with smaller particle size distribution (230-550 nm), zeta potential (-15 to -18 mV) required to achieve enhanced permeation and retention effect (EPR), entrapment efficiency (%EE 12-59%). These NPs exhibited a controlled drug release profile with 84.36% of the drug over a period of 24 h. Drug release data were fitted to different kinetic models which predominantly followed Fickian diffusion mechanism (R2 = 0.972-0.976, N = 0.326-0.256). The optimized formulation (5-FU6) was observed under DSC/TGA, TEM. PXRD curves, FTIR, which confirmed thermal stability, structural integrity, amorphous state, compatibility between drug and polymer of optimized (5-FU6) as well as reduced acute oral toxicity in albino rabbits. Cross-linked medium molecular weight chitosan nanoparticles are nontoxic, well-tolerated therefore could be the future candidate for therapeutic effects as novel drug delivery carrier for anticancer drug(s).
Collapse
Affiliation(s)
- Aisha Sethi
- Faculty of Pharmacy and Alternative medicines, the Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Mahmood Ahmad
- Faculty of Pharmacy and Alternative medicines, the Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Waqas Ahmad
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| |
Collapse
|
14
|
Heravi Shargh V, Luckett J, Bouzinab K, Paisey S, Turyanska L, Singleton WGB, Lowis S, Gershkovich P, Bradshaw TD, Stevens MFG, Bienemann A, Coyle B. Chemosensitization of Temozolomide-Resistant Pediatric Diffuse Midline Glioma Using Potent Nanoencapsulated Forms of a N(3)-Propargyl Analogue. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35266-35280. [PMID: 34310112 DOI: 10.1021/acsami.1c04164] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The lack of clinical response to the alkylating agent temozolomide (TMZ) in pediatric diffuse midline/intrinsic pontine glioma (DIPG) has been associated with O6-methylguanine-DNA-methyltransferase (MGMT) expression and mismatch repair deficiency. Hence, a potent N(3)-propargyl analogue (N3P) was derived, which not only evades MGMT but also remains effective in mismatch repair deficient cells. Due to the poor pharmacokinetic profile of N3P (t1/2 < 1 h) and to bypass the blood-brain barrier, we proposed convection enhanced delivery (CED) as a method of administration to decrease dose and systemic toxicity. Moreover, to enhance N3P solubility, stability, and sustained distribution in vivo, either it was incorporated into an apoferritin (AFt) nanocage or its sulfobutyl ether β-cyclodextrin complex was loaded into nanoliposomes (Lip). The resultant AFt-N3P and Lip-N3P nanoparticles (NPs) had hydrodynamic diameters of 14 vs 93 nm, icosahedral vs spherical morphology, negative surface charge (-17 vs -34 mV), and encapsulating ∼630 vs ∼21000 N3P molecules per NP, respectively. Both NPs showed a sustained release profile and instant uptake within 1 h incubation in vitro. In comparison to the naked drug, N3P NPs demonstrated stronger anticancer efficacy against 2D TMZ-resistant DIPG cell cultures [IC50 = 14.6 (Lip-N3P) vs 32.8 μM (N3P); DIPG-IV) and (IC50 = 101.8 (AFt-N3P) vs 111.9 μM (N3P); DIPG-VI)]. Likewise, both N3P-NPs significantly (P < 0.01) inhibited 3D spheroid growth compared to the native N3P in MGMT+ DIPG-VI (100 μM) and mismatch repair deficient DIPG-XIX (50 μM) cultures. Interestingly, the potency of TMZ was remarkably enhanced when encapsulated in AFt NPs against DIPG-IV, -VI, and -XIX spheroid cultures. Dynamic PET scans of CED-administered zirconium-89 (89Zr)-labeled AFt-NPs in rats also demonstrated substantial enhancement over free 89Zr radionuclide in terms of localized distribution kinetics and retention within the brain parenchyma. Overall, both NP formulations of N3P represent promising approaches for treatment of TMZ-resistant DIPG and merit the next phase of preclinical evaluation.
Collapse
Affiliation(s)
| | | | | | - Stephen Paisey
- Wales Research and Diagnostic PET Imaging Centre, School of Medicine, Cardiff University, Cardiff, CF14 4XN, United Kingdom
| | - Lyudmila Turyanska
- Faculty of Engineering, University of Nottingham, Nottingham, Nottinghamshire NG7 2RD, United Kingdom
| | - William G B Singleton
- Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | | | | | | | | | - Alison Bienemann
- Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | | |
Collapse
|
15
|
Khafaga AF, Shamma RN, Abdeen A, Barakat AM, Noreldin AE, Elzoghby AO, Sallam MA. Celecoxib repurposing in cancer therapy: molecular mechanisms and nanomedicine-based delivery technologies. Nanomedicine (Lond) 2021; 16:1691-1712. [PMID: 34264123 DOI: 10.2217/nnm-2021-0086] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
While cancer remains a significant global health problem, advances in cancer biology, deep understanding of its underlaying mechanism and identification of specific molecular targets allowed the development of new therapeutic options. Drug repurposing poses several advantages as reduced cost and better safety compared with new compounds development. COX-2 inhibitors are one of the most promising drug classes for repurposing in cancer therapy. In this review, we provide an overview of the detailed mechanism and rationale of COX-2 inhibitors as anticancer agents and we highlight the most promising research efforts on nanotechnological approaches to enhance COX-2 inhibitors delivery with special focus on celecoxib as the most widely studied agent for chemoprevention or combined with chemotherapeutic and herbal drugs for combating various cancers.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Rehab N Shamma
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine & Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | | | - Ahmed E Noreldin
- Department of Histology & Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22516, Egypt
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.,Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Marwa A Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
16
|
Rommasi F, Esfandiari N. Liposomal Nanomedicine: Applications for Drug Delivery in Cancer Therapy. NANOSCALE RESEARCH LETTERS 2021; 16:95. [PMID: 34032937 PMCID: PMC8149564 DOI: 10.1186/s11671-021-03553-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/17/2021] [Indexed: 05/23/2023]
Abstract
The increasing prevalence of cancer, a disease in which rapid and uncontrollable cell growth causes complication and tissue dysfunction, is one of the serious and tense concerns of scientists and physicians. Nowadays, cancer diagnosis and especially its effective treatment have been considered as one of the biggest challenges in health and medicine in the last century. Despite significant advances in drug discovery and delivery, their many adverse effects and inadequate specificity and sensitivity, which usually cause damage to healthy tissues and organs, have been great barriers in using them. Limitation in the duration and amount of these therapeutic agents' administration is also challenging. On the other hand, the incidence of tumor cells that are resistant to typical methods of cancer treatment, such as chemotherapy and radiotherapy, highlights the intense need for innovation, improvement, and development in antitumor drug properties. Liposomes have been suggested as a suitable candidate for drug delivery and cancer treatment in nanomedicine due to their ability to store drugs with different physical and chemical characteristics. Moreover, the high flexibility and potential of liposome structure for chemical modification by conjugating various polymers, ligands, and molecules is a significant pro for liposomes not only to enhance their pharmacological merits but also to improve the effectiveness of anticancer drugs. Liposomes can increase the sensitivity, specificity, and durability of these anti-malignant cell agents in the body and provide remarkable benefits to be applied in nanomedicines. We reviewed the discovery and development of liposomes focusing on their clinical applications to treat diverse sorts of cancers and diseases. How the properties of liposomal drugs can be improved and their opportunity and challenges for cancer therapy were also considered and discussed.
