1
|
Kalsoom S, Rasool MF, Imran I, Saeed H, Ahmad T, Alqahtani F. A Comprehensive Physiologically Based Pharmacokinetic Model of Nadolol in Adults with Renal Disease and Pediatrics with Supraventricular Tachycardia. Pharmaceuticals (Basel) 2024; 17:265. [PMID: 38399480 PMCID: PMC10891759 DOI: 10.3390/ph17020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/03/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Nadolol is a long-acting non-selective β-adrenergic antagonist that helps treat angina and hypertension. The current study aimed to develop and validate the physiologically based pharmacokinetic model (PBPK) of nadolol in healthy adults, renal-compromised, and pediatric populations. A comprehensive PBPK model was established by utilizing a PK-Sim simulator. After establishing and validating the model in healthy adults, pathophysiological changes i.e., blood flow, hematocrit, and GFR that occur in renal failure were incorporated in the developed model, and the drug exposure was assessed through Box plots. The pediatric model was also developed and evaluated by considering the renal maturation process. The validation of the models was carried out by visual predictive checks, calculating predicted to observed (Rpre/obs) and the average fold error (AFE) of PK parameters i.e., the area under the concentration-time curve (AUC0-t), the maximum concentration in plasma (Cmax), and CL (clearance). The presented PBPK model successfully simulates the nadolol PK in healthy adults, renal-impaired, and pediatric populations, as the Rpre/obs values of all PK parameters fall within the acceptable range. The established PBPK model can be useful in nadolol dose optimization in patients with renal failure and children with supraventricular tachycardia.
Collapse
Affiliation(s)
- Samia Kalsoom
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Hamid Saeed
- Section of Pharmaceutics, University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore 54000, Pakistan;
| | - Tanveer Ahmad
- Institute for Advanced Biosciences (IAB), CNRS UMR5309, INSERM U1209, Grenoble Alpes University, 38700 La Tronche, France;
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Swarup P, Agrawal GP. Solid Dispersion: A Mechanistic and Realistic Approach on Antihypertensive Drug as a Drug Carrier System. Assay Drug Dev Technol 2021; 19:282-289. [PMID: 34015231 DOI: 10.1089/adt.2020.1055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A major percentage of the new chemical entities are reported to have poor aqueous solubility. Several antihypertensive drugs used clinically have either low solubility or high hepatic metabolism, thereby presenting low bioavailability (BA) and high pharmacokinetic variability. Improving the aqueous solubility of drug molecules would assist in overcoming the variability, and several approaches for improving solubility have been reported. Solid dispersion (SD) is known as a potential technique to conquer the problem of poor aqueous solubility and low BA. Drug solubility is improved by increasing the wetting property of drugs. This review is focused on discussing various approaches to improve solubility, classification, and different approaches used for formulation of SDs, along with special emphasis on the application of the SD approach for improving solubility and eventually enhancing dissolution and increasing the BA of antihypertensive drugs. The review leads to the conclusion that the use of more than one polymeric carrier for formulating SDs might help in overcoming storage and stability issues and in increasing the commercial viability and success of SDs.
