1
|
Bile duct ligation causes opposite impacts on the expression and function of BCRP and P-gp in rat brain partly via affecting membrane expression of ezrin/radixin/moesin proteins. Acta Pharmacol Sin 2021; 42:1942-1950. [PMID: 33558655 PMCID: PMC8563881 DOI: 10.1038/s41401-020-00602-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023] Open
Abstract
Breast cancer resistance protein (BCRP) and P-glycoprotein (P-gp) are co-located at blood-brain barrier (BBB) cells, preventing their substrates from entering brain. Accumulating evidence demonstrates that liver failure impairs P-gp and BCRP expression and function in the brain. In the current study, we investigated how liver failure influenced the expression and function of brain BCRP and P-gp in rats subjected to bile duct ligation (BDL). The function of BCRP, P-gp and BBB integrity was assessed using distribution of prazosin, rhodamine 123 and fluorescein, respectively. We showed that BDL significantly decreased BCRP function, but increased P-gp function without affecting BBB integrity. Furthermore, we found that BDL significantly downregulated the expression of membrane BCRP and upregulated the expression of membrane P-gp protein in the cortex and hippocampus. In human cerebral microvascular endothelial cells, NH4Cl plus unconjugated bilirubin significantly decreased BCRP function and expression of membrane BCRP protein, but upregulated P-gp function and expression of membrane P-gp protein. The decreased expression of membrane BCRP protein was linked to the decreased expression of membrane radixin protein, while the increased expression of membrane P-gp protein was related to the increased location of membrane ezrin protein. Silencing ezrin impaired membrane location of P-gp, whereas silencing radixin impaired membrane location of BCRP protein. BDL rats showed the increased expression of membrane ezrin protein and decreased expression of membrane radixin protein in the brain. We conclude that BDL causes opposite effects on the expression and function of brain BCRP and P-gp, attributing to the altered expression of membrane radixin and ezrin protein, respectively, due to hyperbilirubinemia and hyperammonemia.
Collapse
|
2
|
Alim K, Bruyère A, Lescoat A, Jouan E, Lecureur V, Le Vée M, Fardel O. Interactions of janus kinase inhibitors with drug transporters and consequences for pharmacokinetics and toxicity. Expert Opin Drug Metab Toxicol 2021; 17:259-271. [PMID: 33292029 DOI: 10.1080/17425255.2021.1862084] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Janus kinase inhibitors (JAKinibs) constitute an emerging and promising pharmacological class of anti-inflammatory or anti-cancer drugs, used notably for the treatment of rheumatoid arthritis and some myeloproliferative neoplasms.Areas covered: This review provides an overview of the interactions between marketed JAKinibs and major uptake and efflux drug transporters. Consequences regarding pharmacokinetics, drug-drug interactions and toxicity are summarized.Expert opinion: JAKinibs interact in vitro with transporters in various ways, as inhibitors or as substrates of transporters or as regulators of transporter expression. This may theoretically result in drug-drug interactions (DDIs), with JAKinibs acting as perpetrators or as victims, or in toxicity, via impairment of thiamine transport. Clinical significance in terms of DDIs for JAKinib-transporter interactions remains however poorly documented. In this context, the in vivo unbound concentration of JAKinibs is likely a key parameter to consider for evaluating the clinical relevance of JAKinibs-mediated transporter inhibition. Additionally, the interplay with drug metabolism as well as possible interactions with transporters of emerging importance and time-dependent inhibition have to be taken into account. The role drug transporters may play in controlling cellular JAKinib concentrations and efficacy in target cells is also an issue of interest.
Collapse
Affiliation(s)
- Karima Alim
- Univ Rennes, Inserm, EHESP, Irset (Institut De Recherche En Santé, Environnement Et Travail) - UMR_S 1085, Rennes, France
| | - Arnaud Bruyère
- Univ Rennes, Inserm, EHESP, Irset (Institut De Recherche En Santé, Environnement Et Travail) - UMR_S 1085, Rennes, France
| | - Alain Lescoat
- Univ Rennes, Inserm, EHESP, Irset (Institut De Recherche En Santé, Environnement Et Travail) - UMR_S 1085, Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut De Recherche En Santé, Environnement Et Travail) - UMR_S 1085, Rennes, France
| | - Valérie Lecureur
- Univ Rennes, Inserm, EHESP, Irset (Institut De Recherche En Santé, Environnement Et Travail) - UMR_S 1085, Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut De Recherche En Santé, Environnement Et Travail) - UMR_S 1085, Rennes, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut De Recherche En Santé, Environnement Et Travail) - UMR_S 1085, Rennes, France
| |
Collapse
|
3
|
Validation of Human MDR1-MDCK and BCRP-MDCK Cell Lines to Improve the Prediction of Brain Penetration. J Pharm Sci 2019; 108:2476-2483. [DOI: 10.1016/j.xphs.2019.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 01/16/2023]
|
4
|
Villanueva S, Zhang W, Zecchinati F, Mottino A, Vore M. ABC Transporters in Extrahepatic Tissues: Pharmacological Regulation in Heart and Intestine. Curr Med Chem 2019; 26:1155-1184. [PMID: 29589524 DOI: 10.2174/0929867325666180327092639] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 12/17/2022]
Abstract
ATP binding cassette (ABC) transporters are transmembrane proteins expressed in secretory epithelia like the liver, kidneys and intestine, in the epithelia exhibiting barrier function such as the blood-brain barrier and placenta, and to a much lesser extent, in tissues like reproductive organs, lungs, heart and pancreas, among others. They regulate internal distribution of endogenous metabolites and xenobiotics including drugs of therapeutic use and also participate in their elimination from the body. We here describe the function and regulation of ABC transporters in the heart and small intestine, as examples of extrahepatic tissues, in which ABC proteins play clearly different roles. In the heart, they are involved in tissue pathogenesis as well as in protecting this organ against toxic compounds and druginduced oxidative stress. The small intestine is highly exposed to therapeutic drugs taken orally and, consequently, ABC transporters localized on its surface strongly influence drug absorption and pharmacokinetics. Examples of the ABC proteins currently described are Multidrug Resistance-associated Proteins 1 and 2 (MRP1 and 2) for heart and small intestine, respectively, and P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) for both organs.
Collapse
Affiliation(s)
- Silvina Villanueva
- Instituto de Fisiologia Experimental, Facultad de Ciencias Bioquimicas y Farmaceuticas, CONICET-UNR. 2000 Rosario, Argentina
| | - Wei Zhang
- Department of Toxicology & Cancer Biology, University of Kentucky, Lexington, KY 40536-0305, United States
| | - Felipe Zecchinati
- Instituto de Fisiologia Experimental, Facultad de Ciencias Bioquimicas y Farmaceuticas, CONICET-UNR. 2000 Rosario, Argentina
| | - Aldo Mottino
- Instituto de Fisiologia Experimental, Facultad de Ciencias Bioquimicas y Farmaceuticas, CONICET-UNR. 2000 Rosario, Argentina
| | - Mary Vore
- Department of Toxicology & Cancer Biology, University of Kentucky, Lexington, KY 40536-0305, United States
| |
Collapse
|
5
|
Feng B, Doran AC, Di L, West MA, Osgood SM, Mancuso JY, Shaffer CL, Tremaine L, Liras J. Prediction of Human Brain Penetration of P-glycoprotein and Breast Cancer Resistance Protein Substrates Using In Vitro Transporter Studies and Animal Models. J Pharm Sci 2018; 107:2225-2235. [PMID: 29608887 DOI: 10.1016/j.xphs.2018.03.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 01/29/2023]
Abstract
Four P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) substrates with human cerebrospinal fluid (CSF) concentrations and preclinical neuropharmacokinetics were used to assess in vitro-in vivo extrapolation of brain penetration in preclinical species and the ability to predict human brain penetration. Unbound brain (Cb,u), unbound plasma (Cp,u), and CSF compound concentrations (CCSF) were measured in rats and nonhuman primates (NHPs), and the unbound partition coefficients (Cb,u/Cp,u and CCSF/Cp,u) were used to assess brain penetration. The results indicated that for P-gp and BCRP dual substrates, brain penetration was severally impaired in all species. In comparison, for P-gp substrates that are weak or non-BCRP substrates, improved brain penetration was observed in NHPs and humans than in rats. Overall, NHP appears to be more predictive of human brain penetration for P-gp substrates with weak or no interaction with BCRP than rat. Although CCSF does not quantitatively correspond to Cb,u for efflux transporter substrates, it is mostly within 3-fold higher of Cb,u in rat and NHP, suggesting that CCSF can be used as a surrogate for Cb,u. Taken together, a holistic approach including both in vitro transporter and in vivo neuropharmacokinetics data enables a better estimation of human brain penetration of P-gp/BCRP substrates.