Collapse
Affiliation(s)
- Foad Rommasi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Neda Esfandiari
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
17
|
Aronson MR, Medina SH, Mitchell MJ. Peptide functionalized liposomes for receptor targeted cancer therapy. APL Bioeng 2021; 5:011501. [PMID: 33532673 PMCID: PMC7837755 DOI: 10.1063/5.0029860] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Most clinically approved cancer therapies are potent and toxic small molecules that are limited by severe off-target toxicities and poor tumor-specific localization. Over the past few decades, attempts have been made to load chemotherapies into liposomes, which act to deliver the therapeutic agent directly to the tumor. Although liposomal encapsulation has been shown to decrease toxicity in human patients, reliance on passive targeting via the enhanced permeability and retention (EPR) effect has left some of these issues unresolved. Recently, investigations into modifying the surface of liposomes via covalent and/or electrostatic functionalization have offered mechanisms for tumor homing and subsequently controlled chemotherapeutic delivery. A wide variety of biomolecules can be utilized to functionalize liposomes such as proteins, carbohydrates, and nucleic acids, which enable multiple directions for cancer cell localization. Importantly, when nanoparticles are modified with such molecules, care must be taken as not to inactivate or denature the ligand. Peptides, which are small proteins with <30 amino acids, have demonstrated the exceptional ability to act as ligands for transmembrane protein receptors overexpressed in many tumor phenotypes. Exploring this strategy offers a method in tumor targeting for cancers such as glioblastoma multiforme, pancreatic, lung, and breast based on the manifold of receptors overexpressed on various tumor cell populations. In this review, we offer a comprehensive summary of peptide-functionalized liposomes for receptor-targeted cancer therapy.
Collapse
|
18
|
Liu R, Zuo R, Hudalla GA. Harnessing molecular recognition for localized drug delivery. Adv Drug Deliv Rev 2021; 170:238-260. [PMID: 33484737 PMCID: PMC8274479 DOI: 10.1016/j.addr.2021.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
Abstract
A grand challenge in drug delivery is providing the right dose, at the right anatomic location, for the right duration of time to maximize therapeutic efficacy while minimizing off-target toxicity and other deleterious side-effects. Two general modalities are receiving broad attention for localized drug delivery. In the first, referred to as "targeted accumulation", drugs or drug carriers are engineered to have targeting moieties that promote their accumulation at a specific tissue site from circulation. In the second, referred to as "local anchoring", drugs or drug carriers are inserted directly into the tissue site of interest where they persist for a specified duration of time. This review surveys recent advances in harnessing molecular recognition between proteins, peptides, nucleic acids, lipids, and carbohydrates to mediate targeted accumulation and local anchoring of drugs and drug carriers.
Collapse
Affiliation(s)
- Renjie Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ran Zuo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
19
|
Mishra RK, Ahmad A, Vyawahare A, Kumar A, Khan R. Understanding the Monoclonal Antibody Involvement in Targeting the Activation of Tumor Suppressor Genes. Curr Top Med Chem 2020; 20:1810-1823. [DOI: 10.2174/1568026620666200616133814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022]
Abstract
Monoclonal antibodies (mAbs) have always provided outstanding therapeutic arsenal in the
treatment of cancer, be it hematological malignancies or solid tumors. Monoclonal antibodies mediated
targeting of cancer genes in general and tumor-suppressor genes, in particular, have appreciably allowed
the possibilities of trafficking these antibodies to specific tumor mechanisms and aim for the pin-point
maneuvered tumor treatment strategies. The conventional cancer treatment options are associated with
enormous limitations like drug resistance, acute and pan-toxic side effects and collateral damage to other
unrelated cells and organs. Therefore, monoclonal antibody-mediated treatments have some special advantages
of specific targeting of cancer-related genes and minimizing the off-target side effects. A large
number of monoclonal antibody-mediated treatment regimen viz. use of immunoconjugates, clinically
targeting TGFβ with pan-TGFβ monoclonal antibodies, p53 by its monoclonal antibodies and EGFRtargeted
monoclonal antibodies, etc. have been observed in the recent past. In this review, the authors
have discussed some of the significant advances in the context of targeting tumor suppressor genes with
monoclonal antibodies. Approximately 250 articles were scanned from research databases like PubMed
central, Europe PubMed Central and google scholar up to the date of inception, and relevant reports on
monoclonal antibody-mediated targeting of cancer genes were selected. mAb mediated targeting of tumor
suppressor genes is a recent grey paradigm, which has not been explored up to its maximum potential.
Therefore, this review will be of appreciable significance that it will boost further in-depth understanding
of various aspects of mAb arbitrated cancer targeting and will warrant and promote further rigorous
research initiatives in this regard. The authors expect that this review will acquaint the readers
with the current status regarding the recent progress in the domain of mAbs and their employability and
targetability towards tumor suppressor genes in anti-cancer therapeutics.