Collapse
Affiliation(s)
- Pallavi Swarup
- Agra Public Pharmacy College, Heera Lal Ki Pyau, Agra, India
| | | |
Collapse
|
3
|
Yuan RQ, Qian L, Yun WJ, Cui XH, Lv GX, Tang WQ, Cao RC, Xu H. Cucurbitacins extracted from Cucumis melo L. (CuEC) exert a hypotensive effect via regulating vascular tone. Hypertens Res 2019; 42:1152-1161. [PMID: 30962520 DOI: 10.1038/s41440-019-0258-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/17/2019] [Accepted: 03/06/2019] [Indexed: 12/13/2022]
Abstract
As an effective medicine for jaundice in traditional Chinese medicine, Cucumis melo L. has been widely used in China. However, its effect on vascular function is still unclear. In this study, we extracted the compounds of Cucumis melo L., and the major ingredients were identified as cucurbitacins (CuEC, cucurbitacins extracted from Cucumis melo L.), especially cucurbitacin B. We replicated the toxicity in mice by intraperitoneal injection of a high dose of CuEC (2 mg/kg) and demonstrated that the cause of death was CuEC-induced impairment of the endothelial barrier and, thus, increased vascular permeability via decreasing VE-cadherin conjunction. The administration of low doses of CuEC (1 mg/kg) led to a decline in systolic blood pressure (SBP) without causing toxicity in mice. More importantly, CuEC dramatically suppressed angiotensin II (Ang II)-induced SBP increase. Further studies demonstrated that CuEC facilitated acetylcholine-mediated vasodilation in mesenteric arteries of mice. In vitro studies showed that CuEC induced vasodilation in a dose-dependent manner in mesenteric arteries of both mice and rats. Pretreatment with CuEC inhibited phenylephrine-mediated vasoconstriction. In summary, a moderate dose of CuEC reduced SBP by improving blood vessel tension. Therefore, our study provides new experimental evidence for developing new antihypertensive drugs.
Collapse
Affiliation(s)
- Ru-Qiang Yuan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Lei Qian
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Wei-Jing Yun
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xiao-Hui Cui
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Guang-Xin Lv
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Wei-Qi Tang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ri-Chang Cao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
4
|
Iskakova AN, Romanova AA, Aitkulova AM, Sikhayeva NS, Zholdybayeva EV, Ramanculov EM. Polymorphisms in genes involved in the absorption, distribution, metabolism, and excretion of drugs in the Kazakhs of Kazakhstan. BMC Genet 2016; 17:23. [PMID: 26785747 PMCID: PMC4717528 DOI: 10.1186/s12863-016-0329-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/13/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Studies of genes involved in the absorption, distribution, metabolism, and excretion (ADME) of drugs are crucial to the development of therapeutics in clinical medicine. Such data provide information that may improve our understanding of individual differences in sensitivity or resistance to certain drugs, thereby helping to avoid adverse drug reactions (ADRs) in patients and improve the quality of therapies. Here, we aimed to analyse single nucleotide polymorphisms (SNPs) involved in the ADME of multiple drugs in Kazakhs from Kazakhstan. RESULTS A total of 158 SNPs involved in the ADME of various drugs were studied. We analysed 320 Kazakh DNA samples using OpenArray genotyping. Of the 158 SNPs, 75 were not found in heterozygous or homozygous variants. Comparative analysis among Kazakhs and world populations showed a fairly high percentage of population differentiation. CONCLUSION These results provide further information for pharmacogenetic databases and may contribute to the development of personalized approaches and safer therapies for the Kazakh population. Moreover, these data provide insights into the different racial groups that may have contributed to the Kazakh population.
Collapse
Affiliation(s)
- Aisha N Iskakova
- National Scientific Laboratory of Biotechnology, National Center for Biotechnology, Almaty, Kazakhstan.
- Biology and Biotechnology Department, Al-Farabi Kazakh National University, Almaty, Kazakhstan.
| | - Aliya A Romanova
- National Scientific Laboratory of Biotechnology, National Center for Biotechnology, Almaty, Kazakhstan.
| | - Akbota M Aitkulova
- National Scientific Laboratory of Biotechnology, National Center for Biotechnology, Almaty, Kazakhstan.
| | - Nurgul S Sikhayeva
- National Scientific Laboratory of Biotechnology, National Center for Biotechnology, Almaty, Kazakhstan.
- Faculty of Natural Sciences, L.N, Gumilyov Eurasian National University, Astana, Kazakhstan.
| | - Elena V Zholdybayeva
- National Scientific Laboratory of Biotechnology, National Center for Biotechnology, Almaty, Kazakhstan.
| | - Erlan M Ramanculov
- National Scientific Laboratory of Biotechnology, National Center for Biotechnology, Almaty, Kazakhstan.
