1
|
Metabolic activation of drugs by cytochrome P450 enzymes: Biochemical insights into mechanism-based inactivation by fibroblast growth factor receptor inhibitors and chemical approaches to attenuate reactive metabolite formation. Biochem Pharmacol 2022; 206:115336. [DOI: 10.1016/j.bcp.2022.115336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
2
|
Fernandez-Checa JC, Bagnaninchi P, Ye H, Sancho-Bru P, Falcon-Perez JM, Royo F, Garcia-Ruiz C, Konu O, Miranda J, Lunov O, Dejneka A, Elfick A, McDonald A, Sullivan GJ, Aithal GP, Lucena MI, Andrade RJ, Fromenty B, Kranendonk M, Cubero FJ, Nelson LJ. Advanced preclinical models for evaluation of drug-induced liver injury - consensus statement by the European Drug-Induced Liver Injury Network [PRO-EURO-DILI-NET]. J Hepatol 2021; 75:935-959. [PMID: 34171436 DOI: 10.1016/j.jhep.2021.06.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Drug-induced liver injury (DILI) is a major cause of acute liver failure (ALF) and one of the leading indications for liver transplantation in Western societies. Given the wide use of both prescribed and over the counter drugs, DILI has become a major health issue for which there is a pressing need to find novel and effective therapies. Although significant progress has been made in understanding the molecular mechanisms underlying DILI, our incomplete knowledge of its pathogenesis and inability to predict DILI is largely due to both discordance between human and animal DILI in preclinical drug development and a lack of models that faithfully recapitulate complex pathophysiological features of human DILI. This is exemplified by the hepatotoxicity of acetaminophen (APAP) overdose, a major cause of ALF because of its extensive worldwide use as an analgesic. Despite intensive efforts utilising current animal and in vitro models, the mechanisms involved in the hepatotoxicity of APAP are still not fully understood. In this expert Consensus Statement, which is endorsed by the European Drug-Induced Liver Injury Network, we aim to facilitate and outline clinically impactful discoveries by detailing the requirements for more realistic human-based systems to assess hepatotoxicity and guide future drug safety testing. We present novel insights and discuss major players in APAP pathophysiology, and describe emerging in vitro and in vivo pre-clinical models, as well as advanced imaging and in silico technologies, which may improve prediction of clinical outcomes of DILI.
Collapse
Affiliation(s)
- Jose C Fernandez-Checa
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Spain; Liver Unit, Hospital Clínic, Barcelona, Spain; Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; USC Research Center for ALPD, Keck School of Medicine, Los Angeles, United States, CA 90033.
| | - Pierre Bagnaninchi
- Center for Regenerative Medicine, Institute for Regenerative and Repair, The University of Edinburgh, Edinburgh, UK, EH16 4UU; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Faraday Building, Colin Maclaurin Road, EH9 3 DW, Scotland, UK
| | - Hui Ye
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Pau Sancho-Bru
- Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Juan M Falcon-Perez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, 48015, Spain
| | - Felix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Carmen Garcia-Ruiz
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Spain; Liver Unit, Hospital Clínic, Barcelona, Spain; Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; USC Research Center for ALPD, Keck School of Medicine, Los Angeles, United States, CA 90033
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Joana Miranda
- Research Institute for iMedicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alistair Elfick
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh EH8 3DW, UK
| | - Alison McDonald
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh EH8 3DW, UK
| | - Gareth J Sullivan
- University of Oslo and the Oslo University Hospital, Oslo, Norway; Hybrid Technology Hub-Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Pediatric Research, Oslo University Hosptial, Oslo, Norway
| | - Guruprasad P Aithal
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospital NHS Trust and University of Nottingham, Nottingham, UK
| | - M Isabel Lucena
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, UICEC SCReN, Universidad de Málaga, Málaga, Spain
| | - Raul J Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Unidad de Gestión Clínica de Enfermedades Digestivas, Instituto de Investigación, Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Malaga, Spain
| | - Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Francisco Javier Cubero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Leonard J Nelson
- Center for Regenerative Medicine, Institute for Regenerative and Repair, The University of Edinburgh, Edinburgh, UK, EH16 4UU; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Faraday Building, Colin Maclaurin Road, EH9 3 DW, Scotland, UK; Institute of Biological Chemistry, Biophysics and Bioengineering (IB3), School of Engineering and Physical Sciences (EPS), Heriot-Watt University, Edinburgh EH12 2AS, Scotland, UK.
| |
Collapse
|
3
|
Serras AS, Rodrigues JS, Cipriano M, Rodrigues AV, Oliveira NG, Miranda JP. A Critical Perspective on 3D Liver Models for Drug Metabolism and Toxicology Studies. Front Cell Dev Biol 2021; 9:626805. [PMID: 33732695 PMCID: PMC7957963 DOI: 10.3389/fcell.2021.626805] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
The poor predictability of human liver toxicity is still causing high attrition rates of drug candidates in the pharmaceutical industry at the non-clinical, clinical, and post-marketing authorization stages. This is in part caused by animal models that fail to predict various human adverse drug reactions (ADRs), resulting in undetected hepatotoxicity at the non-clinical phase of drug development. In an effort to increase the prediction of human hepatotoxicity, different approaches to enhance the physiological relevance of hepatic in vitro systems are being pursued. Three-dimensional (3D) or microfluidic technologies allow to better recapitulate hepatocyte organization and cell-matrix contacts, to include additional cell types, to incorporate fluid flow and to create gradients of oxygen and nutrients, which have led to improved differentiated cell phenotype and functionality. This comprehensive review addresses the drug-induced hepatotoxicity mechanisms and the currently available 3D liver in vitro models, their characteristics, as well as their advantages and limitations for human hepatotoxicity assessment. In addition, since toxic responses are greatly dependent on the culture model, a comparative analysis of the toxicity studies performed using two-dimensional (2D) and 3D in vitro strategies with recognized hepatotoxic compounds, such as paracetamol, diclofenac, and troglitazone is performed, further highlighting the need for harmonization of the respective characterization methods. Finally, taking a step forward, we propose a roadmap for the assessment of drugs hepatotoxicity based on fully characterized fit-for-purpose in vitro models, taking advantage of the best of each model, which will ultimately contribute to more informed decision-making in the drug development and risk assessment fields.