Collapse
Affiliation(s)
- Rakesh Kumar Mishra
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Anas Ahmad
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Akshay Vyawahare
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Ajay Kumar
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Rehan Khan
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| |
Collapse
|
20
|
Ly BTK, Chi HT. Combined effect of (-)-epigallocatechin-3-gallate and all-trans retinoic acid in FLT3-mutated cell lines. Biomed Rep 2020; 13:25. [PMID: 32765864 DOI: 10.3892/br.2020.1332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 05/05/2020] [Indexed: 11/06/2022] Open
Abstract
Patents diagnosed with acute promyelocytic leukemia were treated with Vesanoid® [all-trans retinoic acid (ATRA)]. ATRA promotes the maturation and differentiation of leukemia cells and is therefore capable of reducing the symptoms of leukemia by preventing aggregation of myeloid cells. However, the clinical applications of ATRA are limited by its side effects, including acute retinoid resistance, hypertriglyceridemia, mucocutaneous dryness, nausea, brief recovery time relapse and drug resistance. Therefore, combinations of ATRA and other anticancer drugs are being investigated to overcome these limitations. In our previous study it was shown that in leukemia cells, (-)-epigallocatechin-3-gallate (EGCG) reduced cell proliferation and induced apoptotic cell death. In the present study, an in vitro evaluation of the effects of the combination of EGCG and ATRA on FLT3-mutated cell lines was performed using the isobologram method. The results showed that there was an additive effect in leukemic cells when treated with a combination of ATRA and EGCG. Thus, it was concluded that the cytotoxic effects of EGCG were improved by ATRA.
Collapse
Affiliation(s)
- Bui Thi Kim Ly
- Department of Food Technology, Ho Chi Minh City University of Technology Institute of Applied Sciences, Ho Chi Minh City University of Technology, Ho Chi Minh 72308, Vietnam.,Southern Key Laboratory of Biotechnology, Institute of Fungal Research and Biotechnology, Hanoi 12000, Vietnam
| | - Hoang Thanh Chi
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh 72915, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh 72915, Vietnam
| |
Collapse
|
21
|
Sforzi J, Palagi L, Aime S. Liposome-Based Bioassays. BIOLOGY 2020; 9:E202. [PMID: 32752243 PMCID: PMC7466007 DOI: 10.3390/biology9080202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022]
Abstract
This review highlights the potential of using liposomes in bioassays. Liposomes consist of nano- or micro-sized, synthetically constructed phospholipid vesicles. Liposomes can be loaded with a number of reporting molecules that allow a dramatic amplification of the detection threshold in bioassays. Liposome-based sensors bind or react with the biological components of targets through the introduction of properly tailored vectors anchored on their external surface. The use of liposome-based formulations allows the set-up of bioassays that are rapid, sensitive, and often suitable for in-field applications. Selected applications in the field of immunoassays, as well as recognition/assessment of corona proteins, nucleic acids, exosomes, bacteria, and viruses are surveyed. The role of magnetoliposomes is also highlighted as an additional tool in the armory of liposome-based systems for bioassays.
Collapse
|
22
|
Chizenga EP, Abrahamse H. Nanotechnology in Modern Photodynamic Therapy of Cancer: A Review of Cellular Resistance Patterns Affecting the Therapeutic Response. Pharmaceutics 2020; 12:pharmaceutics12070632. [PMID: 32640564 PMCID: PMC7407821 DOI: 10.3390/pharmaceutics12070632] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 12/23/2022] Open
Abstract
Photodynamic therapy (PDT) has emerged as a potential therapeutic option for most localized cancers. Its high measure of specificity and minimal risk of side effects compared to other therapies has put PDT on the forefront of cancer research in the current era. The primary cause of treatment failure and high mortality rates is the occurrence of cancer resistance to therapy. Hence, PDT is designed to be selective and tumor-specific. However, because of complex biological characteristics and cell signaling, cancer cells have shown a propensity to acquire cellular resistance to PDT by modulating the photosensitization process or its products. Fortunately, nanotechnology has provided many answers in biomedical and clinical applications, and modern PDT now employs the use of nanomaterials to enhance its efficacy and mitigate the effects of acquired resistance. This review, therefore, sought to scrutinize the mechanisms of cellular resistance that affect the therapeutic response with an emphasis on the use of nanomaterials as a way of overriding cancer cell resistance. The resistance mechanisms that have been reported are complex and photosensitizer (PS)-specific. We conclude that altering the structure of PSs using nanotechnology is an ideal paradigm for enhancing PDT efficacy in the presence of cellular resistance.
Collapse
|
23
|
Avramović N, Mandić B, Savić-Radojević A, Simić T. Polymeric Nanocarriers of Drug Delivery Systems in Cancer Therapy. Pharmaceutics 2020; 12:E298. [PMID: 32218326 PMCID: PMC7238125 DOI: 10.3390/pharmaceutics12040298] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 01/10/2023] Open
Abstract
Conventional chemotherapy is the most common therapeutic method for treating cancer by the application of small toxic molecules thatinteract with DNA and causecell death. Unfortunately, these chemotherapeutic agents are non-selective and can damage both cancer and healthy tissues,producing diverse side effects, andthey can have a short circulation half-life and limited targeting. Many synthetic polymers have found application as nanocarriers of intelligent drug delivery systems (DDSs). Their unique physicochemical properties allow them to carry drugs with high efficiency,specificallytarget cancer tissue and control drug release. In recent years, considerable efforts have been made to design smart nanoplatforms, including amphiphilic block copolymers, polymer-drug conjugates and in particular pH- and redox-stimuli-responsive nanoparticles (NPs). This review is focused on a new generation of polymer-based DDSs with specific chemical functionalities that improve their hydrophilicity, drug loading and cellular interactions.Recentlydesigned multifunctional DDSs used in cancer therapy are highlighted in this review.
Collapse
Affiliation(s)
- Nataša Avramović
- Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Boris Mandić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia;
| | - Ana Savić-Radojević
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.S.-R.); (T.S.)
| | - Tatjana Simić
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.S.-R.); (T.S.)
- Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| |
Collapse
|
24
|
Aptamer-functionalized liposomes for targeted cancer therapy. Cancer Lett 2019; 448:144-154. [PMID: 30763718 DOI: 10.1016/j.canlet.2019.01.045] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Abstract
Accumulation of chemotherapeutic agents in the tumor tissue while reducing adverse effects and drug resistance are among the major goals in cancer therapy. Among nanocarriers, liposomes have been found to be more effective in the passive targeting of cancer cells. A promising recent development in targeted drug delivery is the use of aptamer-functionalized liposomes for cancer therapy. Aptamer-targeted liposomes have enhanced uptake in tumor cells as shown in vitro and in vivo. Here, we discuss the aptamer-functionalized liposome platforms and review functionalization approaches as well as the factors affecting antitumor efficiency of aptamer-targeted liposomal systems. Finally, we provide a comprehensive overview of aptamer-targeted liposomes based on the molecular targets on the surface of cancer cells.