- School of Science and Technology Nazarbayev University, Astana, Kazakhstan.
| |
Collapse
|
5
|
Screening for non-adherence to antihypertensive treatment as a part of the diagnostic pathway to renal denervation. J Hum Hypertens 2015; 30:368-73. [PMID: 26446393 PMCID: PMC4856755 DOI: 10.1038/jhh.2015.103] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/21/2015] [Accepted: 08/07/2015] [Indexed: 01/12/2023]
Abstract
Renal denervation is a potential therapeutic option for resistant hypertension. A thorough clinical assessment to exclude reversible/spurious causes of resistance to antihypertensive therapy is required prior to this procedure. The extent to which non-adherence to antihypertensive treatment contributes to apparent resistance to antihypertensive therapy in patients considered for renal denervation is not known. Patients (n=34) referred for renal denervation entered the evaluation pathway that included screening for adherence to antihypertensive treatment by high-performance liquid chromatography-tandem mass spectrometry-based urine analysis. Biochemical non-adherence to antihypertensive treatment was the most common cause of non-eligibility for renal denervation-23.5% of patients were either partially or completely non-adherent to prescribed antihypertensive treatment. About 5.9% of those referred for renal denervation had admitted non-adherence prior to performing the screening test. Suboptimal pharmacological treatment of hypertension and 'white-coat effect' accounted for apparently resistant hypertension in a further 17.7 and 5.9% of patients, respectively. Taken together, these three causes of pseudo-resistant hypertension accounted for 52.9% of patients referred for renal denervation. Only 14.7% of referred patients were ultimately deemed eligible for renal denervation. Without biochemical screening for therapeutic non-adherence, the eligibility rate for renal denervation would have been 38.2%. Non-adherence to antihypertensive treatment and other forms of therapeutic pseudo-resistance are by far the most common reason of 'resistant hypertension' in patients referred for renal denervation. We suggest that inclusion of biochemical screening for non-adherence to antihypertensive treatment may be helpful in evaluation of patients with 'resistant hypertension' prior to consideration of renal denervation.
Collapse
|
6
|
Zisaki A, Miskovic L, Hatzimanikatis V. Antihypertensive drugs metabolism: an update to pharmacokinetic profiles and computational approaches. Curr Pharm Des 2015; 21:806-22. [PMID: 25341854 PMCID: PMC4435036 DOI: 10.2174/1381612820666141024151119] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/09/2014] [Indexed: 02/07/2023]
Abstract
Drug discovery and development is a high-risk enterprise that requires significant investments in capital, time and scientific expertise. The studies of xenobiotic metabolism remain as one of the main topics in the research and development of drugs, cosmetics and nutritional supplements. Antihypertensive drugs are used for the treatment of high blood pressure, which is one the most frequent symptoms of the patients that undergo cardiovascular diseases such as myocardial infraction and strokes. In current cardiovascular disease pharmacology, four drug clusters - Angiotensin Converting Enzyme Inhibitors, Beta-Blockers, Calcium Channel Blockers and Diuretics - cover the major therapeutic characteristics of the most antihypertensive drugs. The pharmacokinetic and specifically the metabolic profile of the antihypertensive agents are intensively studied because of the broad inter-individual variability on plasma concentrations and the diversity on the efficacy response especially due to the P450 dependent metabolic status they present. Several computational methods have been developed with the aim to: (i) model and better understand the human drug metabolism; and (ii) enhance the experimental investigation of the metabolism of small xenobiotic molecules. The main predictive tools these methods employ are rule-based approaches, quantitative structure metabolism/activity relationships and docking approaches. This review paper provides detailed metabolic profiles of the major clusters of antihypertensive agents, including their metabolites and their metabolizing enzymes, and it also provides specific information concerning the computational approaches that have been used to predict the metabolic profile of several antihypertensive drugs.