Collapse
Affiliation(s)
- Ana S. Serras
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana S. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Madalena Cipriano
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Armanda V. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
4
|
Bertrand V, Massy N, Vegas N, Gras V, Chalouhi C, Tavolacci MP, Abadie V. Safety of Cyproheptadine, an Orexigenic Drug. Analysis of the French National Pharmacovigilance Data-Base and Systematic Review. Front Pediatr 2021; 9:712413. [PMID: 34676184 PMCID: PMC8525494 DOI: 10.3389/fped.2021.712413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022] Open
Abstract
Objectives: Cyproheptadine is a first-generation H1-antihistamine drug first that was distributed in the 1960s. While its orexigenic effect was observed early, cyproheptadine is not yet authorized for this indication in all countries today. There is an increasing medical interest and demand for the orexigenic effect of cyproheptadine, especially in children with poor appetite. As cyproheptadine might be evaluated in future clinical trials, we wanted to assess its safety profile. Methods: Using the French national pharmacovigilance database, we retrospectively analyzed all pediatric and adult reports of adverse effects of cyproheptadine recorded since its first distribution in France. Next, we performed a systematic review of the literature of cyproheptadine adverse effects. Results: Since 1985, 93 adverse effects were reported in the French pharmacovigilance database (adults 81.7%, children 18.3%); these were mainly neurological symptoms (n = 38, adults 71%, children 28.9%), and hepatic complications (n = 15, adults 86.7%, children 13.3%). In the literature, the most frequent adverse effect reported was drowsiness in adults or children, and five case reports noted liver complications in adults. We estimated the frequency of hepatic adverse effects at 0.27 to 1.4/1000, regardless of age. Conclusion: Cyproheptadine can be considered a safe drug. Mild neurological effects appear to be frequent, and hepatotoxicity is uncommon to rare. Randomized controlled trials are needed to evaluate the safety and efficacy of cyproheptadine before authorization for appetite stimulation, especially in young children as studies at this age are lacking. Possible hepatic complications should be monitored, as very rare cases of liver failure have been reported.
Collapse
Affiliation(s)
| | - Nathalie Massy
- Regional Center of Pharmacovigilance, Rouen University Hospital, Rouen, France
| | - Nancy Vegas
- General Pediatrics Unit, Necker University Hospital, Paris, France.,Refferal Center for Rare Disease ≪ Pierre Robin Sequence and Sucking and Swallowing Congenital Disorders ≫, Necker University Hospital, Paris, France
| | - Valérie Gras
- Regional Center of Pharmacovigilance, Amiens University Hospital, Amiens, France
| | - Christel Chalouhi
- General Pediatrics Unit, Necker University Hospital, Paris, France.,Refferal Center for Rare Disease ≪ Pierre Robin Sequence and Sucking and Swallowing Congenital Disorders ≫, Necker University Hospital, Paris, France
| | | | - Véronique Abadie
- General Pediatrics Unit, Necker University Hospital, Paris, France.,Refferal Center for Rare Disease ≪ Pierre Robin Sequence and Sucking and Swallowing Congenital Disorders ≫, Necker University Hospital, Paris, France.,Paris University, Paris, France
| |
Collapse
|
5
|
Abstract
Drug-induced liver injury (DILI) is a leading cause of attrition during the early and late stages of drug development and after a drug is marketed. DILI is generally classified as either intrinsic or idiosyncratic. Intrinsic DILI is dose dependent and predictable (e.g., acetaminophen toxicity). However, predicting the occurrence of idiosyncratic DILI, which has a very low incidence and is associated with severe liver damage, is difficult because of its complex nature and the poor understanding of its mechanism. Considering drug metabolism and pharmacokinetics, we established experimental animal models of DILI for 14 clinical drugs that cause idiosyncratic DILI in humans, which is characterized by the formation of reactive metabolites and the involvement of both innate and adaptive immunity. On the basis of the biomarker data obtained from the animal models, we developed a cell-based assay system that predicts the potential risks of drugs for inducing DILI. These findings increase our understanding of the mechanisms of DILI and may help predict and prevent idiosyncratic DILI due to certain drugs.
Collapse
Affiliation(s)
- Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| | - Shingo Oda
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| |
Collapse
|
6
|
Utility of Three-Dimensional Cultures of Primary Human Hepatocytes (Spheroids) as Pharmacokinetic Models. Biomedicines 2020; 8:biomedicines8100374. [PMID: 32977664 PMCID: PMC7598599 DOI: 10.3390/biomedicines8100374] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
This paper reviews the usefulness, current status, and potential of primary human hepatocytes (PHHs) in three-dimensional (3D) cultures, also known as spheroids, in the field of pharmacokinetics (PK). Predicting PK and toxicity means pharmaceutical research can be conducted more efficiently. Various in vitro test systems using human hepatocytes have been proposed as tools to detect hepatic toxicity at an early stage in the drug development process. However, such evaluation requires long-term, low-level exposure to the test compound, and conventional screening systems such as PHHs in planar (2D) culture, in which the cells can only survive for a few days, are unsuitable for this purpose. In contrast, spheroids consisting of PHH are reported to retain the functional characteristics of human liver for at least 35 days. Here, we introduce a fundamental PK and toxicity assessment model of PHH spheroids and describe their applications for assessing species-specific metabolism, enzyme induction, and toxicity, focusing on our own work in these areas. The studies outlined in this paper may provide important information for pharmaceutical companies to reduce termination of development of drug candidates.