Collapse
|
25
|
Alhajj N, Chee CF, Wong TW, Rahman NA, Abu Kasim NH, Colombo P. Lung cancer: active therapeutic targeting and inhalational nanoproduct design. Expert Opin Drug Deliv 2018; 15:1223-1247. [DOI: 10.1080/17425247.2018.1547280] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nasser Alhajj
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
| | - Chin Fei Chee
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
| | - Noorsaadah Abd Rahman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Hayaty Abu Kasim
- Wellness Research Cluster, Institute of Research Management & Monitoring, University of Malaya, Kuala Lumpur, Malaysia
| | - Paolo Colombo
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma, Italy
| |
Collapse
|
26
|
Ferreira Tomaz A, Sobral de Carvalho SM, Cardoso Barbosa R, L Silva SM, Sabino Gutierrez MA, B de Lima AG, L Fook MV. Ionically Crosslinked Chitosan Membranes Used as Drug Carriers for Cancer Therapy Application. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2051. [PMID: 30347857 PMCID: PMC6213910 DOI: 10.3390/ma11102051] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 11/25/2022]
Abstract
The aim of this paper was to prepare, by the freeze-drying method, ionically crosslinked chitosan membranes with different contents of pentasodium tripolyphosphate (TPP) and loaded with 1,4-naphthoquinone (NQ14) drug, in order to evaluate how the physical crosslinking affects NQ14 release from chitosan membranes for cancer therapy application. The membranes were characterized by Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), swelling degree, and through in vitro drug release and cytotoxicity studies. According to the results, the molecular structure, porosity and hydrophilicity of the chitosan membranes were affected by TPP concentration and, consequently, the NQ14 drug release behavior from the membranes was also affected. The release of NQ14 from crosslinked chitosan membranes decreased when the cross-linker TPP quantity increased. Thus, depending on the TPP amount, the crosslinked chitosan membranes would be a potential delivery system to control the release of NQ14 for cancer therapy application. Lastly, the inhibitory potential of chitosan membranes ionically crosslinked with TPP and loaded with NQ14 against the B16F10 melanoma cell line was confirmed through in vitro cytotoxicity studies assessed via MTT assay. The anti-proliferative effect of prepared membranes was directly related to the amount of cross-linker and among all membranes prepared, such that one crosslinked with 0.3% of TPP may become a potential delivery system for releasing NQ14 drug for cancer therapy.
Collapse
Affiliation(s)
- Alecsandra Ferreira Tomaz
- Postgraduate Program in Process Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil.
| | - Sandra Maria Sobral de Carvalho
- Postgraduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil.
| | - Rossemberg Cardoso Barbosa
- Postgraduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil.
| | - Suédina M L Silva
- Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil.
| | | | - Antônio Gilson B de Lima
- Department of Mechanical Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil.
| | - Marcus Vinícius L Fook
- Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil.
| |
Collapse
|
27
|
Marengo A, Forciniti S, Dando I, Dalla Pozza E, Stella B, Tsapis N, Yagoubi N, Fanelli G, Fattal E, Heeschen C, Palmieri M, Arpicco S. Pancreatic cancer stem cell proliferation is strongly inhibited by diethyldithiocarbamate-copper complex loaded into hyaluronic acid decorated liposomes. Biochim Biophys Acta Gen Subj 2018; 1863:61-72. [PMID: 30267751 DOI: 10.1016/j.bbagen.2018.09.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Pancreatic cancer stem cells (CSCs) are responsible for resistance to standard therapy, metastatic potential, and disease relapse following treatments. The current therapy for pancreatic ductal adenocarcinoma (PDAC) preferentially targets the more differentiated cancer cell population, leaving CSCs as a cell source for tumor mass formation and recurrence. For this reason, there is an urgent need to improve current therapies and develop novel CSC-targeted therapeutic approaches. METHODS Hyaluronic acid (HA) decorated liposomes, containing diethyldithiocarbamate‑copper (Cu(DDC)2), able to target the specific CSC marker CD44 receptor were prepared by ion gradient technique and fully characterized. Their antiproliferative effect was evaluated on pancreatic CSCs derived from PDAC cell lines or patients. To clarify the mechanism of action of Cu(DDC)2 liposomes, ROS level neutralization assay in the presence of N-acetyl-L-cysteine was performed. RESULTS Liposomes showed high encapsulation efficiency and Cryo-TEM analysis revealed the presence of Cu(DDC)2 crystals in the aqueous core of liposomes. In vitro test on pancreatic CSCs derived from PDAC cell lines or patients showed high ROS mediated anticancer activity of HA decorated liposomes. The sphere formation capability of CSCs obtained from patients was drastically reduced by liposomal formulations containing Cu(DDC)2. CONCLUSIONS The obtained results show that the encapsulation of Cu(DDC)2 complex in HA decorated liposomes strongly increases its anti-proliferative activity on pancreatic CSCs. GENERAL SIGNIFICANCE This paper describes for the first time the use of HA decorated liposomes containing Cu(DDC)2 against pancreatic CSCs and opens the way to the development of nanomedicine based CSC-targeted therapeutic approaches.
Collapse
Affiliation(s)
| | - Stefania Forciniti
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Ilaria Dando
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Elisa Dalla Pozza
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Barbara Stella
- Department of Drug Science and Technology, University of Torino, Italy
| | - Nicolas Tsapis
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Najet Yagoubi
- EA 401, Matériaux et Santé, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Giuseppina Fanelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Elias Fattal
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Christopher Heeschen
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Marta Palmieri
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy.
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Torino, Italy.
| |
Collapse
|
28
|
Cabral H, Miyata K, Osada K, Kataoka K. Block Copolymer Micelles in Nanomedicine Applications. Chem Rev 2018; 118:6844-6892. [PMID: 29957926 DOI: 10.1021/acs.chemrev.8b00199] [Citation(s) in RCA: 780] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polymeric micelles are demonstrating high potential as nanomedicines capable of controlling the distribution and function of loaded bioactive agents in the body, effectively overcoming biological barriers, and various formulations are engaged in intensive preclinical and clinical testing. This Review focuses on polymeric micelles assembled through multimolecular interactions between block copolymers and the loaded drugs, proteins, or nucleic acids as translationable nanomedicines. The aspects involved in the design of successful micellar carriers are described in detail on the basis of the type of polymer/payload interaction, as well as the interplay of micelles with the biological interface, emphasizing on the chemistry and engineering of the block copolymers. By shaping these features, polymeric micelles have been propitious for delivering a wide range of therapeutics through effective sensing of targets in the body and adjustment of their properties in response to particular stimuli, modulating the activity of the loaded drugs at the targeted sites, even at the subcellular level. Finally, the future perspectives and imminent challenges for polymeric micelles as nanomedicines are discussed, anticipating to spur further innovations.