Collapse
Affiliation(s)
- Bo Feng
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut 06340.
| | - Angela C Doran
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut 06340
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut 06340
| | - Mark A West
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut 06340
| | - Sarah M Osgood
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut 06340
| | - Jessica Y Mancuso
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut 06340
| | - Christopher L Shaffer
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Larry Tremaine
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut 06340
| | - Jennifer Liras
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Cambridge, Massachusetts 02139
| |
Collapse
|
6
|
Chaves C, Remiao F, Cisternino S, Decleves X. Opioids and the Blood-Brain Barrier: A Dynamic Interaction with Consequences on Drug Disposition in Brain. Curr Neuropharmacol 2018; 15:1156-1173. [PMID: 28474563 PMCID: PMC5725546 DOI: 10.2174/1570159x15666170504095823] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 04/04/2017] [Accepted: 04/25/2017] [Indexed: 12/28/2022] Open
Abstract
Background: Opioids are widely used in pain management, acting via opioid receptors and/or Toll-like receptors (TLR) present at the central nervous system (CNS). At the blood-brain barrier (BBB), several influx and efflux transporters, such as the ATP-binding cassette (ABC) P-glycoprotein (P-gp, ABCB1), Breast Cancer Resistance Protein (BCRP, ABCG2) and multidrug resistance-associated proteins (MRP, ABCC) transporters, and solute carrier transporters (SLC), are responsible for the transport of xenobiotics from the brain into the bloodstream or vice versa. Objective: ABC transporters export several clinically employed opioids, altering their neuro- pharmacokinetics and CNS effects. In this review, we explore the interactions between opioids and ABC transporters, and decipher the molecular mechanisms by which opioids can modify their expression at the BBB. Results: P-gp is largely implicated in the brain-to-blood efflux of opioids, namely morphine and oxycodone. Long-term ex-posure to morphine and oxycodone has proven to up-regulate the expression of ABC transporters, such as P-gp, BCRP and MRPs, at the BBB, which may lead to increased tolerance to the antinociceptive effects of such drugs. Recent studies uncov-er two mechanisms by which morphine may up-regulate P-gp and BCRP at the BBB: 1) via a glutamate, NMDA-receptor and COX-2 signaling cascade, and 2) via TLR4 activation, subsequent development of neuro- inflammation, and activation of NF-κB, presumably via glial cells. Conclusion: The BBB-opioid interaction can culminate in bilateral consequences, since ABC transporters condition the brain disposition of opioids, while opioids also affect the expression of ABC transporters at the BBB, which may result in increased CNS drug pharmacoresistance.
Collapse
Affiliation(s)
- Catarina Chaves
- Variabilite de Reponse Aux Psychotropes, INSERM, U1144, 75006 Paris, France.,Universite Paris Descartes, UMR-S 1144, Paris, F-75006, France.,Universite Paris Diderot, UMR-S 1144, Paris, F-75013, France.,REQUIMTE, Laboratorio de Toxicologia, Departamento de Ciencias Biologicas, Faculdade de Farmacia, Universidade do Porto, Porto, Portugal
| | - Fernando Remiao
- REQUIMTE, Laboratorio de Toxicologia, Departamento de Ciencias Biologicas, Faculdade de Farmacia, Universidade do Porto, Porto, Portugal
| | - Salvatore Cisternino
- Variabilite de Reponse Aux Psychotropes, INSERM, U1144, 75006 Paris, France.,Universite Paris Descartes, UMR-S 1144, Paris, F-75006, France.,Universite Paris Diderot, UMR-S 1144, Paris, F-75013, France.,Assistance Publique Hopitaux de Paris, AP-HP, Paris, France
| | - Xavier Decleves
- Variabilite de Reponse Aux Psychotropes, INSERM, U1144, 75006 Paris, France.,Universite Paris Descartes, UMR-S 1144, Paris, F-75006, France.,Universite Paris Diderot, UMR-S 1144, Paris, F-75013, France.,Assistance Publique Hopitaux de Paris, AP-HP, Paris, France
| |
Collapse
|
7
|
Mohamed LA, Markandaiah S, Bonanno S, Pasinelli P, Trotti D. Blood-Brain Barrier Driven Pharmacoresistance in Amyotrophic Lateral Sclerosis and Challenges for Effective Drug Therapies. AAPS JOURNAL 2017; 19:1600-1614. [PMID: 28779378 DOI: 10.1208/s12248-017-0120-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022]
Abstract
The blood-brain barrier (BBB) is essential for proper neuronal function, homeostasis, and protection of the central nervous system (CNS) microenvironment from blood-borne pathogens and neurotoxins. The BBB is also an impediment for CNS penetration of drugs. In some neurologic conditions, such as epilepsy and brain tumors, overexpression of P-glycoprotein, an efflux transporter whose physiological function is to expel catabolites and xenobiotics from the CNS into the blood stream, has been reported. Recent studies reported that overexpression of P-glycoprotein and increase in its activity at the BBB drives a progressive resistance to CNS penetration and persistence of riluzole, the only drug approved thus far for treatment of amyotrophic lateral sclerosis (ALS), rapidly progressive and mostly fatal neurologic disease. This review will discuss the impact of transporter-mediated pharmacoresistance for ALS drug therapy and the potential therapeutic strategies to improve the outcome of ALS clinical trials and efficacy of current and future drug treatments.
Collapse
Affiliation(s)
- Loqman A Mohamed
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA.
| | - Shashirekha Markandaiah
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| | - Silvia Bonanno
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| | - Piera Pasinelli
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| |
Collapse
|
8
|
Kanamitsu K, Kusuhara H, Schuetz JD, Takeuchi K, Sugiyama Y. Investigation of the Importance of Multidrug Resistance-Associated Protein 4 (Mrp4/Abcc4) in the Active Efflux of Anionic Drugs Across the Blood-Brain Barrier. J Pharm Sci 2017; 106:2566-2575. [PMID: 28456721 DOI: 10.1016/j.xphs.2017.04.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/16/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
Abstract
The importance of multidrug resistance-associated protein 4 (Mrp4/Abcc4) in limiting the penetration of Mrp4 substrate compounds into the central nervous system across the blood-brain barrier was investigated using Mrp4-/- mice. Significant adenosine triphosphate-dependent uptake by MRP4 was observed for ochratoxin A, pitavastatin, raltitrexed (Km = 43.7 μM), pravastatin, cyclic guanosine monophosphate, 2,4-dichlorophenoxyacetate, and urate. The defect in the Mrp4 gene did not affect the brain-to-plasma ratio (Kp,brain) of quinidine and dantrolene. Following intravenous infusion in wild-type and Mrp4-/- mice, the plasma concentrations of the tested compounds (cefazolin, cefmetazole, ciprofloxacin, cyclophosphamide, furosemide, hydrochlorothiazide, methotrexate, pitavastatin, pravastatin, and raltitrexed) were identical; however, Mrp4-/- mice showed a significantly higher (1.9- to 2.5-fold) Kp,brain than wild-type mice for methotrexate, raltitrexed, and cyclophosphamide. GF120918, a dual inhibitor of P-gp and Bcrp, significantly decreased Kp,cortex and Kp,cerebellum only in Mrp4-/- mice. Methotrexate and raltitrexed are also substrates of multispecific organic anion transporters such as Oatp1a4 and Oat3. GF120918 showed an inhibition potency against Oatp1a4, but not against Oat3. These results suggest that Mrp4 limits the penetration of methotrexate and raltitrexed into the brain across the blood-brain barrier, which is likely to be facilitated by some uptake transporters.
Collapse
Affiliation(s)
- Kayoko Kanamitsu
- Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan; Tokushima Research Institute, Otsuka Pharmaceutical Company, Ltd., Tokushima, Japan
| | - Hiroyuki Kusuhara
- Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan.