Collapse
Affiliation(s)
| | | | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology (LCSB), Ecole Polytechnique Federale de Lausanne, EPFL/SB/ISIC/LCSB, CH H4 624/ Station 6/ CH-1015 Lausanne/ Switzerland.
| |
Collapse
|
7
|
Gentile G, Chiossi L, Lionetto L, Martelletti P, Borro M. Pharmacogenetic insights into migraine treatment in children. Pharmacogenomics 2014; 15:1539-50. [DOI: 10.2217/pgs.14.104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pediatric migraine is a disabling condition that can affect the everyday activities and emotional states of children. Due to the multifactorial character of the pathology and the variety of the disease's phenotypes, establishment of an effective treatment is often challenging. Pharmacological treatment is often administered off-label and includes very different drugs, from analgesics to antidepressants. Since interindividual variability in therapy response commonly causes inefficacy and an exacerbation of symptoms, pharmacogenetics may help to decrease the prescription rate of useless or unsafe drugs. If there are many drugs used in migraine, then there are even more candidate or established pharmacogenetic markers that are implicated in clinical profiles. This article presents the current situation regarding the pharmacogenetics of drugs used in pediatric migraine.
Collapse
Affiliation(s)
| | | | - Luana Lionetto
- Advanced Molecular Diagnostic Unit (DiMA), Sant’Andrea Hospital, Rome, Italy
| | - Paolo Martelletti
- Regional Referral Headache Center, Sant’Andrea Hospital, Rome, Italy
- Department of Clinical & Molecular Medicine (DCMM), Sapienza University of Rome, Rome, Italy
| | - Marina Borro
- NESMOS Department, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Precise assessment of noncompliance with the antihypertensive therapy in patients with resistant hypertension using toxicological serum analysis. J Hypertens 2014; 31:2455-61. [PMID: 24220593 DOI: 10.1097/hjh.0b013e3283652c61] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The aim of our study was to assess the prevalence of pseudo-resistance caused by noncompliance with treatment among patients with severe resistant hypertension and to analyze the contributing factors. METHOD Three hundred and thirty-nine patients (195 men) with resistant essential hypertension were studied. The first group consisted of 176 patients admitted for hospitalization for exclusion of a secondary cause to our hypertension centre (103 men); the second one consisted of 163 out-patients (92 men) investigated for the first time in an out-patient hypertension clinic. Unplanned blood sampling for assessment of serum antihypertensive drug concentrations by means of liquid chromatography-mass spectrometry was performed in all patients. RESULTS Our main finding is a surprisingly low compliance with drug treatment in out-patients with resistant hypertension (23% partially noncompliant and 24% totally noncompliant - in total, 47% prevalence of noncompliance). Eighty-one percent of hospitalized patients were positive, in 10% the results were partially positive and in 9% of the patients, the drugs were all negative. The compliance among hospitalized patients was probably better due to lower numbers of prescribed drugs and expected thorough investigation. More frequently, noncompliance was found in nonworking (potential purpose-built behaviour), younger and less well educated patients. The most frequent noncompliance was to doxazosine, spironolactone and hydrochlorothiazide. We have observed a surprisingly low compliance with treatment among out-patients with severe hypertension. CONCLUSION We conclude that the evaluation of antihypertensive drugs concentrations is a useful and precise method for assessment of noncompliance in patients with resistant hypertension. This evaluation is useful before starting the diagnostic work-up of secondary forms of hypertension and before assignment patients into protocols with new therapy modalities such as renal denervation.