Collapse
|
7
|
Establishment of a primary human hepatocyte spheroid system for evaluating metabolic toxicity using dacarbazine under conditions of CYP1A2 induction. Drug Metab Pharmacokinet 2020; 35:201-206. [DOI: 10.1016/j.dmpk.2019.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/28/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022]
|
8
|
Kang D, Hong G, An S, Jang I, Yun WS, Shim JH, Jin S. Bioprinting of Multiscaled Hepatic Lobules within a Highly Vascularized Construct. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905505. [PMID: 32078240 DOI: 10.1002/smll.201905505] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/25/2020] [Indexed: 06/10/2023]
Abstract
Highly vascularized complex liver tissue is generally divided into lobes, lobules, hepatocytes, and sinusoids, which can be viewed under different types of lens from the micro- to macro-scale. To engineer multiscaled heterogeneous tissues, a sophisticated and rapid tissue engineering approach is required, such as advanced 3D bioprinting. In this study, a preset extrusion bioprinting technique, which can create heterogeneous, multicellular, and multimaterial structures simultaneously, is utilized for creating a hepatic lobule (≈1 mm) array. The fabricated hepatic lobules include hepatic cells, endothelial cells, and a lumen. The endothelial cells surround the hepatic cells, the exterior of the lobules, the lumen, and finally, become interconnected with each other. Compared to hepatic cell/endothelial cell mixtures, the fabricated hepatic lobule shows higher albumin secretion, urea production, and albumin, MRP2, and CD31 protein levels, as well as, cytochrome P450 enzyme activity. It is found that each cell type with spatial cell patterning in bioink accelerates cellular organization, which could preserve structural integrity and improve cellular functions. In conclusion, preset extruded hepatic lobules within a highly vascularized construct are successfully constructed, enabling both micro- and macro-scale tissue fabrication, which can support the creation of large 3D tissue constructs for multiscale tissue engineering.
Collapse
Affiliation(s)
- Donggu Kang
- Research Institute, T&R Biofab. Co. Ltd., 242 Pangyo-ro, Seongnam-si, 13487, Republic of Korea
| | - Gyusik Hong
- Department of Mechanical Engineering, Korea Polytechnic University, 237 Sangidaehak-ro, Siheung-si, 15073, Republic of Korea
| | - Seongmin An
- Department of Mechanical Engineering, Korea Polytechnic University, 237 Sangidaehak-ro, Siheung-si, 15073, Republic of Korea
| | - Ilho Jang
- Research Institute, T&R Biofab. Co. Ltd., 242 Pangyo-ro, Seongnam-si, 13487, Republic of Korea
| | - Won-Soo Yun
- Department of Mechanical Engineering, Korea Polytechnic University, 237 Sangidaehak-ro, Siheung-si, 15073, Republic of Korea
| | - Jin-Hyung Shim
- Department of Mechanical Engineering, Korea Polytechnic University, 237 Sangidaehak-ro, Siheung-si, 15073, Republic of Korea
| | - Songwan Jin
- Department of Mechanical Engineering, Korea Polytechnic University, 237 Sangidaehak-ro, Siheung-si, 15073, Republic of Korea
| |
Collapse
|
9
|
Mizoi K, Fukai Y, Matsumoto E, Koyama S, Ishida S, Kojima H, Ogihara T. Usefulness and limitations of mRNA measurement in HepaRG cells for evaluation of cytochrome P450 induction. ACTA ACUST UNITED AC 2020. [DOI: 10.2131/fts.7.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Kenta Mizoi
- Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Yuuki Fukai
- Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Eiko Matsumoto
- Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Satoshi Koyama
- Faculty of Pharmacy, Takasaki University of Health and Welfare
- RIKEN Cluster for Science, Technology and Innovation Hub
| | - Seiichi Ishida
- Biological Safety Research Center, National Institute of Health Sciences
| | - Hajime Kojima
- Biological Safety Research Center, National Institute of Health Sciences
| | - Takuo Ogihara
- Faculty of Pharmacy, Takasaki University of Health and Welfare
- Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare
| |
Collapse
|
10
|
Wu L, Ferracci G, Wang Y, Fan TF, Cho NJ, Chow PKH. Porcine hepatocytes culture on biofunctionalized 3D inverted colloidal crystal scaffolds as an in vitro model for predicting drug hepatotoxicity. RSC Adv 2019; 9:17995-18007. [PMID: 35520590 PMCID: PMC9064660 DOI: 10.1039/c9ra03225h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/27/2019] [Indexed: 01/03/2023] Open
Abstract
As drug-induced hepatotoxicity represents one of the most common causes of drug failure, three-dimensional (3D) in vitro liver platforms represent a fantastic toolbox to predict drug toxicity and thus reduce in vivo animal studies and lessen drug attrition rates. The aim of this study is to establish a functional porcine hepatocyte culture using a biofunctionalized 3D inverted colloidal crystal (ICC) hydrogel platform. The performances of non-adhesive bare poly(ethylene glycol)diacrylate (PEGDA) ICCs and PEGDA ICCs coated with either collagen type I or fibronectin have been investigated. Porcine hepatocytes viability, morphology, hepatic-specific functions and patterns of gene expression have been evaluated over a period of two weeks in culture to test diclofenac, a well-known hepatotoxic drug. Interestingly, cells in the fibronectin-functionalized scaffold exhibit different aggregation patterns and maintain better liver-specific function than those in bare ICCs and in collagen functionalized scaffold. We concluded that the 3D cell culture environment and the presence of extracellular matrix (ECM) proteins, especially fibronectin, facilitate hepatocyte viability and maintenance of the liver-specific phenotype in vitro, and enable us to predict hepatotoxicity. As drug-induced hepatotoxicity represents one of the most common causes of drug failure, three-dimensional in vitro liver platforms represent a fantastic toolbox to predict drug toxicity and reduce in vivo studies and drug attrition rates.![]()
Collapse
Affiliation(s)
- Lingyan Wu
- Division of Surgical Oncology, National Cancer Centre Singapore 11 Hospital Drive 169610 Singapore
| | - Gaia Ferracci