Collapse
Affiliation(s)
| | | | | | - Kazunori Kataoka
- Innovation Center of NanoMedicine , Kawasaki Institute of Industrial Promotion , 3-25-14, Tonomachi , Kawasaki-ku , Kawasaki 210-0821 , Japan.,Policy Alternatives Research Institute , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| |
Collapse
|
29
|
|
30
|
Chi YH, Hsiao JK, Lin MH, Chang C, Lan CH, Wu HC. Lung Cancer-Targeting Peptides with Multi-subtype Indication for Combinational Drug Delivery and Molecular Imaging. Theranostics 2017; 7:1612-1632. [PMID: 28529640 PMCID: PMC5436516 DOI: 10.7150/thno.17573] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/30/2017] [Indexed: 02/03/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Most targeted drugs approved for lung cancer treatment are tyrosine kinase inhibitors (TKIs) directed against EGFR or ALK, and are used mainly for adenocarcinoma. At present, there is no effective or tailored targeting agent for large cell carcinoma (LCC) or small cell lung cancer (SCLC). Therefore, we aimed to identify targeting peptides with diagnostic and therapeutic utility that possess broad subtype specificity for SCLC and non-small cell lung cancer (NSCLC). We performed phage display biopanning of H460 LCC cells to select broad-spectrum lung cancer-binding peptides, since LCC has recently been categorized as an undifferentiated tumor type within other histological subcategories of lung cancer. Three targeting phages (HPC1, HPC2, and HPC4) and their respective displayed peptides (HSP1, HSP2, and HSP4) were able to bind to both SCLC and NSCLC cell lines, as well as clinical specimens, but not to normal pneumonic tissues. In vivo optical imaging of phage homing and magnetic resonance imaging (MRI) of peptide-SPIONs revealed that HSP1 was the most favorable probe for multimodal molecular imaging. Using HSP1-SPION, the T2-weighted MR signal of H460 xenografts was decreased up to 42%. In contrast to the tight binding of HSP1 to cancer cell surfaces, HSP4 was preferentially endocytosed and intracellular drug delivery was thereby effected, significantly improving the therapeutic index of liposomal drug in vivo. Liposomal doxorubicin (LD) conjugated to HSP1, HSP2, or HSP4 had significantly greater therapeutic efficacy than non-targeting liposomal drugs in NSCLC (H460 and H1993) animal models. Combined therapy with an HSP4-conjugated stable formulation of liposomal vinorelbine (sLV) further improved median overall survival (131 vs. 84 days; P = 0.0248), even in aggressive A549 orthotopic models. Overall, these peptides have the potential to guide a wide variety of tailored theranostic agents for targeting therapeutics, non-invasive imaging, or clinical detection of SCLC and NSCLC.
Collapse
|
31
|
Li T, Amari T, Semba K, Yamamoto T, Takeoka S. Construction and evaluation of pH-sensitive immunoliposomes for enhanced delivery of anticancer drug to ErbB2 over-expressing breast cancer cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1219-1227. [DOI: 10.1016/j.nano.2016.11.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/28/2016] [Accepted: 11/28/2016] [Indexed: 02/04/2023]
|
32
|
Yi Y, Kim HJ, Mi P, Zheng M, Takemoto H, Toh K, Kim BS, Hayashi K, Naito M, Matsumoto Y, Miyata K, Kataoka K. Targeted systemic delivery of siRNA to cervical cancer model using cyclic RGD-installed unimer polyion complex-assembled gold nanoparticles. J Control Release 2016; 244:247-256. [DOI: 10.1016/j.jconrel.2016.08.041] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/22/2016] [Accepted: 08/28/2016] [Indexed: 11/29/2022]
|
33
|
Abstract
Target delivery of antitumor drugs to cancer cells seems to be the very promising way of cancer therapy. The study on the application of immunoliposomes as nanocontainers for anticancer drugs started in the 90-ies. Immunoliposomal drug formulations of antitumor preparations have some advantages over traditional forms of drugs: lipid capsule reduces toxicity of drug due to the selective delivery to tumor and improves its bioavailability. However, despite these benefits, at present immunoliposomal drugs application is limited in the clinic. This review discusses current research status in field of development immunoliposomes and the possible targets for anticancer immuno-liposomes.
Collapse
Affiliation(s)
- A. O. Raikov
- I. M. Sechenov First Moscow State Medical University
| | - A. . Hashem
- I. M. Sechenov First Moscow State Medical University
| | - M. A. Baryshnikova
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia
| |
Collapse
|
34
|
|
35
|
Al-Ahmady Z, Kostarelos K. Chemical Components for the Design of Temperature-Responsive Vesicles as Cancer Therapeutics. Chem Rev 2016; 116:3883-918. [DOI: 10.1021/acs.chemrev.5b00578] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zahraa Al-Ahmady
- Nanomedicine Lab, Faculty of Medical & Human Sciences, University of Manchester, AV Hill Building, Manchester M13 9PT, United Kingdom
- UCL
School of Pharmacy, Faculty of Life Science, University College London, Brunswick Square, London WC1N 1AX, United Kingdom
- Manchester
Pharmacy School, University of Manchester, Stopford Building, Manchester M13 9PT, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Medical & Human Sciences, University of Manchester, AV Hill Building, Manchester M13 9PT, United Kingdom
- UCL
School of Pharmacy, Faculty of Life Science, University College London, Brunswick Square, London WC1N 1AX, United Kingdom
| |
Collapse
|
36
|
Shukla SK, Shukla SK, Govender PP, Giri NG. Biodegradable polymeric nanostructures in therapeutic applications: opportunities and challenges. RSC Adv 2016. [DOI: 10.1039/c6ra15764e] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Biodegradable polymeric nanostructures (BPNs) have shown great promise in different therapeutic applications such as diagnosis, imaging, drug delivery, cosmetics, organ implants, and tissue engineering.