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Kenji Takeuchi
- Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan; Tokushima Research Institute, Otsuka Pharmaceutical Company, Ltd., Tokushima, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, Kanagawa, Japan
| |
Collapse
|
9
|
Krawczenko A, Bielawska-Pohl A, Wojtowicz K, Jura R, Paprocka M, Wojdat E, Kozłowska U, Klimczak A, Grillon C, Kieda C, Duś D. Expression and activity of multidrug resistance proteins in mature endothelial cells and their precursors: A challenging correlation. PLoS One 2017; 12:e0172371. [PMID: 28212450 PMCID: PMC5315393 DOI: 10.1371/journal.pone.0172371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 02/03/2017] [Indexed: 01/30/2023] Open
Abstract
Active cellular transporters of harmful agents-multidrug resistance (mdr) proteins-are present in tumor, stem and endothelial cells, among others. While mdr proteins are broadly studied in tumor cells, their role in non-tumor cells and the significance of their action not connected with removal of harmful xenobiotics is less extensively documented. Proper assessment of mdr proteins expression is difficult. Mdr mRNA presence is most often evaluated but that does not necessarily correlate with the protein level. The protein expression itself is difficult to determine; usually cells with mdr overexpression are studied, not cells under physiological conditions, in which a low expression level of mdr protein is often insufficient for detection in vitro. Various methods are used to identify mdr mRNA and protein expression, together with functional tests demonstrating their biological drug transporting activities. Data comparing different methods of investigating expression of mdr mRNAs and their corresponding proteins are still scarce. In this article we present the results of a study concerning mdr mRNA and protein expression. Our goal was to search for the best method to investigate the expression level and functional activity of five selected mdr proteins-MDR1, BCRP, MRP1, MRP4 and MRP5-in established in vitro cell lines of human endothelial cells (ECs) and their progenitors. Endothelial cells demonstrated mdr presence at the mRNA level, which was not always confirmed at the protein level or in functional tests. Therefore, several different assays had to be applied for evaluation of mdr proteins expression and functions in endothelial cells. Among them functional tests seemed to be the most conclusive, although not very specific.
Collapse
Affiliation(s)
- Agnieszka Krawczenko
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Aleksandra Bielawska-Pohl
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Karolina Wojtowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Maria Paprocka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Elżbieta Wojdat
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Urszula Kozłowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Aleksandra Klimczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Catherine Grillon
- Cellular Microenvironment and Pharmacological Targets, Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | - Claudine Kieda
- Cellular Microenvironment and Pharmacological Targets, Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | - Danuta Duś
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
10
|
Increasing BMI is associated with reduced expression of P-glycoprotein (ABCB1 gene) in the human brain with a stronger association in African Americans than Caucasians. THE PHARMACOGENOMICS JOURNAL 2016; 18:121-126. [PMID: 27897267 PMCID: PMC5817387 DOI: 10.1038/tpj.2016.74] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 01/11/2023]
Abstract
The efflux pump, p-glycoprotein, controls bioavailability and excretion of pharmaceutical compounds. In the blood-brain barrier, p-glycoprotein regulates the delivery of pharmaceutical substances to the brain, influencing efficacy and side effects for some drugs notably antipsychotics. Common side effects to antipsychotics include obesity and metabolic disease. Polymorphisms in the ABCB1 gene coding for p-glycoprotein are associated with more severe side effects to neuro-pharmaceuticals as well as weight gain, indicating a potential link between p-glycoprotein function and metabolic regulation. Using microarray data analysis from 145 neurologically sound adults, this study investigated the association between body mass index (BMI) and ABCB1 expression in the frontal cortex. Increasing BMI values were associated with a statistically significantly reduced expression of ABCB1. Investigation of DNA methylation patterns in a subgroup of 52 individuals found that the methylation/expression ratios of ABCB1 were unaffected by increasing BMI values. Interestingly, the effect of BMI on ABCB1 expression appeared stronger in African Americans than in Caucasians.
Collapse
|
11
|
Kolter M, Ott M, Hauer C, Reimold I, Fricker G. Nanotoxicity of poly(n-butylcyano-acrylate) nanoparticles at the blood-brain barrier, in human whole blood and in vivo. J Control Release 2014; 197:165-79. [PMID: 25445700 DOI: 10.1016/j.jconrel.2014.11.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 12/24/2022]
Abstract
Therapy of diseases of the central nervous system is a major challenge since drugs have to overcome the blood-brain barrier (BBB). A powerful strategy to enhance cerebral drug concentration is administration of drug-loaded poly(n-butylcyano-acrylate) (PBCA) nanoparticles coated with polysorbate 80 (PS80). This study evaluates the toxicity of PBCA-nanoparticles at the BBB, representing the target organ, the inflammatory response in human whole blood, as the site of administration and in a rat model in vivo. PBCA-nanoparticles were prepared by a mini-emulsion method and characterized concerning size, surface charge, shape and PS80-adsorption. The influence on metabolic activity, cell viability and integrity of the BBB was analyzed in an in vitro model of the BBB. In ex vivo experiments in human whole blood the release of 12 inflammatory cytokines was investigated. In addition, the inflammatory response was studied in vivo in rats and complemented with the analysis of different organ toxicity parameters. PBCA-nanoparticles showed time- and concentration-dependent effects on metabolic activity, cell viability and BBB integrity. No cell death or loss of metabolic activity was observed for nanoparticle-concentrations ≤500μg/ml up to 3h of treatment. Within 12 tested inflammatory cytokines, only interleukin-8 displayed a significant release after nanoparticle exposure in human blood. No severe inflammatory processes or organ damages were identified in rats in vivo. Thus, PBCA-nanoparticles are a promising drug delivery system to overcome the BBB since they showed hardly any cytotoxic or inflammatory effect at therapeutic concentrations and incubation times.
Collapse
Affiliation(s)
- Marise Kolter
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany.
| | - Melanie Ott
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Christian Hauer
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Isolde Reimold
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
12
|
Impact of P-glycoprotein at the blood-brain barrier on the uptake of heroin and its main metabolites: behavioral effects and consequences on the transcriptional responses and reinforcing properties. Psychopharmacology (Berl) 2014; 231:3139-49. [PMID: 24705903 DOI: 10.1007/s00213-014-3490-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 02/05/2014] [Indexed: 12/28/2022]
Abstract
RATIONALE Transport across the BBB is a determinant of the rate and extent of drug distribution in the brain. Heroin exerts its effects through its principal metabolites 6-monoacetyl-morphine (6-MAM) and morphine. Morphine is a known substrate of P-glycoprotein (P-gp) at the blood-brain-barrier (BBB) however, little is known about the interaction of heroin and 6-MAM with P-gp. OBJECTIVE The objective of this paper is to study the role of the P-gp-mediated efflux at the BBB in the behavioral and molecular effects of heroin and morphine. METHODS The transport rates of heroin and its main metabolites, at the BBB, were measured in mice by in situ brain perfusion. We then examined the effect of inhibition of P-gp on the acute nociception, locomotor activity, and gene expression modulations induced by heroin and morphine. The effect of P-gp inhibition during the acquisition of morphine-induced place preference was also studied. RESULTS Inhibition of P-gp significantly increased the uptake of morphine but not that of heroin nor 6-MAM. Inhibition of P-gp significantly increased morphine-induced acute analgesia and locomotor activity but did not affect the behavioral effects of heroin; in addition, acute transcriptional responses to morphine were selectively modulated in the nucleus accumbens. Increasing morphine uptake by the brain significantly increased its reinforcing properties in the place preference paradigm. CONCLUSIONS The present study demonstrated that acute inhibition of P-gp not only modulates morphine-induced behavioral effects but also its transcriptional effects and reinforcing properties. This suggests that, in the case of morphine, transport across the BBB is critical for the development of dependence.
Collapse
|
13
|
Chang JH, Kim CY, Choi BS, Kim YJ, Kim JS, Kim IA. Pseudoprogression and pseudoresponse in the management of high-grade glioma : optimal decision timing according to the response assessment of the neuro-oncology working group. J Korean Neurosurg Soc 2014; 55:5-11. [PMID: 24570811 PMCID: PMC3928350 DOI: 10.3340/jkns.2014.55.1.5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/24/2013] [Accepted: 12/16/2013] [Indexed: 11/27/2022] Open
Abstract
Objective We evaluated pseudoprogression (PsPD) following radiation therapy combined with concurrent temozolomide (TMZ), and we assessed pseudoresponse following anti-angiogenic therapy for patients with recurrent disease using the Response Assessment of the Neuro-Oncology Working Group. Methods Patients who were pathologically confirmed as having high-grade glioma received radiotherapy with concurrent TMZ followed by adjuvant TMZ. Bevacizumab (Avastin) with CPT-11 were used as a salvage option for cases of radiologic progression. Magnetic resonance imaging (MRI) was routinely performed 1 month after concurrent radiochemotherapy (CRT) and every 3 months thereafter. For cases treated with the bevacizumab-containing regimen for progressive disease, MRI was performed every 2 months. Results Of 55 patients, 21 (38%) showed radiologic progression within 4 weeks after CRT. Of these patients, 16 (29%) showed progression at second post-CRT MRI (etPD) and five (9%) showed improvement (PsPD). Seven of thirty-four initially non-progressed patients showed progression at the second post-CRT MRI (ltPD). No difference in survival was observed between the etPD and ltPD groups (p=0.595). Five (50%) of ten patients showed a radiological response after salvage bevacizumab therapy. Four of those patients exhibited rapid progression immediately after discontinuation of the drug (drug holiday). Conclusion Twelve weeks following treatment could be the optimal timing to determine PsPD or true progression. MRI with gadolinium enhancement alone is not sufficient to characterize tumor response or growth. Clinical correlation with adequate follow-up duration and histopathologic validation may be helpful in discriminating PsPD from true progression.