- Interdisciplinary Graduate School, NTU Institute for Health Technologies, Nanyang Technological University 50 Nanyang Drive 637553 Singapore.,School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore .,Centre for Biomimetic Sensor Science, Nanyang Technological University 50 Nanyang Drive 637553 Singapore
| | - Yan Wang
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore .,Centre for Biomimetic Sensor Science, Nanyang Technological University 50 Nanyang Drive 637553 Singapore
| | - Teng Fei Fan
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore .,Centre for Biomimetic Sensor Science, Nanyang Technological University 50 Nanyang Drive 637553 Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore .,Centre for Biomimetic Sensor Science, Nanyang Technological University 50 Nanyang Drive 637553 Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University 62 Nanyang Drive 637459 Singapore
| | - Pierce K H Chow
- Division of Surgical Oncology, National Cancer Centre Singapore 11 Hospital Drive 169610 Singapore .,Duke-NUS Medical School 8 College Road 169857 Singapore.,Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital Outram Road 169608 Singapore
| |
Collapse
|
11
|
Arakawa K, Ikeyama Y, Sato T, Segawa M, Sekine S, Ito K. Functional modulation of liver mitochondria in lipopolysaccharide/drug co-treated rat liver injury model. J Toxicol Sci 2019; 44:833-843. [DOI: 10.2131/jts.44.833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Koichi Arakawa
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Yugo Ikeyama
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Tomoyuki Sato
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Masahiro Segawa
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Shuichi Sekine
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Kousei Ito
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
12
|
Rowe C, Shaeri M, Large E, Cornforth T, Robinson A, Kostrzewski T, Sison-Young R, Goldring C, Park K, Hughes D. Perfused human hepatocyte microtissues identify reactive metabolite-forming and mitochondria-perturbing hepatotoxins. Toxicol In Vitro 2017; 46:29-38. [PMID: 28919358 DOI: 10.1016/j.tiv.2017.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/03/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022]
Abstract
Hepatotoxins cause liver damage via many mechanisms but the formation of reactive metabolites and/or damage to liver mitochondria are commonly implicated. We assess 3D human primary hepatocyte microtissues as a platform for hepatotoxicity studies with reactive metabolite-forming and mitochondria-perturbing compounds. We show that microtissues formed from cryopreserved human hepatocytes had bile canaliculi, transcribed mRNA from genes associated with xenobiotic metabolism and expressed functional cytochrome P450 enzymes. Hierarchical clustering was used to distinguish dose-dependent hepatotoxicity elicited by clozapine, fialuridine and acetaminophen (APAP) from control cultures and less liver-damaging compounds, olanzapine and entecavir. The regio-isomer of acetaminophen, N-acetyl-meta-aminophenol (AMAP) clustered with the hepatotoxic compounds. The principal metabolites of APAP were formed and dose-dependent changes in metabolite profile similar to those seen in patient overdose was observed. The toxicological profile of APAP was indistinguishable from that of AMAP, confirming AMAP as a human hepatotoxin. Tissue oxygen consumption rate was significantly decreased within 2h of exposure to APAP or AMAP, concomitant with glutathione depletion. These data highlight the potential utility of perfused metabolically functional human liver microtissues in drug development and mechanistic toxicology.
Collapse
Affiliation(s)
- Cliff Rowe
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK
| | - Mohsen Shaeri
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK
| | - Emma Large
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK
| | - Terri Cornforth
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK
| | - Angela Robinson
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK
| | - Tomasz Kostrzewski
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK
| | - Rowena Sison-Young
- MRC Centre for Drug Safety Science, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - Christopher Goldring
- MRC Centre for Drug Safety Science, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - Kevin Park
- MRC Centre for Drug Safety Science, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - David Hughes
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK.
| |
Collapse
|
13
|
Meyer K, Ostrenko O, Bourantas G, Morales-Navarrete H, Porat-Shliom N, Segovia-Miranda F, Nonaka H, Ghaemi A, Verbavatz JM, Brusch L, Sbalzarini I, Kalaidzidis Y, Weigert R, Zerial M. A Predictive 3D Multi-Scale Model of Biliary Fluid Dynamics in the Liver Lobule. Cell Syst 2017; 4:277-290.e9. [PMID: 28330614 DOI: 10.1016/j.cels.2017.02.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 11/22/2016] [Accepted: 02/08/2017] [Indexed: 01/15/2023]
Abstract
Bile, the central metabolic product of the liver, is transported by the bile canaliculi network. The impairment of bile flow in cholestatic liver diseases has urged a demand for insights into its regulation. Here, we developed a predictive 3D multi-scale model that simulates fluid dynamic properties successively from the subcellular to the tissue level. The model integrates the structure of the bile canalicular network in the mouse liver lobule, as determined by high-resolution confocal and serial block-face scanning electron microscopy, with measurements of bile transport by intravital microscopy. The combined experiment-theory approach revealed spatial heterogeneities of biliary geometry and hepatocyte transport activity. Based on this, our model predicts gradients of bile velocity and pressure in the liver lobule. Validation of the model predictions by pharmacological inhibition of Rho kinase demonstrated a requirement of canaliculi contractility for bile flow in vivo. Our model can be applied to functionally characterize liver diseases and quantitatively estimate biliary transport upon drug-induced liver injury.