Collapse
Affiliation(s)
- S. K. Shukla
- Department of Polymer Science
- Bhaskaracharya College of Applied Sciences
- University of Delhi
- Delhi-110075
- India
| | - Sudheesh K. Shukla
- Department of Applied Chemistry
- University of Johannesburg
- Johannesburg
- South Africa
| | - Penny P. Govender
- Department of Applied Chemistry
- University of Johannesburg
- Johannesburg
- South Africa
| | - N. G. Giri
- Department of Chemistry
- Shivaji College
- University of Delhi
- New Delhi-110027
- India
| |
Collapse
|
37
|
Yaroslavov A, Sybachin A, Zaborova O, Zezin A, Talmon Y, Ballauff M, Menger F. Multi-liposomal containers. Adv Colloid Interface Sci 2015; 226:54-64. [PMID: 26372095 DOI: 10.1016/j.cis.2015.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 07/11/2015] [Accepted: 08/25/2015] [Indexed: 12/17/2022]
Abstract
Small unilamellar liposomes, 40-60 nm in diameter, composed of anionic diphosphatidylglycerol (cardiolipin, CL(2-)) or phosphatidylcerine (PS(1-)) and zwitter-ionic egg yolk lecithin (EL) or dipalmitoylphosphatidylcholine (DPPC), electrostatically complex with polystyrene microspheres, ca. 100 nm in diameter, grafted by polycationic chains ("spherical polycationic brushes", SPBs). Polymer/liposome binding studies were carried out using electrophoretic mobility (EPM), dynamic light scattering (DLS), fluorescence, conductometry, differential scanning calorimetry (DSC), and cryogenic transmission electron microscopy (cryo-TEM) as the main analytical tools. By these means a remarkably detailed picture emerges of molecular events inside a membrane. The following are among the most important conclusions that arose from the experiments: (a) binding of liposomes to SPBs is accompanied by flip-flop of anionic lipids from the inner to the outer leaflet of the liposomal membrane along with lateral lipid segregation into "islands". (b) The SPB-induced structural reorganization of the liposomal membrane, together with the geometry of anionic lipid molecules, determines the maximum molar fraction of anionic lipid (a key parameter designated as ν) that ensures the structural integrity of liposomes upon complexation: ν=0.3 for liposomes with conically-shaped CL(2-) and ν=0.5 for liposomes with anionic cylindrically-shaped PS(1-). (c) The number of intact liposomes per SPB particle varies from 40 for (ν=0.1) to 13 (ν=0.5). (d) By using a mixture of liposomes with variety of encapsulated substances, multi-liposomal complexes can be prepared with a high loading capacity and a controlled ratio of the contents. (e) In order to make the mixed anionic liposomes pH-sensitive, they are additionally modified by 30 mol% of a morpholinocyclohexanol-based lipid that undergoes a conformational flip when changing pH. Being complexed with SPBs, such liposomes rapidly release their contents when the pH is reduced from 7.0 to 5.0. The results allow loaded liposomes to be concentrated within a rather small volume and, thereby, the preparation of multi-liposomal containers of promise in the drug delivery field.
Collapse
|
38
|
Dibutyrylchitin nanoparticles as novel drug carrier. Int J Biol Macromol 2015; 82:1011-7. [PMID: 26592700 DOI: 10.1016/j.ijbiomac.2015.11.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/27/2015] [Accepted: 11/12/2015] [Indexed: 12/31/2022]
Abstract
Chitin is a ubiquitous renewable biopolymer that is significantly distributed in the natural world. Biopolymeric nanoparticles (Nps) have been developed for various biomedical applications by researchers. Here, chitin derivative, dibutyrylchitin Nps (DBC) was synthesized as a nanocarrier for drug delivery using butyric anhydride and perchloric acid as a catalyst under heterogeneous conditions. The structural characterization was analyzed by FT-IR and FE SEM study showed spherical particles in a size range of 80-90 nm. The physiochemical evaluation involves swelling behavior and in vitro biodegradation studies. The results of in vitro hemolytic assay validate the blood compatibility of the prepared system. Drug release profiles indicate that 5-flourouracil (Fu) loaded dibutyrylchitin Nps (DBC-Fu) gives the enhanced drug release in acidic pH when compared to neutral pH. The encapsulation efficiency of DBC-Fu was found to be 90%. The confocal analysis also confirmed the uptake of both DBC and DBC-Fu Nps by A549 cell lines. Hence, this study shows that the DBC have the potential to be used as a drug carrier and also for other biomedical applications.
Collapse
|
39
|
Liguori L, Pastorino F, Rousset X, Alfano S, Cortes S, Emionite L, Daga A, Ponzoni M, Lenormand JL. Anti-Tumor Effects of Bak-Proteoliposomes against Glioblastoma. Molecules 2015; 20:15893-909. [PMID: 26340616 PMCID: PMC6332045 DOI: 10.3390/molecules200915893] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/21/2015] [Accepted: 08/27/2015] [Indexed: 11/16/2022] Open
Abstract
Despite palliative treatments, glioblastoma (GBM) remains a devastating malignancy with a mean survival of about 15 months after diagnosis. Programmed cell-death is de-regulated in almost all GBM and the re-activation of the mitochondrial apoptotic pathway through exogenous bioactive proteins may represent a powerful therapeutic tool to treat multidrug resistant GBM. We have reported that human Bak protein integrated in Liposomes (LB) was able, in vitro, to activate the mitochondrial apoptotic pathway in colon cancer cells. To evaluate the anti-tumor effects of LB on GBM, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays and Western blot analysis were performed on GL26 murine cell line. LB treatment shows a dose-dependent inhibition of cell viability, followed by an up-regulation of Bax and a down-modulation of JNK1 proteins. In GL26-bearing mice, two different routes of administration were tested: intra-tumor and intravenous. Biodistribution, tumor growth and animal survival rates were followed. LB show long-lasting tumor accumulation. Moreover, the intra-tumor administration of LB induces tumor growth delay and total tumor regression in about 40% of treated mice, while the intravenous injection leads to a significant increased life span of mice paralleled by an increased tumor cells apoptosis. Our findings are functional to the design of LB with potentiated therapeutic efficacy for GBM.