Collapse
Affiliation(s)
- Ji Hyun Chang
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Chae-Yong Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Byung Se Choi
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yu Jung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jae Sung Kim
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - In Ah Kim
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
14
|
Smeyne M, Smeyne RJ. Glutathione metabolism and Parkinson's disease. Free Radic Biol Med 2013; 62:13-25. [PMID: 23665395 PMCID: PMC3736736 DOI: 10.1016/j.freeradbiomed.2013.05.001] [Citation(s) in RCA: 316] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 05/01/2013] [Accepted: 05/01/2013] [Indexed: 12/14/2022]
Abstract
It has been established that oxidative stress, defined as the condition in which the sum of free radicals in a cell exceeds the antioxidant capacity of the cell, contributes to the pathogenesis of Parkinson disease. Glutathione is a ubiquitous thiol tripeptide that acts alone or in concert with enzymes within cells to reduce superoxide radicals, hydroxyl radicals, and peroxynitrites. In this review, we examine the synthesis, metabolism, and functional interactions of glutathione and discuss how these relate to the protection of dopaminergic neurons from oxidative damage and its therapeutic potential in Parkinson disease.
Collapse
Affiliation(s)
- Michelle Smeyne
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, 901-595-3066
| | - Richard Jay Smeyne
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, 901-595-2830
| |
Collapse
|
15
|
Huang L, Perrault C, Coelho-Martins J, Hu C, Dulong C, Varna M, Liu J, Jin J, Soria C, Cazin L, Janin A, Li H, Varin R, Lu H. Induction of acquired drug resistance in endothelial cells and its involvement in anticancer therapy. J Hematol Oncol 2013; 6:49. [PMID: 23837843 PMCID: PMC3717049 DOI: 10.1186/1756-8722-6-49] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/31/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Multidrug resistance (MDR) is one of the major problems in the treatment of cancer. Overcoming it is therefore expected to improve clinical outcomes for cancer patients. MDR is usually characterized by overexpression of ABC (ATP-binding cassette) protein transporters such as P-gp, MRP1, and ABCG2. Though the importance of ABC transporters for cancer cells is recognized, few studies have looked at its implications for the endothelial cells that are essential to tumor angiogenesis. This study investigated the expression and functions of these ABC transporters in endothelial cells in vitro and their potential contribution to cancer growth in mice. METHODS Human micro vessel endothelial cells (HMEC-1) and human umbilical vein endothelial cells (HUVEC) were exposed to increasing doses of Doxorubicin (Dox) to induce ABC gene expression. Cell viability was then quantified by (3)H-thymidine and MTS assay. Flow cytometry, qPCR, and western blot were used to detect mRNA and the protein expression of P-gp, MRP1, and ABCG2. The intracellular accumulation of Rhodamine 123 (Rho) was used to evaluate drug efflux function and the inhibitors for P-gp, ABCG2, and MRP1 were used to verify their respective roles in vitro. In an attempt to evaluate drug resistance in endothelial cells in vivo, athymic mice were treated with Dox for 15 days before a MDA-MB-435 tumor graft to observe subsequent changes in the inhibition curves of tumor growth in response to Dox treatment. Furthermore, endothelial cells from multiple sites in these mice were also isolated to estimate their P-gp expression by flow cytometry. RESULTS Drug resistance in HMEC-1 and HUVEC was successfully induced by the addition of Dox to the culture media. Two stabilized subcell lines of HMEC1 (HMECd1 and HMECd2) showed 15- and 24-fold increases in resistance. Tests also showed that these induced endothelial cells were cross-resistant to the structurally unrelated drugs Daunorubicin, Vinblastine, and Etoposide. P-gp protein levels increased four and six fold in HMECd1 and HMECd2 as revealed by western blot. The qPCR demonstrated 3.4- and 7.2-fold increases in P-gp, and a slight increase in ABCG2, gene expression. The Rho accumulation within these cells was inversely correlated with the expression levels of P-gp. The inhibitors of P-gp, but not of ABCG2 or MRP1, were able to block the induced endothelial cell resistance to Dox. Furthermore, we also showed that injecting Dox into healthy mice induced an increase in P-gp expression in endothelial cells. Using these pretreated mice in a tumor growth experiment, we observed a dramatic diminution in the therapeutic efficiency of Dox treatment, suggesting implications for drug resistance in mice endothelial cells supporting tumor growth. CONCLUSIONS ABC transporter expression can be induced in endothelial cells in vitro. This study also indicates that P-gp plays an important role in the acquisition of resistance to Dox in endothelial cells and that this reduces the efficiency of chemotherapy.
Collapse
|
16
|
Bérézowski V, Mysiorek C, Kuntz M, Pétrault O, Cecchelli R. [Dysfunction of the blood-brain barrier during ischaemia: a therapeutic concern]. Biol Aujourdhui 2012; 206:161-76. [PMID: 23171839 DOI: 10.1051/jbio/2012020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Indexed: 11/14/2022]
Abstract
Since it was discovered and its brain-protective role characterized, the blood-brain barrier (BBB), through the permeability-restricting action of the brain capillary endothelial cells, has been representing a hurdle for 95% of new medical compounds targeting the central nervous system. Recently, a BBB dysfunction is being found in an increasing number of pathologies such as brain ischaemic stroke, whose only therapy consists in a pharmacological thrombolysis limited to a small percentage of the admitted patients, because of the toxical effects of thrombolytics. And since the clinical failure of promising neuroprotectants, numerous studies of brain ischaemia were carried out, with physiopathological or pharmacological approaches refocused on the BBB, whose structural complexity is now expanded to perivascular cells, all forming a functional unit named the neurovascular unit (NVU). Nevertheless, in spite of the numerous molecular mechanisms identified, the process of BBB dysfunction in the ischaemia/reperfusion cascade remains insufficiently established to explain the pleiotropic action exerted by new pharmacological compounds, possibly protecting the entire NVU and representing potential treatments.
Collapse
|
17
|
Jacob A, Declèves X, Scherrmann JM. [Recent advances in quantitative proteomics as a sensitive tool to quantify drug transporters and drug metabolizing enzymes at the human blood-brain barrier]. Biol Aujourdhui 2012; 206:177-83. [PMID: 23171840 DOI: 10.1051/jbio/2012022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Indexed: 11/14/2022]
Abstract
Since its discovery at the beginning of the 20th century, the blood-brain barrier (BBB) has been considered for a long time as a "physical barrier" able to limit brain distribution of highly molecular weight and/or polar compounds. This early concept of an anatomical barrier between the blood and the brain was supported by the finding of unique tight junctions between the brain endothelial cells so that they formed a continuous wall preventing the paracellular diffusion of solutes. In the middle of the 50's, BBB has been proposed as a "biochemical barrier" able to control the supply of brain to essential nutriments. More recently, BBB was evidenced as a key element in controlling effects of central nervous system drugs, since it plays a critical role in the uptake and efflux of drugs from the blood to the brain, or vice versa, hence affecting their concentrations and effects in the central nervous system (CNS). The BBB has therefore been more recently defined as a "pharmacological barrier" since the endothelial cells were found to contain a range of metabolizing enzymes and transporters that control the rate and extent of drugs reaching the brain parenchyma via transcellular pathway. The emergence of new quantitative proteomic approaches allows quantifying these transporters and enzymes at the BBB, opening the way to identify new drugs that may be targeted to the brain.
