Lerner Y, Hanout W, Ben-Uliel SF, Gani S, Leshem MP, Qvit N. Natriuretic Peptides as the Basis of Peptide Drug Discovery for Cardiovascular Diseases.
Curr Top Med Chem 2020;
20:2904-2921. [PMID:
33050863 DOI:
10.2174/1568026620666201013154326]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/14/2020] [Accepted: 09/25/2020] [Indexed: 01/14/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading global cause of death, accounting for more than 17.6 million deaths per year in 2016, a number that is expected to grow to more than 23.6 million by 2030. While many technologies are currently under investigation to improve the therapeutic outcome of CVD complications, only a few medications have been approved. Therefore, new approaches to treat CVD are urgently required. Peptides regulate numerous physiological processes, mainly by binding to specific receptors and inducing a series of signals, neurotransmissions or the release of growth factors. Importantly, peptides have also been shown to play an important role in the circulatory system both in physiological and pathological conditions. Peptides, such as angiotensin II, endothelin, urotensin-II, urocortins, adrenomedullin and natriuretic peptides have been implicated in the control of vascular tone and blood pressure as well as in CVDs such as congestive heart failure, atherosclerosis, coronary artery disease, and pulmonary and systemic hypertension. Hence it is not surprising that peptides are becoming important therapeutic leads in CVDs. This article will review the current knowledge on peptides and their role in the circulatory system, focusing on the physiological roles of natriuretic peptides in the cardiovascular system and their implications in CVDs.
Collapse