Collapse
|
9
|
Höcht C, Bertera FM, Del Mauro JS, Taira CA. Models for evaluating the pharmacokinetics and pharmacodynamics for β-blockers. Expert Opin Drug Metab Toxicol 2014; 10:525-41. [DOI: 10.1517/17425255.2014.885951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Bertera FM, Del Mauro JS, Lovera V, Chiappetta D, Polizio AH, Taira CA, Höcht C. Enantioselective pharmacokinetics and cardiovascular effects of nebivolol in L-NAME hypertensive rats. Hypertens Res 2013; 37:194-201. [DOI: 10.1038/hr.2013.140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/16/2013] [Accepted: 07/22/2013] [Indexed: 12/22/2022]
|
11
|
Bertera FM, Del Mauro JS, Lovera V, Chiappetta D, Héctor Polizio A, Alberto Taira C, Höcht C. Acute effects of third generation β-blockers on short-term and beat-to-beat blood pressure variability in sinoaortic-denervated rats. Hypertens Res 2013; 36:349-55. [DOI: 10.1038/hr.2012.209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
CYP2C19 genotype has a major influence on labetalol pharmacokinetics in healthy male Chinese subjects. Eur J Clin Pharmacol 2012; 69:799-806. [PMID: 23090703 DOI: 10.1007/s00228-012-1428-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 10/02/2012] [Indexed: 12/20/2022]
Abstract
PURPOSE The pharmacokinetics (PK) of labetalol show wide inter-subject variability, but the genetic causes for this are largely undetermined. This study was performed to examine whether common polymorphisms in UGT1A1, UGT2B7, CYP2C19 and ABCB1 affect the PK of labetalol. METHODS The PK of labetalol were determined in 37 Chinese healthy male subjects who took a single oral dose of 200 mg labetalol. Plasma concentrations of labetalol were determined by a high-performance liquid chromatographic method. Subjects were genotyped for the CYP2C19 2 and 3, UGT1A1 6, 28 and 60, UGT2B7 2 and ABCB1 1236C>T, 2677G>T/A and 3435C>T polymorphisms. RESULTS Subjects with the CYP2C19 2/ 2 genotype had a higher peak concentration (255.5 ± 80.1 vs. 156.0 ± 66.3 ng/mL; P < 0.05) and area under the concentration-time curve (AUC0-∞; 1,473.7 ± 493.6 vs. 502.8 ± 176.1 ng[Symbol: see text]h/mL; P < 0.001) than subjects with 60 or 28, and UGT2B7 2 did not result in a significant effect. Subjects with ABCB1 2677TA or TT or ABCB1 3435TT genotypes had higher AUC0-∞ and lower total clearance than the wild-types (P < 0.05), but this appeared to be related to the distribution of CYP2C19 genotypes. The CYP2C19 genotype appeared to be the only predictor of labetalol concentrations, accounting for approximately 60 % of the total variance in the AUC0-∞. CONCLUSION Our results suggest that the PK of labetalol are significantly affected by the common CYP2C19 polymorphisms in individuals of Chinese ethnicity. Future larger studies are needed to evaluate the effect of CYP2C19 and UGT1A1 polymorphisms on the PK of labetalol stereoisomers and the pharmacodynamic effects.
Collapse
|
13
|
Chan SW, Hu M, Tomlinson B. The pharmacogenetics of β-adrenergic receptor antagonists in the treatment of hypertension and heart failure. Expert Opin Drug Metab Toxicol 2012; 8:767-90. [DOI: 10.1517/17425255.2012.685157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Effect of nebivolol on beat-to-beat and short-term blood pressure variability in spontaneously hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:833-43. [DOI: 10.1007/s00210-012-0756-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/13/2012] [Indexed: 01/06/2023]
|
15
|
Kiser JJ, Burton JR, Anderson PL, Everson GT. Review and management of drug interactions with boceprevir and telaprevir. Hepatology 2012; 55:1620-8. [PMID: 22331658 PMCID: PMC3345276 DOI: 10.1002/hep.25653] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Boceprevir (BOC) and telaprevir (TPV), when added to pegylated interferon and ribavirin for the treatment of chronic hepatitis C virus (HCV) infection, increase the rates of sustained virologic response in treatment-naïve persons to approximately 70%. Though these agents represent an important advance in the treatment of chronic HCV, they present new treatment challenges to the hepatology community. BOC and TPV are both substrates and inhibitors of the hepatic enzyme, cytochrome P450 3A, and the drug transporter, P-glycoprotein, which predisposes these agents to many drug interactions. Identification and appropriate management of potential drug interactions with TPV and BOC is critical for optimizing therapeutic outcomes during hepatitis C treatment. This review highlights the pharmacologic characteristics and drug-interaction potential of BOC and TPV and provides guidance on the management of drug interactions with these agents.