Collapse
Affiliation(s)
- Aude Jacob
- Universite Paris Descartes, Paris, France
| | | | | |
Collapse
|
18
|
Yousif S, Chaves C, Potin S, Margaill I, Scherrmann JM, Declèves X. Induction of P-glycoprotein and Bcrp at the rat blood-brain barrier following a subchronic morphine treatment is mediated through NMDA/COX-2 activation. J Neurochem 2012; 123:491-503. [PMID: 22845665 DOI: 10.1111/j.1471-4159.2012.07890.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 07/07/2012] [Accepted: 07/25/2012] [Indexed: 01/23/2023]
Abstract
Subchronic morphine treatment induces P-glycoprotein (P-gp) up-regulation at the blood-brain barrier. This study investigates the rate and extent to which P-gp and breast cancer-resistance protein (Bcrp) increase at the rat blood-brain barrier following subchronic morphine treatment. Rats were given increasing doses of morphine (10-40 mg/kg) or saline i.p. twice daily for 5 days. The brain cortex large vessels and microvessels were then mechanical isolated 6, 9, 12, 24, and 36 h after the last injection. The gene and protein expression of P-gp and Bcrp in morphine-treated and control rats were compared by qRT-PCR and western blotting. The levels of Mdr1a and Bcrp mRNAs were not significantly modified 6 h post morphine, but the Mdr1a mRNA increased 1.4-fold and Bcrp mRNA 2.4-fold at 24 h. P-gp and Bcrp protein expression in brain microvessels was unchanged 6 h post morphine and increased 1.5-fold at 24 h. This effect was more pronounced in large vessels than in microvessels. However, extracellular morphine concentrations of 0.01-10 μM did not modify the expressions of the MDR1 and BCRP genes in hCMEC/D3 human endothelial brain cells in vitro. MK-801 (NMDA antagonist) and meloxicam (cyclo-oxygenase-2 inhibitor) given after morphine treatment completely blocked P-gp and Bcrp up-regulation. Interestingly, misoprostol and iloprost, two well-known agonists of prostaglandin E2 receptors induced both MDR1 and BCRP mRNA levels in hCMEC/D3. Thus, morphine does not directly stimulate P-gp and Bcrp expression by the brain endothelium, but glutamate released during morphine withdrawal may do so by activating the NMDA/cyclo-oxygenase-2 cascade.
Collapse
Affiliation(s)
- Salah Yousif
- CNRS, UMR 8206, Neuropsychopharmacologie des addictions, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | | | | | | | | | | |
Collapse
|
19
|
Chen H, Chan BK, Drummond J, Estrada AA, Gunzner-Toste J, Liu X, Liu Y, Moffat J, Shore D, Sweeney ZK, Tran T, Wang S, Zhao G, Zhu H, Burdick DJ. Discovery of Selective LRRK2 Inhibitors Guided by Computational Analysis and Molecular Modeling. J Med Chem 2012; 55:5536-45. [DOI: 10.1021/jm300452p] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Huifen Chen
- Discovery
Chemistry Department, ‡Biochemical and Cellular Pharmacology Department, §Drug Metabolism and Pharmacokinetics
Department, and ∥Neuroscience Department, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Bryan K. Chan
- Discovery
Chemistry Department, ‡Biochemical and Cellular Pharmacology Department, §Drug Metabolism and Pharmacokinetics
Department, and ∥Neuroscience Department, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jason Drummond
- Discovery
Chemistry Department, ‡Biochemical and Cellular Pharmacology Department, §Drug Metabolism and Pharmacokinetics
Department, and ∥Neuroscience Department, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Anthony A. Estrada
- Discovery
Chemistry Department, ‡Biochemical and Cellular Pharmacology Department, §Drug Metabolism and Pharmacokinetics
Department, and ∥Neuroscience Department, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Janet Gunzner-Toste
- Discovery
Chemistry Department, ‡Biochemical and Cellular Pharmacology Department, §Drug Metabolism and Pharmacokinetics
Department, and ∥Neuroscience Department, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Xingrong Liu
- Discovery
Chemistry Department, ‡Biochemical and Cellular Pharmacology Department, §Drug Metabolism and Pharmacokinetics
Department, and ∥Neuroscience Department, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yichin Liu
- Discovery
Chemistry Department, ‡Biochemical and Cellular Pharmacology Department, §Drug Metabolism and Pharmacokinetics
Department, and ∥Neuroscience Department, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John Moffat
- Discovery
Chemistry Department, ‡Biochemical and Cellular Pharmacology Department, §Drug Metabolism and Pharmacokinetics
Department, and ∥Neuroscience Department, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel Shore
- Discovery
Chemistry Department, ‡Biochemical and Cellular Pharmacology Department, §Drug Metabolism and Pharmacokinetics
Department, and ∥Neuroscience Department, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Zachary K. Sweeney
- Discovery
Chemistry Department, ‡Biochemical and Cellular Pharmacology Department, §Drug Metabolism and Pharmacokinetics
Department, and ∥Neuroscience Department, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Thuy Tran
- Discovery
Chemistry Department, ‡Biochemical and Cellular Pharmacology Department, §Drug Metabolism and Pharmacokinetics
Department, and ∥Neuroscience Department, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shumei Wang
- Discovery
Chemistry Department, ‡Biochemical and Cellular Pharmacology Department, §Drug Metabolism and Pharmacokinetics
Department, and ∥Neuroscience Department, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Guiling Zhao
- Discovery
Chemistry Department, ‡Biochemical and Cellular Pharmacology Department, §Drug Metabolism and Pharmacokinetics
Department, and ∥Neuroscience Department, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Haitao Zhu
- Discovery
Chemistry Department, ‡Biochemical and Cellular Pharmacology Department, §Drug Metabolism and Pharmacokinetics
Department, and ∥Neuroscience Department, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel J. Burdick
- Discovery
Chemistry Department, ‡Biochemical and Cellular Pharmacology Department, §Drug Metabolism and Pharmacokinetics
Department, and ∥Neuroscience Department, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
20
|
Liu X, Ding X, Deshmukh G, Liederer BM, Hop CECA. Use of the cassette-dosing approach to assess brain penetration in drug discovery. Drug Metab Dispos 2012; 40:963-9. [PMID: 22328585 DOI: 10.1124/dmd.111.044420] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The objective of the present study was to examine the cassette dosing method in determination of brain-to-plasma concentration ratio (area under the concentration-time profiles for plasma/area under the concentration-time profiles for brain, K(p)). Eleven model compounds, amprenavir, citalopram, digoxin, elacridar, imatinib, (3S,6S,12aS)-1,2,3,4,6,7,12,12a-octahydro-9-methoxy-6-(2-methylpropyl)-1,4-dioxopyrazino[1',2':1,6]pyrido[3,4-b]indole-3-propanoic acid 1,1-dimethylethyl ester (Ko143), loperamide, prazosin, quinidine, sulfasalazine, and verapamil, were selected to compare their K(p) determined from discrete dosing in wild-type mice and their K(p) from cassette dosing in wild-type, Mdr1a/1b(-/-), Bcrp1(-/-), and Mdr1a/1b(-/-)/Bcrp1(-/-) mice at 1 to 3 mg/kg. The mice brain and plasma were collected at 0.25, 1, and 3 h and were analyzed using high-performance liquid chromatography-tandem mass spectrometry methods. The K(p) determined from discrete dosing versus cassette dosing in the wild-type mice were within 2-fold for all the compounds except sulfasalazine and Ko143. The brain concentrations of sulfasalazine and Ko143 and the plasma concentrations of Ko143 were below the lower limit of quantitation. In addition, the K(p) values estimated by mass spectrometry responses, namely the ratio of compound peak area to internal standard peak area, were within 2-fold of the K(p) observed from the actual concentrations. Furthermore, the ratios of K(p) in Mdr1a/1b(-/-), Bcrp1(-/-), and Mdr1a/1b(-/-)/Bcrp1(-/-) mice versus the K(p) in the wild-type mice from cassette dosing were consistent with the ones reported in the literature where the compounds were dosed discretely. These results demonstrate that drug-drug interactions at the blood-brain barrier are unlikely at a subcutaneous dose of 1 to 3 mg/kg and support the use of the cassette dosing approach to assess brain penetration in drug discovery.
Collapse
Affiliation(s)
- Xingrong Liu
- Genentech, Inc., MS 41-2A, 1 DNA Way, South San Francisco, CA 94080, USA.
| | | | | | | | | |
Collapse
|
21
|
Fauquette W, Amourette C, Dehouck MP, Diserbo M. Radiation-induced blood–brain barrier damages: An in vitro study. Brain Res 2012; 1433:114-26. [DOI: 10.1016/j.brainres.2011.11.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 10/13/2011] [Accepted: 11/08/2011] [Indexed: 11/29/2022]
|
22
|
Abstract
ATP-binding cassette (ABC) transporters form a large family of transmembrane proteins that facilitate the transport of specific substrates across membranes in an ATP-dependent manner. Transported substrates include lipids, lipopolysaccharides, amino acids, peptides, proteins, inorganic ions, sugars and xenobiotics. Despite this broad array of substrates, the physiological substrate of many ABC transporters has remained elusive. ABC transporters are divided into seven subfamilies, A-G, based on sequence similarity and domain organization. Here we review the role of members of the ABCG subfamily in human disease and how the identification of disease genes helped to determine physiological substrates for specific ABC transporters. We focus on the recent discovery of mutations in ABCG2 causing hyperuricemia and gout, which has led to the identification of urate as a physiological substrate for ABCG2.