Collapse
Affiliation(s)
- Kirstin Meyer
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany
| | - Oleksandr Ostrenko
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Saxony 01062, Germany; Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Saxony 01062, Germany
| | - Georgios Bourantas
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany; Faculty of Science, Technology and Communication, University of Luxembourg, 1359 Luxembourg, Luxembourg; Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Saxony 01062, Germany
| | | | - Natalie Porat-Shliom
- Intracellular Membrane Trafficking Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fabian Segovia-Miranda
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany
| | - Hidenori Nonaka
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany
| | - Ali Ghaemi
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany
| | - Jean-Marc Verbavatz
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany
| | - Lutz Brusch
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Saxony 01062, Germany; Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Saxony 01062, Germany
| | - Ivo Sbalzarini
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany; Faculty of Computer Science, Technische Universität Dresden, Dresden, Saxony 01187, Germany; Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Saxony 01062, Germany
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany; Faculty of Bioengineering and Bioinformatics, Moscow State University, 119991 Moscow, Russia
| | - Roberto Weigert
- Intracellular Membrane Trafficking Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany; Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Saxony 01062, Germany.
| |
Collapse
|
14
|
Pomponio G, Savary CC, Parmentier C, Bois F, Guillouzo A, Romanelli L, Richert L, Di Consiglio E, Testai E. In vitro kinetics of amiodarone and its major metabolite in two human liver cell models after acute and repeated treatments. Toxicol In Vitro 2014; 30:36-51. [PMID: 25546373 DOI: 10.1016/j.tiv.2014.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 10/24/2022]
Abstract
The limited value of in vitro toxicity data for the in vivo extrapolation has been often attributed to the lack of kinetic data. Here the in vitro kinetics of amiodarone (AMI) and its mono-N-desethyl (MDEA) metabolite was determined and modelled in primary human hepatocytes (PHH) and HepaRG cells, after single and repeated administration of clinically relevant concentrations. AMI bioavailability was influenced by adsorption to the plastic and the presence of protein in the medium (e.g. 10% serum protein reduced the uptake by half in HepaRG cells). The cell uptake was quick (within 3h), AMI metabolism was efficient and a dynamic equilibrium was reached in about a week after multiple dosing. In HepaRG cells the metabolic clearance was higher than in PHH and increased over time, as well as CYP3A4. The interindividual variability in MDEA production in PHHs was not proportional to the differences in CYP3A4 activities, suggesting the involvement of other CYPs and/or AMI-related CYP inhibition. After repeated treatment AMI showed a slight potential for bioaccumulation, whereas much higher intracellular MDEA levels accumulated over time, especially in the HepaRG cells, associated with occurrence of phospholipidosis. The knowledge of in vitro biokinetics is important to transform an actual in vitro concentration-effect into an in vivo dose-effect relationship by using appropriate modelling, thus improving the in vitro-to-in vivo extrapolation.
Collapse
Affiliation(s)
- Giuliana Pomponio
- Mechanism of Toxicity Unit, Environment and Primary Prevention Department, Istituto Superiore di Sanità, Rome, Italy; Università Sapienza, Dipartimento di Fisiologia "V. Erspamer", Rome, Italy
| | - Camille C Savary
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR991, Université de Rennes 1, Rennes, France
| | | | - Frederic Bois
- Institut National de L'Environnement Industriel et des Risques, DRC/VIVA/METO, Verneuil en Halatte, France
| | - André Guillouzo
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR991, Université de Rennes 1, Rennes, France
| | - Luca Romanelli
- Università Sapienza, Dipartimento di Fisiologia "V. Erspamer", Rome, Italy
| | - Lysiane Richert
- KaLy-Cell, 20A Rue du Général Leclerc, Plobsheim, France; Universite de Franche-Comté, Besançon, France
| | - Emma Di Consiglio
- Mechanism of Toxicity Unit, Environment and Primary Prevention Department, Istituto Superiore di Sanità, Rome, Italy.
| | - Emanuela Testai
- Mechanism of Toxicity Unit, Environment and Primary Prevention Department, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
15
|
Yokoi T. [New prospectives and understanding in drug-induced liver injury considering drug metabolism and immune- and inflammation-related factors]. Nihon Yakurigaku Zasshi 2014; 144:22-27. [PMID: 25007808 DOI: 10.1254/fpj.144.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|
16
|
Ocete Hita E, Martín García J, Giménez Sánchez F, Flores González J, Abril Molina A, Salmerón Escobar J, Ruiz Extremera A. Hepatotoxicidad por fármacos o productos naturales en niños. An Pediatr (Barc) 2013; 78:248-59. [DOI: 10.1016/j.anpedi.2012.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/12/2012] [Accepted: 06/14/2012] [Indexed: 01/23/2023] Open
|
17
|
|
18
|
Acikgöz A, Giri S, Bader A. Detection of nanolevel drug metabolites in an organotypic culture of primary human hepatocytes and porcine hepatocytes with special reference to a two-compartment model. Int J Nanomedicine 2012; 7:5859-72. [PMID: 23226017 PMCID: PMC3512542 DOI: 10.2147/ijn.s29651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The quantification of drug metabolites produced during drug metabolism is a growing concern for the pharmaceutical industry, regulatory agencies such as the US Food and Drug Administration, the European Medicines Agency, and others. As 70% of drugs are known reactive metabolites and have black box warnings, they are a major cause of drug-induced injury and lead to drug attrition in early or late clinical stages. According to a 2006 survey report of pharmaceutical companies, drug-induced liver injury was ranked first in terms of adverse events, and it remains the most common reason for restriction or withdrawal of a drug from the market by the Food and Drug Administration. Although there are many reasons underlying drug-induced liver injury, one of the most important is liver failure induced by drug metabolites. Generally, a drug produces metabolites that may bind to cellular molecules and trigger a toxicological effect, cause serious adverse drug reactions, or alter cellular functions. Experimental cellular models that attempt to qualify drug metabolites from cell cultures rely on human plasma and urine obtained from clinical trials and supernatant during early in vitro experiments. However, there is a lack of information about the quantification of drug metabolites inside human hepatocytes, where the drug is extensively metabolized. To overcome this limitation, we used the highly accepted, gold standard organotypic cellular model of primary human hepatocytes to investigate and quantify the parent drug, as well as drug metabolites inside human hepatocytes and outside human hepatocytes to evaluate the quantity of drug metabolites, which are assumed to have remained inside the primary human hepatocytes. We refer to this as a two-compartment model, where one compartment is supernatant compared with in vivo hepatic blood circulation, and the other is inside the hepatocyte cell compared with the inside of in vivo human liver. We detected the nanoconcentrations of all major metabolites (desmethyldiazepam, temazepam, and oxazepam) of the diazepam drug, both inside the cells (matrix) and outside the hepatocyte cells (supernatant) at different time points (primary human hepatocytes: 0, 1, 2, 4, 8, and 24 hours; primary porcine hepatocytes: 0, 1, 2, 5, and 24 hours) during biotransformation in an organotypic sandwich cellular model. Although it is difficult to detect tissue distribution of metabolites in humans, we strongly recommend testing in a two-compartment model of primary human hepatocytes, as nonhuman models may not reflect human metabolism. Preclinical drug screening assessment tests that use this two-compartment strategy may facilitate safer registration of new drug candidates.