Collapse
Affiliation(s)
- Jennifer J. Kiser
- University of Colorado Denver School of Pharmacy, Aurora, CO,Corresponding Author Jennifer J. Kiser, PharmD, Assistant Professor, Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, School of Pharmacy, 12850 E Montview Blvd, V20-C238, Aurora, CO 80045, Office (303) 724-6131, Fax (303) 724-6135,
| | - James R. Burton
- University of Colorado Denver School of Medicine, Aurora, CO
| | | | | |
Collapse
|
16
|
Abstract
Individual response to medication is highly variable. For many drugs, a substantial proportion of patients show suboptimal response at standard doses, whereas others experience adverse drug reactions (ADRs). Pharmacogenomics aims to identify genetic factors underlying this variability in drug response, providing solutions to improve drug efficacy and safety. We review recent advances in pharmacogenomics of cardiovascular drugs and cardiovascular ADRs, including warfarin, clopidogrel, β-blockers, renin-angiotensin-aldosterone system inhibitors, drug-induced long QT syndrome, and anthracycline-induced cardiotoxicity. We particularly focus on the applicability of pharmacogenomic findings to pediatric patients in whom developmental changes in body size and organ function may affect drug pharmacokinetics and pharmacodynamics. Solid evidence supports the importance of gene variants in CYP2C9 and VKORC1 for warfarin dosing and in CYP2C19 for clopidogrel response in adult patients. For the other cardiovascular drugs or cardiovascular ADRs, further studies are needed to replicate or clarify genetic associations before considering uptake of pharmacogenetic testing in clinical practice. With the exception of warfarin and anthracycline-induced cardiotoxicity, there is lack of pharmacogenomic studies on cardiovascular drug response or ADRs aimed specifically at children or adolescents. The first pediatric warfarin pharmacogenomic study indeed indicates differences from adults, pointing out the importance and need for pediatric-focused pharmacogenomic studies.
Collapse
|
17
|
Basheer M, Schwalb H, Shefler I, Levdansky L, Mekori YA, Gorodetsky R. Blood pressure modulation following activation of mast cells by cationic cell penetrating peptides. Peptides 2011; 32:2444-51. [PMID: 21971370 DOI: 10.1016/j.peptides.2011.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/20/2011] [Accepted: 09/20/2011] [Indexed: 11/18/2022]
Abstract
Short cell penetrating peptides (CPP) are widely used in vitro to transduce agents into cells. But their systemic effect has not been yet studied in detail. We studied the systemic effect of the cell penetrating peptides, penetratin, transportan and pro-rich, on rat hemodynamic functions. Intra-arterial monitoring of blood pressure showed that injection of the positively charged penetratin and transportan in a wide range of concentrations (2.5-320 μg/kg) caused highly significant transient decrease in the systolic and diastolic blood pressure in a dose dependent manner (p<0.01). Pretreatment with histamine receptors blockers or with cromolyn, a mast cell stabilizing agent, significantly attenuated this effect. Furthermore, in vitro incubation of these both peptides with mast cells line, LAD2, caused a massive mast cell degranulation. In vitro studies showed that these CPP in a wide range of concentrations were not cytotoxic without any effect on the survival of LAD2 mast cell line. In contrast, the less positively charged and proline-rich CPP, pro-rich, had no systemic effects with no effect on mast cell degranulation. Our results indicate that intravenously administrated positively charged CPP may have deleterious consequences due to their induced BP drop, mediated by mast cell activation. Therefore, the major effect of mast cell activation on BP should be considered in developing possible future drug therapies based on the injection of membrane-permeable and positively charged CPP. Nevertheless, lower levels of such CPP may be considered as a treatment of systemic high BP through moderate systemic mast cell activation.