Collapse
Affiliation(s)
- Owen M Woodward
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
23
|
Interaction of drugs of abuse and maintenance treatments with human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2). Int J Neuropsychopharmacol 2010; 13:905-15. [PMID: 19887017 DOI: 10.1017/s1461145709990848] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Drug interaction with P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) may influence its tissue disposition including blood-brain barrier transport and result in potent drug-drug interactions. The limited data obtained using in-vitro models indicate that methadone, buprenorphine, and cannabinoids may interact with human P-gp; but almost nothing is known about drugs of abuse and BCRP. We used in vitro P-gp and BCRP inhibition flow cytometric assays with hMDR1- and hBCRP-transfected HEK293 cells to test 14 compounds or metabolites frequently involved in addiction, including buprenorphine, norbuprenorphine, methadone, ibogaine, cocaine, cocaethylene, amphetamine, N-methyl-3,4-methylenedioxyamphetamine, 3,4-methylenedioxyamphetamine, nicotine, ketamine, Delta9-tetrahydrocannabinol (THC), naloxone, and morphine. Drugs that in vitro inhibited P-gp or BCRP were tested in hMDR1- and hBCRP-MDCKII bidirectional transport studies. Human P-gp was significantly inhibited in a concentration-dependent manner by norbuprenorphine>buprenorphine>methadone>ibogaine and THC. Similarly, BCRP was inhibited by buprenorphine>norbuprenorphine>ibogaine and THC. None of the other tested compounds inhibited either transporter, even at high concentration (100 microm). Norbuprenorphine (transport efflux ratio approoximately 11) and methadone (transport efflux ratio approoximately 1.9) transport was P-gp-mediated; however, with no significant stereo-selectivity regarding methadone enantiomers. BCRP did not transport any of the tested compounds. However, the clinical significance of the interaction of norbuprenorphine with P-gp remains to be evaluated.
Collapse
|
24
|
Stamatovic SM, Keep RF, Andjelkovic AV. Brain endothelial cell-cell junctions: how to "open" the blood brain barrier. Curr Neuropharmacol 2010; 6:179-92. [PMID: 19506719 PMCID: PMC2687937 DOI: 10.2174/157015908785777210] [Citation(s) in RCA: 363] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 03/10/2008] [Accepted: 04/02/2008] [Indexed: 01/19/2023] Open
Abstract
The blood-brain barrier (BBB) is a highly specialized structural and biochemical barrier that regulates the entry of blood-borne molecules into brain, and preserves ionic homeostasis within the brain microenvironment. BBB properties are primarily determined by junctional complexes between the cerebral endothelial cells. These complexes are comprised of tight and adherens junctions. Such restrictive angioarchitecture at the BBB reduces paracellular diffusion, while minimal vesicle transport activity in brain endothelial cells limits transcellular transport. Under normal conditions, this largely prevents the extravasation of large and small solutes (unless specific transporters are present) and prevents migration of any type of blood-borne cell. However, this is changed in many pathological conditions. There, BBB disruption (“opening”) can lead to increased paracellular permeability, allowing entry of leukocytes into brain tissue, but also contributing to edema formation. In parallel, there are changes in the endothelial pinocytotic vesicular system resulting in the uptake and transfer of fluid and macromolecules into brain parenchyma. This review highlights the route and possible factors involved in BBB disruption in a variety of neuropathological disorders (e.g. CNS inflammation, Alzheimer’s disease, Parkinson’s disease, epilepsy). It also summarizes proposed signal transduction pathways that may be involved in BBB “opening”.
Collapse
|
25
|
Zhang H, Song YN, Liu WG, Guo XL, Yu LG. Regulation and role of organic anion-transporting polypeptides (OATPs) in drug delivery at the choroid plexus. J Clin Neurosci 2010; 17:679-84. [DOI: 10.1016/j.jocn.2009.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 09/28/2009] [Accepted: 11/10/2009] [Indexed: 11/25/2022]
|
26
|
Choong E, Dobrinas M, Carrupt PA, Eap CB. The permeability P-glycoprotein: a focus on enantioselectivity and brain distribution. Expert Opin Drug Metab Toxicol 2010; 6:953-65. [DOI: 10.1517/17425251003789394] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Ek CJ, Wong A, Liddelow SA, Johansson PA, Dziegielewska KM, Saunders NR. Efflux mechanisms at the developing brain barriers: ABC-transporters in the fetal and postnatal rat. Toxicol Lett 2010; 197:51-9. [PMID: 20466047 DOI: 10.1016/j.toxlet.2010.04.025] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 11/29/2022]
Abstract
Proteins of the ATP-binding cassette (ABC) family, present at the blood-brain barrier interfaces, have been shown to reduce the entry of compounds from blood into the brain by active efflux. Their substrates are diverse including many drugs and toxins and therefore provide an important mechanism for brain neuroprotection. However, knowledge of their presence and function in the developing brain is very limited. We have used qPCR and immunocytochemistry to determine gene expression and localisation of four main barrier ABC-transporters (pgp/ABCB1, MRP1/ABCC1, MRP4/ABCC4 and BCRP/ABCG2) in the fetal and neonatal rat brain cerebral blood vessels (site of blood-brain barrier) and choroid plexus (site of blood-CSF barrier). The study shows that ABC-transporters localise to the brain barriers even at early fetal stages and although pgp expression was lower in the fetus, the other transporters were expressed at comparable levels in fetal and adult brains suggesting direct neuroprotection of the brain in addition to that provided by the placenta. BCRP was expressed at higher levels in developing choroid plexus and was only detected at fetal stages on the blood-facing side of epithelial cells indicating a particular role of this transporter for early brain efflux mechanisms.
Collapse
Affiliation(s)
- C Joakim Ek
- Department of Pharmacology, University of Melbourne, Parkville, Australia.
| | | | | | | | | | | |
Collapse
|
28
|
Kodaira H, Kusuhara H, Ushiki J, Fuse E, Sugiyama Y. Kinetic Analysis of the Cooperation of P-Glycoprotein (P-gp/Abcb1) and Breast Cancer Resistance Protein (Bcrp/Abcg2) in Limiting the Brain and Testis Penetration of Erlotinib, Flavopiridol, and Mitoxantrone. J Pharmacol Exp Ther 2010; 333:788-96. [DOI: 10.1124/jpet.109.162321] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
29
|
Vautier S, Fernandez C. ABCB1: the role in Parkinson's disease and pharmacokinetics of antiparkinsonian drugs. Expert Opin Drug Metab Toxicol 2010; 5:1349-58. [PMID: 19663741 DOI: 10.1517/17425250903193079] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ABCB1/P-glycoprotein (P-gp) is an ATP-dependant transmembrane efflux protein widely expressed in human organs and plays a protective role against endogenous and exogenous substances. It is involved in drug pharmacokinetics affecting drug absorption, disposition and elimination. At the BBB level, due to its luminal localisation, ABCB1 limits drug transport and is important in central detoxification. Inter-individual variability has been described in ABCB1 expression and functionality. Recent work suggests that variability may play a role in the pathogenesis of neurological diseases. Furthermore, ABCB1 expression and/or functionality may modify drug efficacy or increase central adverse events. This paper reviews ABCB1 implication in the pathophysiology of Parkinson's disease and its role in the cerebral distribution of drugs.
Collapse
Affiliation(s)
- Sarah Vautier
- University Paris-Sud XI, Department of Clinical Pharmacy, Chatenay-Malabry, France.
| | | |
Collapse
|
30
|
Tournier N, André P, Blondeel S, Rizzo-Padoin N, du Moulinet d'Hardemarre A, Declèves X, Scherrmann JM, Cisternino S. Ibogaine labeling with 99mTc-tricarbonyl: Synthesis and transport at the mouse blood–brain barrier. J Pharm Sci 2009; 98:4650-60. [DOI: 10.1002/jps.21771] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Kusuhara H, Sugiyama Y. In vitro-in vivo extrapolation of transporter-mediated clearance in the liver and kidney. Drug Metab Pharmacokinet 2009; 24:37-52. [PMID: 19252335 DOI: 10.2133/dmpk.24.37] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Transporters govern drug movement into and out of tissues, thereby playing an important role in drug disposition in plasma and to the site of action. The molecular cloning of such transporters has clarified the importance of members of the solute carrier family, such as OATP/SLCO, OCT/SLC22, OAT/SLC22, and MATE/SLC47, and the ATP-binding cassette transporters, such as P-glycoprotein/ABCB1, MRPs/ABCC, and BCRP/ABCG2. Elucidation of molecular characteristics of transporters has allowed the identification of transporters as mechanisms for drug-drug interactions, and of interindividual differences in drug dispositions and responses. Cumulative studies have highlighted the cooperative roles of uptake transporters and metabolic enzymes/efflux transporters. In this way, the concept of a rate-limiting process in hepatic/renal elimination across epithelial cells has developed. This review illustrates the concept of the rate-limiting step in the hepatic elimination mediated by transporters, and describes the prediction of the in vivo pharmacokinetics of drugs whose disposition is determined by transporters, based on in vitro experiments using pravastatin as an example. This review also illustrates the transporters regulating the peripheral drug concentrations.