Collapse
Affiliation(s)
- Ali Acikgöz
- Center for Biotechnology and Biomedicine, Cell Techniques and Applied Stem Cell Biology, Universität Leipzig, Germany
| | | | | |
Collapse
|
19
|
Inroads to predict in vivo toxicology-an introduction to the eTOX Project. Int J Mol Sci 2012; 13:3820-3846. [PMID: 22489185 PMCID: PMC3317745 DOI: 10.3390/ijms13033820] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/30/2012] [Accepted: 03/14/2012] [Indexed: 12/20/2022] Open
Abstract
There is a widespread awareness that the wealth of preclinical toxicity data that the pharmaceutical industry has generated in recent decades is not exploited as efficiently as it could be. Enhanced data availability for compound comparison (“read-across”), or for data mining to build predictive tools, should lead to a more efficient drug development process and contribute to the reduction of animal use (3Rs principle). In order to achieve these goals, a consortium approach, grouping numbers of relevant partners, is required. The eTOX (“electronic toxicity”) consortium represents such a project and is a public-private partnership within the framework of the European Innovative Medicines Initiative (IMI). The project aims at the development of in silico prediction systems for organ and in vivo toxicity. The backbone of the project will be a database consisting of preclinical toxicity data for drug compounds or candidates extracted from previously unpublished, legacy reports from thirteen European and European operation-based pharmaceutical companies. The database will be enhanced by incorporation of publically available, high quality toxicology data. Seven academic institutes and five small-to-medium size enterprises (SMEs) contribute with their expertise in data gathering, database curation, data mining, chemoinformatics and predictive systems development. The outcome of the project will be a predictive system contributing to early potential hazard identification and risk assessment during the drug development process. The concept and strategy of the eTOX project is described here, together with current achievements and future deliverables.
Collapse
|
20
|
Xia L, Sakban RB, Qu Y, Hong X, Zhang W, Nugraha B, Tong WH, Ananthanarayanan A, Zheng B, Chau IYY, Jia R, McMillian M, Silva J, Dallas S, Yu H. Tethered spheroids as an in vitro hepatocyte model for drug safety screening. Biomaterials 2011; 33:2165-76. [PMID: 22189144 DOI: 10.1016/j.biomaterials.2011.12.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 12/02/2011] [Indexed: 12/22/2022]
Abstract
Hepatocyte spheroids mimic many in vivo liver-tissue phenotypes but increase in size during extended culture which limits their application in drug testing applications. We have developed an improved hepatocyte 3D spheroid model, namely tethered spheroids, on RGD and galactose-conjugated membranes using an optimized hybrid ratio of the two bioactive ligands. Cells in the spheroid configuration maintained 3D morphology and uncompromised differentiated hepatocyte functions (urea and albumin production), while the spheroid bottom was firmly tethered to the substratum maintaining the spheroid size in multi-well plates. The oblate shape of the tethered spheroids, with an average height of 32 μm, ensured efficient nutrient, oxygen and drug access to all the cells within the spheroid structure. Cytochrome P450 induction by prototypical inducers was demonstrated in the tethered spheroids and was comparable or better than that observed with hepatocyte sandwich cultures. These data suggested that tethered 3D hepatocyte spheroids may be an excellent alternative to 2D hepatocyte culture models for drug safety applications.
Collapse
Affiliation(s)
- Lei Xia
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Clinical Research Center, #04-25, Singapore 117597, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Giri S, Acikgöz A, Pathak P, Gutschker S, Kürsten A, Nieber K, Bader A. Three dimensional cultures of rat liver cells using a natural self-assembling nanoscaffold in a clinically relevant bioreactor for bioartificial liver construction. J Cell Physiol 2011; 227:313-27. [PMID: 21437901 DOI: 10.1002/jcp.22738] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Till date, no bioartificial liver (BAL) procedure has obtained FDA approval or widespread clinical acceptance, mainly because of multifactorial limitations such as the use of microscale or undefined biomaterials, indirect and lower oxygenation levels in liver cells, short-term undesirable functions, and a lack of 3D interaction of growth factor/cytokine signaling in liver cells. To overcome preclinical limitations, primary rat liver cells were cultured on a naturally self-assembling peptide nanoscaffold (SAPN) in a clinically relevant bioreactor for up to 35 days, under 3D interaction with suitable growth factors and cytokine signaling agents, alone or combination (e.g., Group I: EPO, Group II: Activin A, Group III: IL-6, Group IV: BMP-4, Group V: BMP4 + EPO, Group VI: EPO + IL-6, Group VII: BMP4 + IL-6, Group VIII: Activin A + EPO, Group IX: IL-6 + Activin A, Group X: Activin A + BMP4, Group XI: EPO + Activin A + BMP-4 + IL-6 + HGF, and Group XII: Control). Major liver specific functions such as albumin secretion, urea metabolism, ammonia detoxification, phase contrast microscopy, immunofluorescence of liver specific markers (Albumin and CYP3A1), mitochondrial status, glutamic oxaloacetic transaminase (GOT) activity, glutamic pyruvic transaminase (GPT) activity, and cell membrane stability by the lactate dehydrogenase (LDH) test were also examined and compared with the control over time. In addition, we examined the drug biotransformation potential of a diazepam drug in a two-compartment model (cell matrix phase and supernatant), which is clinically important. This present study demonstrates an optimized 3D signaling/scaffolding in a preclinical BAL model, as well as preclinical drug screening for better drug development.