Collapse
Affiliation(s)
- Maamoun Basheer
- Laboratory of Biotechnology and Radiobiology, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
18
|
Bertera FM, Del Mauro JS, Chiappetta D, Polizio AH, Buontempo F, Taira CA, Höcht C. Enantioselective pharmacokinetic and pharmacodynamic properties of carvedilol in spontaneously hypertensive rats: focus on blood pressure variability. Naunyn Schmiedebergs Arch Pharmacol 2011; 385:325-35. [DOI: 10.1007/s00210-011-0698-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/30/2011] [Indexed: 10/16/2022]
|
19
|
Kakuda TN, Schöller-Gyüre M, Hoetelmans RMW. Pharmacokinetic interactions between etravirine and non-antiretroviral drugs. Clin Pharmacokinet 2011; 50:25-39. [PMID: 21142266 DOI: 10.2165/11534740-000000000-00000] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Etravirine (formerly TMC125) is a non-nucleoside reverse transcriptase inhibitor (NNRTI) with activity against wild-type and NNRTI-resistant strains of HIV-1. Etravirine has been approved in several countries for use as part of highly active antiretroviral therapy in treatment-experienced patients. In vivo, etravirine is a substrate for, and weak inducer of, the hepatic cytochrome P450 (CYP) isoenzyme 3A4 and a substrate and weak inhibitor of CYP2C9 and CYP2C19. Etravirine is also a weak inhibitor of P-glycoprotein. An extensive drug-drug interaction programme in HIV-negative subjects has been carried out to assess the potential for pharmacokinetic interactions between etravirine and a variety of non-antiretroviral drugs. Effects of atorvastatin, clarithromycin, methadone, omeprazole, oral contraceptives, paroxetine, ranitidine and sildenafil on the pharmacokinetic disposition of etravirine were of no clinical relevance. Likewise, etravirine had no clinically significant effect on the pharmacokinetics of fluconazole, methadone, oral contraceptives, paroxetine or voriconazole. No clinically relevant interactions are expected between etravirine and azithromycin or ribavirin, therefore, etravirine can be combined with these agents without dose adjustment. Fluconazole and voriconazole increased etravirine exposure 1.9- and 1.4-fold, respectively, in healthy subjects, however, no increase in the incidence of adverse effects was observed in patients receiving etravirine and fluconazole during clinical trials, therefore, etravirine can be combined with these antifungals although caution is advised. Digoxin plasma exposure was slightly increased when co-administered with etravirine. No dose adjustments of digoxin are needed when used in combination with etravirine, however, it is recommended that digoxin levels should be monitored. Caution should be exercised in combining rifabutin with etravirine in the presence of certain boosted HIV protease inhibitors due to the risk of decreased exposure to etravirine. Although adjustments to the dose of clarithromycin are unnecessary for the treatment of most infections, the use of an alternative macrolide (e.g. azithromycin) is recommended for the treatment of Mycobacterium avium complex infection since the overall activity of clarithromycin against this pathogen may be altered when co-administered with etravirine. Dosage adjustments based on clinical response are recommended for clopidogrel, HMG-CoA reductase inhibitors (e.g. atorvastatin) and for phosphodiesterase type-5 inhibitors (e.g. sildenafil) because changes in the exposure of these medications in the presence of co-administered etravirine may occur. When co-administered with etravirine, a dose reduction or alternative to diazepam is recommended. When combining etravirine with warfarin, the international normalized ratio (INR) should be monitored. Systemic dexamethasone should be co-administered with caution, or an alternative to dexamethasone be found as dexamethasone induces CYP3A4. Caution is also warranted when co-administering etravirine with some antiarrhythmics, calcineurin inhibitors (e.g. ciclosporin) and antidepressants (e.g. citalopram). Co-administration of etravirine with some antiepileptics (e.g. carbamazepine and phenytoin), rifampicin (rifampin), rifapentine or preparations containing St John's wort (Hypericum perforatum) is currently not recommended as these are potent inducers of CYP3A and/or CYP2C and may potentially decrease etravirine exposure. Antiepileptics that are less likely to interact based on their known pharmacological properties include gabapentin, lamotrigine, levetiracetam and pregabalin. Overall, pharmacokinetic and clinical data show etravirine to be well tolerated and generally safe when given in combination with non-antiretroviral agents, with minimal clinically significant drug interactions and no need for dosage adjustments of etravirine in any of the cases, or of the non-antiretroviral agent in the majority of cases studied.
Collapse
|