Collapse
|
32
|
Zhou L, Schmidt K, Nelson FR, Zelesky V, Troutman MD, Feng B. The effect of breast cancer resistance protein and P-glycoprotein on the brain penetration of flavopiridol, imatinib mesylate (Gleevec), prazosin, and 2-methoxy-3-(4-(2-(5-methyl-2-phenyloxazol-4-yl)ethoxy)phenyl)propanoic acid (PF-407288) in mice. Drug Metab Dispos 2009; 37:946-55. [PMID: 19225039 DOI: 10.1124/dmd.108.024489] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of breast cancer resistance protein (Bcrp) and the combined activities of Bcrp and P-glycoprotein (P-gp, Mdr1a/1b) in limiting the brain penetration of drugs at the blood-brain barrier (BBB) were investigated using wild-type FVB, Mdr1a/1b(-/-), (-/-), Bcrp(-/-), and Mdr1a/1b(-/-), (-/-)Bcrp(-/-) mice. Four drugs, flavopiridol, imatinib mesylate (Gleevec), PF-407288, and prazosin, with different transport specificity for BCRP/Bcrp and MDR1/Mdr1a were selected, and the drug levels in plasma, cerebrospinal fluid, and brain of mice were determined. Flavopiridol and prazosin were identified as substrates for both mouse Bcrp and Mdr1a with greater transport associated with Bcrp. The brain/plasma (B/P) ratios at 0.5 and 2 h in Mdr1a/1b(-/-), (-/-) and Bcrp(-/-) mice were 1- to 2-fold for both compounds, whereas the ratios in Mdr1a/1b(-/-), (-/-)Bcrp(-/-) mice were more than 5-fold of those observed in FVB mice. For imatinib, a better substrate of P-gp than Bcrp, the B/P ratios in Bcrp(-/-) were comparable to those in FVB mice, whereas the B/P ratios in Mdr1a/1b(-/-), (-/-) and Mdr1a/1b(-/-), (-/-)Bcrp(-/-) mice were more than 4- and 28-fold of those in FVB mice at both time points, respectively. Finally, the Bcrp-specific substrate PF-407288 exhibited comparable B/P ratios in Mdr1a/1b(-/-), (-/-) and Bcrp(-/-) mice and slightly but significantly increased B/P ratios in Mdr1a/1b(-/-), (-/-)Bcrp(-/-) mice compared with those in FVB mice. The B/P ratios of compounds in Mdr1a/1b(-/-), (-/-)Bcrp(-/-) mice compared with those in Mdr1a/1b(-/-), (-/-) mice clearly demonstrate that Bcrp impairs the brain penetration of its substrates. Moreover, P-gp and Bcrp at BBB function synergistically to limit the brain penetration of shared substrates.
Collapse
Affiliation(s)
- Lin Zhou
- Pfizer Inc., Eastern Point Road, MS 8118W-131, Groton, CT 06340, USA
| | | | | | | | | | | |
Collapse
|
33
|
Dauchy S, Dutheil F, Weaver RJ, Chassoux F, Daumas-Duport C, Couraud PO, Scherrmann JM, De Waziers I, Declèves X. ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood-brain barrier. J Neurochem 2008; 107:1518-28. [DOI: 10.1111/j.1471-4159.2008.05720.x] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Dauchy S, Miller F, Couraud PO, Weaver RJ, Weksler B, Romero IA, Scherrmann JM, De Waziers I, Declèves X. Expression and transcriptional regulation of ABC transporters and cytochromes P450 in hCMEC/D3 human cerebral microvascular endothelial cells. Biochem Pharmacol 2008; 77:897-909. [PMID: 19041851 DOI: 10.1016/j.bcp.2008.11.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 11/02/2008] [Accepted: 11/04/2008] [Indexed: 11/26/2022]
Abstract
We investigated the expression of genes encoding ABC transporters, cytochromes P450 (CYPs) and some transcription factors in the hCMEC/D3 immortalized human cerebral microvascular endothelial cell line, a promising in vitro model of the human BBB, and we compared these expressions to a non-brain endothelial cell line (HUVEC) and freshly human brain microvessels. qRT-PCR showed that the MDR1, BCRP, MRP1, MRP3, MRP4 and MRP5 genes were expressed and that the main CYP gene was CYP2U1 in hCMEC/D3. The pattern of ABC and CYPs gene expression in hCMEC/D3 differed from HUVEC which did not express MDR1. Moreover, expression of P-gp and BCRP was lower in hCMEC/D3 than in human brain microvessels but remain functional as shown by rhodamine 123 efflux assay. The gene encoding the aryl hydrocarbon receptor (AhR), a transcription factor that regulates the expression of some ABC and CYPs was highly expressed in hCMEC/D3 and HUVEC, while the pregnane-X-receptor (PXR) and the constitutive androstane receptor (CAR) were barely detected. We investigated the function of the AhR-mediated regulatory pathway in hCMEC/D3 by treating them with the AhR agonist TCDD. The expressions of two AhR-target genes, CYP1A1 and CYP1B1, were increased 26-fold and 28-fold. But the expressions of ABC transporter genes were not significantly altered. We have thus determined the pattern of expression of the genes encoding ABC transporters, CYPs and three transcription factors in hCMEC/D3 and shown that the AhR pathway might afford an original functional transport and metabolic pattern in cerebral endothelial cells that is different from other peripheral endothelial cells.
Collapse
Affiliation(s)
- Sandrine Dauchy
- Neuropsychopharmacologie des addictions (CNRS UMR 7157), Université Paris Descartes, Faculté de Pharmacie, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Response of the ABCG2 promoter in T47D cells and BeWo cells to sex hormone treatment. Mol Biol Rep 2008; 36:1889-96. [PMID: 18991020 DOI: 10.1007/s11033-008-9395-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 10/17/2008] [Indexed: 10/21/2022]
Abstract
The aim of this study was to elucidate the effects of sex hormones on activity of the ABCG2 promoter in different cell lines. T47D cells and BeWo cells were used as models for ABCG2-expressing cell lines, and luciferase assays using ABCG2 promoter-luciferase constructs were performed. It was shown that progesterone increased the response of the ABCG2 promoter in T47D cells but not in BeWo cells. On the other hand, estradiol had no effect on response of the ABCG2 promoter in either cell line. However, response of the ABCG2 promoter was enhanced by overexpression of ERalpha in both T47D cells and BeWo cells. T47D cells had higher sensitivity to ERalpha than did BeWo cells. Furthermore, it was shown that the inductive effect of progesterone on the ABCG2 promoter was inhibited by addition of RU486 or mithramycin A. Therefore, it was thought that the ABCG2 promoter responded to stimulation of the progesterone receptor (PR)-Sp1 pathway in T47D cells. Furthermore, progesterone suppressed the response of the ABCG2 promoter by changing the expression levels of PR-A and PR-B in BeWo cells. These findings suggested that there are differences between cell lines in the regulation mechanism of ABCG2 expression by sex hormone treatment.