Collapse
Affiliation(s)
- Shibashish Giri
- Department of Cell Techniques and Applied Stem Cell Biology, Centre for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
22
|
Ellison CM, Enoch SJ, Cronin MTD. A review of the use ofin silicomethods to predict the chemistry of molecular initiating events related to drug toxicity. Expert Opin Drug Metab Toxicol 2011; 7:1481-95. [DOI: 10.1517/17425255.2011.629186] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Fabian G, Farago N, Feher LZ, Nagy LI, Kulin S, Kitajka K, Bito T, Tubak V, Katona RL, Tiszlavicz L, Puskas LG. High-density real-time PCR-based in vivo toxicogenomic screen to predict organ-specific toxicity. Int J Mol Sci 2011; 12:6116-34. [PMID: 22016648 PMCID: PMC3189772 DOI: 10.3390/ijms12096116] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/24/2011] [Accepted: 09/05/2011] [Indexed: 02/07/2023] Open
Abstract
Toxicogenomics, based on the temporal effects of drugs on gene expression, is able to predict toxic effects earlier than traditional technologies by analyzing changes in genomic biomarkers that could precede subsequent protein translation and initiation of histological organ damage. In the present study our objective was to extend in vivo toxicogenomic screening from analyzing one or a few tissues to multiple organs, including heart, kidney, brain, liver and spleen. Nanocapillary quantitative real-time PCR (QRT-PCR) was used in the study, due to its higher throughput, sensitivity and reproducibility, and larger dynamic range compared to DNA microarray technologies. Based on previous data, 56 gene markers were selected coding for proteins with different functions, such as proteins for acute phase response, inflammation, oxidative stress, metabolic processes, heat-shock response, cell cycle/apoptosis regulation and enzymes which are involved in detoxification. Some of the marker genes are specific to certain organs, and some of them are general indicators of toxicity in multiple organs. Utility of the nanocapillary QRT-PCR platform was demonstrated by screening different references, as well as discovery of drug-like compounds for their gene expression profiles in different organs of treated mice in an acute experiment. For each compound, 896 QRT-PCR were done: four organs were used from each of the treated four animals to monitor the relative expression of 56 genes. Based on expression data of the discovery gene set of toxicology biomarkers the cardio- and nephrotoxicity of doxorubicin and sulfasalazin, the hepato- and nephrotoxicity of rotenone, dihydrocoumarin and aniline, and the liver toxicity of 2,4-diaminotoluene could be confirmed. The acute heart and kidney toxicity of the active metabolite SN-38 from its less toxic prodrug, irinotecan could be differentiated, and two novel gene markers for hormone replacement therapy were identified, namely fabp4 and pparg, which were down-regulated by estradiol treatment.
Collapse
Affiliation(s)
| | - Nora Farago
- Laboratory of Functional Genomics, Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary; E-Mails: (N.F.); (K.K.)
| | - Liliana Z. Feher
- Avidin Ltd., Közép fasor 52, Szeged H-6726, Hungary; E-Mails: (L.Z.F.); (L.I.N.); (S.K.)
| | - Lajos I. Nagy
- Avidin Ltd., Közép fasor 52, Szeged H-6726, Hungary; E-Mails: (L.Z.F.); (L.I.N.); (S.K.)
| | - Sandor Kulin
- Avidin Ltd., Közép fasor 52, Szeged H-6726, Hungary; E-Mails: (L.Z.F.); (L.I.N.); (S.K.)
| | - Klara Kitajka
- Laboratory of Functional Genomics, Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary; E-Mails: (N.F.); (K.K.)
| | - Tamas Bito
- Obstetrics and Gynecology Department, Faculty of Medicine, University of Szeged, Semmelweis u. 1., Szeged H-6725, Hungary; E-Mail:
| | - Vilmos Tubak
- Curamach Ltd., Temesvári krt. 62, Szeged H-6726, Hungary; E-Mails: (V.T.); (R.L.K.)
| | - Robert L. Katona
- Curamach Ltd., Temesvári krt. 62, Szeged H-6726, Hungary; E-Mails: (V.T.); (R.L.K.)
- Laboratory of Chromosome Structure and Function, Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Laszlo Tiszlavicz
- Department of Pathology, University of Szeged, Szeged H-6725, Hungary; E-Mail:
| | - Laszlo G. Puskas
- Laboratory of Functional Genomics, Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary; E-Mails: (N.F.); (K.K.)