Collapse
Affiliation(s)
- Lavinia Liguori
- SyNaBi Laboratory, TIMC IMAG, UMR S5525, UJF/CNRS, Joseph Fourier University, Grenoble Cedex 9 38700, France.
| | - Fabio Pastorino
- Laboratory of Oncology, Istituto Giannina Gaslini, Genoa 16147, Italy.
| | - Xavier Rousset
- The Rex Laboratory, TIMC IMAG, UMR5525, UJF/CNRS, Joseph Fourier University, CHU-Grenoble, BP217, Grenoble Cedex 9 38043, France.
| | - Silvia Alfano
- The Rex Laboratory, TIMC IMAG, UMR5525, UJF/CNRS, Joseph Fourier University, CHU-Grenoble, BP217, Grenoble Cedex 9 38043, France.
| | - Sandra Cortes
- The Rex Laboratory, TIMC IMAG, UMR5525, UJF/CNRS, Joseph Fourier University, CHU-Grenoble, BP217, Grenoble Cedex 9 38043, France.
| | - Laura Emionite
- Animal Facility, IRCCS Azienda Ospedaliera Universitaria San Martino-IST, Genoa 16132, Italy.
| | - Antonio Daga
- Laboratorio di Trasferimento Genico, IRCCS Azienda Ospedaliera Universitaria San Martino-IST, Genoa 16132, Italy.
| | - Mirco Ponzoni
- Laboratory of Oncology, Istituto Giannina Gaslini, Genoa 16147, Italy.
| | - Jean-Luc Lenormand
- The Rex Laboratory, TIMC IMAG, UMR5525, UJF/CNRS, Joseph Fourier University, CHU-Grenoble, BP217, Grenoble Cedex 9 38043, France.
| |
Collapse
|
40
|
Lozano N, Al-Ahmady ZS, Beziere NS, Ntziachristos V, Kostarelos K. Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent. Int J Pharm 2015; 482:2-10. [DOI: 10.1016/j.ijpharm.2014.10.045] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/17/2014] [Indexed: 11/30/2022]
|
41
|
Hosseini M, Haji-Fatahaliha M, Jadidi-Niaragh F, Majidi J, Yousefi M. The use of nanoparticles as a promising therapeutic approach in cancer immunotherapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1051-61. [PMID: 25612903 DOI: 10.3109/21691401.2014.998830] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
42
|
Yang J, Han S, Zheng H, Dong H, Liu J. Preparation and application of micro/nanoparticles based on natural polysaccharides. Carbohydr Polym 2015; 123:53-66. [PMID: 25843834 DOI: 10.1016/j.carbpol.2015.01.029] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 12/13/2014] [Accepted: 01/16/2015] [Indexed: 02/08/2023]
Abstract
Polysaccharides have attracted more and more attentions and been recognized to be the most promising materials in recent years because of their outstanding merits such as easily available, non-toxic, biocompatible, biodegradable, and easily modified. Considerable research efforts have been directed toward developing polysaccharides-based micro/nanoparticles (PM/NPs). The new major studies of PM/NPs over the past few years are outlined in this review. Methods of preparation, including self-assembly, ionic-gelation, complex coacervation, emulsification, and desolvation method and some others, are summarized. Different applications of PM/NPs in the field of drug-delivery system are highlighted. Besides, another novel application of PM/NPs that are used as emulsifiers to stabilize Pickering emulsion is also introduced. These environmental-friendly particle emulsifiers have received reasonable attention due to their novel applications, especially in food, cosmetics, and pharmaceutics. From literature surveys, we realized that studies on PM/NP systems for different applications have increased rapidly. Hence, the present review is timely.
Collapse
Affiliation(s)
- Jisheng Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Suya Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Haicheng Zheng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Hongbiao Dong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jiubing Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
43
|
Chi HT, Ly BTK, Vu HA, Sato Y, Dung PC, Xinh PT. Synergistic effect of all‑trans retinoic acid in combination with protein kinase C 412 in FMS-like tyrosine kinase 3-mutated acute myeloid leukemia cells. Mol Med Rep 2015; 11:3969-75. [PMID: 25592076 DOI: 10.3892/mmr.2015.3203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 11/20/2014] [Indexed: 11/06/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease. Numerous molecular abnormalities have been identified in AML and, amongst these, FMS‑like tyrosine kinase 3 (FLT3) mutations are one of the most common somatic alterations detected. In the present study, an in vitro investigation was performed to evaluate the effects of all‑trans retinoic acid (ATRA) and PKC412, alone and in combination, in FLT3‑mutated AML cell lines. Trypan blue exclusion test, as well as morphological, western blot and isobologram analyses were conducted. The results indicated that the combined ATRA and PKC412 treatment exhibited additive or synergistic effects in FLT3‑mutated AML cell lines. These results provided in vitro evidence for the future clinical trials evaluating the effects of a combination treatment using PKC412 and ATRA on AML patients with FLT3‑mutations.
Collapse
Affiliation(s)
- Hoang Thanh Chi
- Department of Molecular Cytogenetics, Blood Transfusion and Hematology Hospital Ho Chi Minh City, Ho Chi Minh City 711512, Vietnam
| | - Bui Thi Kim Ly
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108‑8639, Japan
| | - Hoang Anh Vu
- Center for Molecular Biomedicine, The University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 748908, Vietnam
| | - Yuko Sato
- Japanese Red Cross College of Nursing, Tokyo 150‑0012, Japan
| | - Phu Chi Dung
- Department of First Pediatric Hematology, Blood Transfusion and Hematology Hospital Ho Chi Minh City, Ho Chi Minh City 711512, Vietnam
| | - Phan Thi Xinh
- Department of Molecular Cytogenetics, Blood Transfusion and Hematology Hospital Ho Chi Minh City, Ho Chi Minh City 711512, Vietnam
| |
Collapse
|
44
|
Sherwani MA, Tufail S, Khan AA, Owais M. Dendrimer-PLGA based multifunctional immuno-nanocomposite mediated synchronous and tumor selective delivery of siRNA and cisplatin: potential in treatment of hepatocellular carcinoma. RSC Adv 2015. [DOI: 10.1039/c5ra03651h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The in-house synthesized PLK-1 siRNA and cisplatin loaded innovative dendrimer-PLGA immuno-nanocomposite bears the capacity of delivering both the cargos simultaneously to the same liver cancer cell in a targeted manner.