- Avidin Ltd., Közép fasor 52, Szeged H-6726, Hungary; E-Mails: (L.Z.F.); (L.I.N.); (S.K.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +36-62-546-973; Fax: +36-62-546-972
| |
Collapse
|
24
|
Enoch SJ, Ellison CM, Schultz TW, Cronin MTD. A review of the electrophilic reaction chemistry involved in covalent protein binding relevant to toxicity. Crit Rev Toxicol 2011; 41:783-802. [DOI: 10.3109/10408444.2011.598141] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Giri S, Bader A. Improved preclinical safety assessment using micro-BAL devices: the potential impact on human discovery and drug attrition. Drug Discov Today 2011; 16:382-97. [PMID: 21354326 DOI: 10.1016/j.drudis.2011.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 01/11/2011] [Accepted: 02/21/2011] [Indexed: 02/07/2023]
Abstract
Hepatotoxicity is often unpredictable in the early phase of drug discovery and leads to drug attrition in preclinical and clinical development. Here, we discuss the conventional preclinical liver models that do not mimic in vivo livers. We focus on key components such as new sources of hepatocyte-derived human stem cells, enhanced direct oxygenation, defined biocompatibility nanoscaffolds, organotypical cellular models, dynamic culture, and metabolite status inside and outside the cell for effective configuration for the development of a bioartificial liver (BAL) device to mimic the in vivo liver microenvironment. The potential for development of BAL devices could open up new avenues in: (i) hepatotoxicity assessment for selecting drug candidates during preclinical screening; and (ii) therapeutic approaches for liver cell therapy at the clinical stage.
Collapse
Affiliation(s)
- Shibashish Giri
- Centre for Biotechnology and Biomedicine, Department of Cell Techniques and Applied Stem Cell Biology, University of Leipzig, Deutscher Platz 5, D-04103 Leipzig, Germany.
| | | |
Collapse
|
26
|
Risk assessment and mitigation strategies for reactive metabolites in drug discovery and development. Chem Biol Interact 2010; 192:65-71. [PMID: 21074519 DOI: 10.1016/j.cbi.2010.11.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/30/2010] [Accepted: 11/03/2010] [Indexed: 12/26/2022]
Abstract
Drug toxicity is a leading cause of attrition of candidate drugs during drug development as well as of withdrawal of drugs post-licensing due to adverse drug reactions in man. These adverse drug reactions cause a broad range of clinically severe conditions including both highly reproducible and dose dependent toxicities as well as relatively infrequent and idiosyncratic adverse events. The underlying risk factors can be split into two groups: (1) drug-related and (2) patient-related. The drug-related risk factors include metabolic factors that determine the propensity of a molecule to form toxic reactive metabolites (RMs), and the RM and non-RM mediated mechanisms which cause cell and tissue injury. Patient related risk factors may vary markedly between individuals, and encompass genetic and non-genetic processes, e.g. environmental, that influence the disposition of drugs and their metabolites, the nature of the adverse responses elicited and the resulting biological consequences. We describe a new strategy, which builds upon the strategies used currently within numerous pharmaceutical companies to avoid and minimize RM formation during drug discovery, and that is intended to reduce the likelihood that candidate drugs will cause toxicity in the human population. The new strategy addresses drug-related safety hazards, but not patient-related risk factors. A common target organ of toxicity is the liver and to decrease the likelihood that candidate drugs will cause liver toxicity (both non-idiosyncratic and idiosyncratic), we propose use of an in vitro Hepatic Liability Panel alongside in vitro methods for the detection of RMs. This will enable design and selection of compounds in discovery that have reduced propensity to cause liver toxicity. In vitro Hepatic Liability is assessed using toxicity assays that quantify: CYP 450 dependent and CYP 450 independent cell toxicity; mitochondrial impairment; and inhibition of the Bile Salt Export Pump. Prior to progression into development, a Hepatotoxicity Hazard Matrix combines data from the Hepatic Liability Panel with the Estimated RM Body Burden. The latter is defined as the level of covalent binding of radiolabelled drug to human hepatocyte proteins in vitro adjusted for the predicted human dose. We exemplify the potential value of this approach by consideration of the thiazolidinedione class of drugs.
Collapse
|
27
|
Morgan RE, Trauner M, van Staden CJ, Lee PH, Ramachandran B, Eschenberg M, Afshari CA, Qualls CW, Lightfoot-Dunn R, Hamadeh HK. Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development. Toxicol Sci 2010; 118:485-500. [PMID: 20829430 DOI: 10.1093/toxsci/kfq269] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The bile salt export pump (BSEP) is an efflux transporter, driving the elimination of endobiotic and xenobiotic substrates from hepatocytes into the bile. More specifically, it is responsible for the elimination of monovalent, conjugated bile salts, with little or no assistance from other apical transporters. Disruption of BSEP activity through genetic disorders is known to manifest in clinical liver injury such as progressive familial intrahepatic cholestasis type 2. Drug-induced disruption of BSEP is hypothesized to play a role in the development of liver injury for several marketed or withdrawn therapeutics. Unfortunately, preclinical animal models have been poor predictors of the liver injury associated with BSEP interference observed for humans, possibly because of interspecies differences in bile acid composition, differences in hepatobiliary transporter modulation or constitutive expression, as well as other mechanisms. Thus, a BSEP-mediated liver liability may go undetected until the later stages of drug development, such as during clinical trials or even postlicensing. In the absence of a relevant preclinical test system for BSEP-mediated liver injury, the toxicological relevance of available in vitro models to human health rely on the use of benchmark compounds with known clinical outcomes, such as marketed or withdrawn drugs. In this study, membrane vesicles harvested from BSEP-transfected insect cells were used to assess the activity of more than 200 benchmark compounds to thoroughly investigate the relationship between interference with BSEP function and liver injury. The data suggest a relatively strong association between the pharmacological interference with BSEP function and human hepatotoxicity. Although the most accurate translation of risk would incorporate pharmacological potency, pharmacokinetics, clearance mechanisms, tissue distribution, physicochemical properties, indication, and other drug attributes, the additional understanding of a compound's potency for BSEP interference should help to limit or avoid BSEP-related liver liabilities in humans that are not often detected by standard preclinical animal models.
Collapse
Affiliation(s)
- Ryan E Morgan
- Department of Comparative Biology and Safety Sciences Amgen Inc., Thousand Oaks, California 91320, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|