Collapse
Affiliation(s)
| | - Saba Tufail
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh
- India
| | - Aijaz Ahmed Khan
- Department of Anatomy
- Jawaharlal Nehru Medical College
- Faculty of Medicine
- Aligarh Muslim University
- Aligarh
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh
- India
| |
Collapse
|
45
|
Prabaharan M. Chitosan-based nanoparticles for tumor-targeted drug delivery. Int J Biol Macromol 2015; 72:1313-22. [DOI: 10.1016/j.ijbiomac.2014.10.052] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 10/23/2014] [Accepted: 10/27/2014] [Indexed: 02/07/2023]
|
46
|
Monoclonal antibody-targeted, temperature-sensitive liposomes: in vivo tumor chemotherapeutics in combination with mild hyperthermia. J Control Release 2014; 196:332-43. [PMID: 25456832 DOI: 10.1016/j.jconrel.2014.10.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 11/23/2022]
Abstract
The development of actively targeted, responsive delivery vectors holds great promise for cancer therapy. Here, we investigated whether enhanced therapeutic activity of temperature sensitive liposomes (TSL) could be obtained by mild hyperthermia-triggered release of the chemotherapeutic drug doxorubicin (DOX) after hCTMO1 monoclonal antibody (anti-MUC-1) binding and uptake into cancer cells. We showed that traditional TSL (TTSL) liposome systems maintained their physicochemical and thermal properties after conjugation to hCTMO1 full IgG. Receptor-mediated cellular uptake and cytotoxic efficacy of antibody-targeted TTSL (TTSL-Ab) were investigated using 2D and 3D cell culture models. Significant enhancement in cellular uptake and cytotoxic activity after 1h of heating at 42 °C was observed for TTSL-Ab compared to non-targeted liposomes in MUC-1 over-expressing breast cancer cells (MDA-MB-435). Tissue distribution and in vivo therapeutic activity were studied using different heating protocols to explore the effect of mild hyperthermia on the tumor accumulation of targeted TTSL and their therapeutic effect. Application of local, mild hyperthermia (42°C) significantly increased the tumor accumulation of targeted TSL compared to non-targeted liposomes, associated with a moderate improvement in therapeutic activity and survival.
Collapse
|
47
|
Qin L, Wang CZ, Fan HJ, Zhang CJ, Zhang HW, Lv MH, Cui SDE. A dual-targeting liposome conjugated with transferrin and arginine-glycine-aspartic acid peptide for glioma-targeting therapy. Oncol Lett 2014; 8:2000-2006. [PMID: 25289086 PMCID: PMC4186501 DOI: 10.3892/ol.2014.2449] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/25/2014] [Indexed: 02/02/2023] Open
Abstract
The treatment of a brain glioma remains one of the most difficult challenges in oncology. In the present study a delivery system was developed for targeted drug delivery across the blood-brain barrier (BBB) to the brain cancer cells. A cyclic arginine-glycine-aspartic acid (RGD) peptide and transferrin (TF) were utilized as targeting ligands. Cyclic RGD peptides are specific targeting ligands of cancer cells and TFs are ligands that specifically target the BBB and cancer cells. Liposome (LP) was used to conjugate the cyclic RGD and TFs to establish the brain glioma cascade delivery system (RGD/TF-LP). The LPs were prepared by the thin film hydration method and physicochemical characterization was conducted. In vitro cell uptake and three-dimensional tumor spheroid penetration studies demonstrated that the system could target endothelial and tumor cells, as well as penetrate the tumor cells to reach the core of the tumor spheroids. The results of the in vivo imaging further demonstrated that the RGD/TF-LP provided the highest brain distribution. As a result, the paclitaxel-loaded RGD/TF-LP presents the best antiproliferative activity against C6 cells and tumor spheroids. In conclusion, the RGD/TF-LP may precisely target brain glioma, which may be valuable for glioma imaging and therapy.
Collapse
Affiliation(s)
- Li Qin
- Department of Breast, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| | - Cheng-Zheng Wang
- Department of Breast, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| | - Hui-Jie Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chong-Jian Zhang
- Department of Breast, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| | - Heng-Wei Zhang
- Department of Breast, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| | - Min-Hao Lv
- Department of Breast, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| | - Shu-DE Cui
- Department of Breast, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| |
Collapse
|
48
|
Marqués-Gallego P, de Kroon AIPM. Ligation strategies for targeting liposomal nanocarriers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:129458. [PMID: 25126543 PMCID: PMC4122157 DOI: 10.1155/2014/129458] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 05/12/2014] [Accepted: 05/15/2014] [Indexed: 11/17/2022]
Abstract
Liposomes have been exploited for pharmaceutical purposes, including diagnostic imaging and drug and gene delivery. The versatility of liposomes as drug carriers has been demonstrated by a variety of clinically approved formulations. Since liposomes were first reported, research of liposomal formulations has progressed to produce improved delivery systems. One example of this progress is stealth liposomes, so called because they are equipped with a PEGylated coating of the liposome bilayer, leading to prolonged blood circulation and improved biodistribution of the liposomal carrier. A growing research area focuses on the preparation of liposomes with the ability of targeting specific tissues. Several strategies to prepare liposomes with active targeting ligands have been developed over the last decades. Herein, several strategies for the functionalization of liposomes are concisely summarized, with emphasis on recently developed technologies for the covalent conjugation of targeting ligands to liposomes.
Collapse
Affiliation(s)
- Patricia Marqués-Gallego
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research and Institute of Biomembranes, Utrecht University, Padualaan 8, H.R. Kruyt Building, 3584 CH Utrecht, The Netherlands
| | - Anton I. P. M. de Kroon
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research and Institute of Biomembranes, Utrecht University, Padualaan 8, H.R. Kruyt Building, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
49
|
Progress of drug-loaded polymeric micelles into clinical studies. J Control Release 2014; 190:465-76. [PMID: 24993430 DOI: 10.1016/j.jconrel.2014.06.042] [Citation(s) in RCA: 621] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/22/2014] [Accepted: 06/23/2014] [Indexed: 12/29/2022]
Abstract
Targeting tumors with long-circulating nano-scaled carriers is a promising strategy for systemic cancer treatment. Compared with free small therapeutic agents, nanocarriers can selectively accumulate in solid tumors through the enhanced permeability and retention (EPR) effect, which is characterized by leaky blood vessels and impaired lymphatic drainage in tumor tissues, and achieve superior therapeutic efficacy, while reducing side effects. In this way, drug-loaded polymeric micelles, i.e. self-assemblies of amphiphilic block copolymers consisting of a hydrophobic core as a drug reservoir and a poly(ethylene glycol) (PEG) hydrophilic shell, have demonstrated outstanding features as tumor-targeted nanocarriers with high translational potential, and several micelle formulations are currently under clinical evaluation. This review summarizes recent efforts in the development of these polymeric micelles and their performance in human studies, as well as our recent progress in polymeric micelles for the delivery of nucleic acids and imaging.
Collapse
|
50
|
Drug Delivery Systems That Eradicate and/or Prevent Biofilm Formation. SPRINGER SERIES ON BIOFILMS 2014. [DOI: 10.1007/978-3-642-53833-9_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|