Collapse
|
36
|
Reimold I, Domke D, Bender J, Seyfried CA, Radunz HE, Fricker G. Delivery of nanoparticles to the brain detected by fluorescence microscopy. Eur J Pharm Biopharm 2008; 70:627-32. [DOI: 10.1016/j.ejpb.2008.05.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 04/23/2008] [Accepted: 05/07/2008] [Indexed: 11/26/2022]
|
37
|
Yousif S, Saubaméa B, Cisternino S, Marie-Claire C, Dauchy S, Scherrmann JM, Declèves X. Effect of chronic exposure to morphine on the rat blood-brain barrier: focus on the P-glycoprotein. J Neurochem 2008; 107:647-57. [PMID: 18761714 DOI: 10.1111/j.1471-4159.2008.05647.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Morphine may affect the properties of the blood-brain barrier (BBB) by modifying the expression of certain BBB markers. We have determined the effect of chronic morphine treatment on the expression and function of some BBB markers in the rat. The mRNAs of 19 selected genes encoding caveolins, endothelial transporters, receptors and tight junctions proteins in the total RNA of isolated cortex microvessels were assayed by quantitative RT-PCR (qRT-PCR). The expression of genes Mdr1a, Mrp1, Bcrp, Glut-1 and Occludin, was slightly increased, while that of Flk-1 was decreased in microvessels from morphine-treated rats. The expression of the Mrd1a and Mdr1b genes encoding the P-glycoprotein (P-gp) also increased in the whole hippocampus and cortex of morphine-treated rats. The Mdr1a gene induction (1.38-fold) observed by qRT-PCR was also confirmed using in situ hybridization technique (1.40-fold). Immunoblotting revealed an increase in P-gp expression in the hippocampus (1.8-fold) and cortex (1.36-fold) of morphine-treated rats, but no effect in isolated microvessels. In contrast, morphine treatment increased by 1.48-fold the expression of P-gp in a large vessel-enriched fraction. The integrity of the BBB, measured by in situ brain perfusion of [(14)C]-sucrose, and the activity of P-gp at the BBB, measured with the P-gp substrate [(3)H]-colchicine, were not modified by morphine. Immunohistofluorescence experiments revealed that P-gp expression is restricted to large vessels and microvessels in control rats and that morphine treatment did not induce the expression of P-gp in the brain parenchyma (astrocytes or neurons). Taken together, our results showed that chronic morphine treatment does not significantly alter BBB integrity or P-gp activity. The impact of morphine-mediated P-gp induction observed in large vessels remains to be determined in terms of brain disposition of drugs that are P-gp substrates.
Collapse
Affiliation(s)
- Salah Yousif
- CNRS, UMR 7157 et Université Paris 7, Neuropsychopharmacologie des addictions, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Eilers M, Roy U, Mondal D. MRP (ABCC) transporters-mediated efflux of anti-HIV drugs, saquinavir and zidovudine, from human endothelial cells. Exp Biol Med (Maywood) 2008; 233:1149-60. [PMID: 18535159 DOI: 10.3181/0802-rm-59] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The constituents of highly active anti-retroviral therapy (HAART) include HIV-1 protease inhibitors (HPIs) and nucleoside reverse transcriptase inhibitors (NRTIs). Endothelial cell (EC) barriers, especially the blood-brain-barrier (BBB) suppresses the entry of HAART drugs to subendothelial HIV-1 reservoirs. The ATP binding cassette (ABC) transporter family members, multidrug resistant-1 (MDR-1) and multidrug resistance-associated proteins (MRPs) can efflux both HPIs and NRTIs from intracellular compartments. Using brain derived ECs from non-human sources, previous studies suggested a dominant role for MDR-1 in HAART efflux from the BBB. However, due to species variations in ABC-transporter expression, drug-efflux functions using human brain ECs need to be investigated. Furthermore, roles of ABC-transporters in drug-efflux from systemic EC barriers need to be studied. We monitored the expression of ABC-transporters in primary human ECs obtained from brain (HBMVECs), aorta (HAECs), pulmonary-artery (HPAECs), dermal-microvessel (HDMVECs) and umbilical vein (HUVECs). Gene expression for MDR-1 and MRPs (MRP-1 to MRP-5) were analyzed by reverse transcriptase polymerase chain reaction (RT-PCR). Drug efflux functions were determined by calcein retention assays. Intracellular accumulation of both 3H-saquinavir (an HPI) and 3H-zidovudine (an NRTI) were also monitored in HAECs and HBMVECs. Both assays were carried out in presence of verapamil (20-60 microM) or MK-571 (12.5-50 microM) inhibitors of MDR-1 and MRPs, respectively in presence of verapamil or MK-571. The HBMVECs expressed higher levels of MRPs than MDR-1 and only MK-571 significantly (P<0.01) suppressed calcein efflux from these cells. However, both HAECs and HPAECs showed MDR-1 and MRP expression and calcein efflux was inhibited by both verapamil and MK-571. Both inhibitors suppressed 3H-saqubinavir efflux from HAECs, but only MK-571 suppressed saquinavir efflux from HBMVECs. In both ECs, 3H-zidovudine efflux was only suppressed by MK-571. Thus, primary human ECs, especially brain derived ECs, predominantly express MRPs and their specific inhibition may enhance HAART efficacy in subendothelial HIV-1 reservoirs.
Collapse
Affiliation(s)
- Mark Eilers
- Department of Pharmacology, Tulane University Health Sciences Center, 1430 Tulane Avenue, SL-83, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
39
|
Enokizono J, Kusuhara H, Ose A, Schinkel AH, Sugiyama Y. Quantitative investigation of the role of breast cancer resistance protein (Bcrp/Abcg2) in limiting brain and testis penetration of xenobiotic compounds. Drug Metab Dispos 2008; 36:995-1002. [PMID: 18322075 DOI: 10.1124/dmd.107.019257] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The role of breast cancer resistance protein (BCRP/ABCG2) in limiting the brain and testis penetration of xenobiotic compounds in the blood-brain and -testis barriers was investigated using Bcrp(-/-) mice. Tissue/plasma concentration ratios in the brain (K(p,brain)) and testis (K(p,testis)) obtained under steady-state conditions were significantly increased in Bcrp(-/-) mice for PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine), N-hydroxyl PhIP, MeIQx (2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline), dantrolene, and prazosin. In addition, the K(p,brain) of triamterene and the K(p,testis) of 4'-hydroxyl PhIP were also significantly increased in Bcrp(-/-) mice. The effect of functional impairment of Bcrp on the brain uptake of PhIP, dantrolene, and daidzein in Bcrp(-/-) mice determined using in situ brain perfusion was weaker than that observed on the K(p) values. In vitro transcellular transport experiments using cell lines expressing mouse Bcrp or P-glycoprotein (Mdr1a/Abcb1a) showed that, among the tested Bcrp substrates, PhIP, MeIQx, prazosin, and triamterene are common substrates of Bcrp and P-glycoprotein. The K(p) values of common substrates exhibited a smaller increase both in the brain and testis of Bcrp(-/-) mice than expected from the in vitro Bcrp activities. The Bcrp-specific substrates were weak acids, whereas basic or neutral BCRP substrates were also P-glycoprotein substrates. These results suggest that BCRP limits the tissue penetration of xenobiotic compounds in the blood-brain and -testis barriers, but its in vivo importance is also modulated by P-glycoprotein activity.
Collapse
Affiliation(s)
- Junichi Enokizono
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
40
|
Hammarlund-Udenaes M, Fridén M, Syvänen S, Gupta A. On the rate and extent of drug delivery to the brain. Pharm Res 2007; 25:1737-50. [PMID: 18058202 PMCID: PMC2469271 DOI: 10.1007/s11095-007-9502-2] [Citation(s) in RCA: 340] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 11/12/2007] [Indexed: 12/01/2022]
Abstract
To define and differentiate relevant aspects of blood–brain barrier transport and distribution in order to aid research methodology in brain drug delivery. Pharmacokinetic parameters relative to the rate and extent of brain drug delivery are described and illustrated with relevant data, with special emphasis on the unbound, pharmacologically active drug molecule. Drug delivery to the brain can be comprehensively described using three parameters: Kp,uu (concentration ratio of unbound drug in brain to blood), CLin (permeability clearance into the brain), and Vu,brain (intra-brain distribution). The permeability of the blood–brain barrier is less relevant to drug action within the CNS than the extent of drug delivery, as most drugs are administered on a continuous (repeated) basis. Kp,uu can differ between CNS-active drugs by a factor of up to 150-fold. This range is much smaller than that for log BB ratios (Kp), which can differ by up to at least 2,000-fold, or for BBB permeabilities, which span an even larger range (up to at least 20,000-fold difference). Methods that measure the three parameters Kp,uu, CLin, and Vu,brain can give clinically valuable estimates of brain drug delivery in early drug discovery programmes.
Collapse
Affiliation(s)
- Margareta Hammarlund-Udenaes
- Division of Pharmacokinetics and Drug Therapy, Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, 751 24 Uppsala, Sweden.
| | | | | | | |
Collapse
|
41
|
Köck K, Grube M, Jedlitschky G, Oevermann L, Siegmund W, Ritter CA, Kroemer HK. Expression of adenosine triphosphate-binding cassette (ABC) drug transporters in peripheral blood cells: relevance for physiology and pharmacotherapy. Clin Pharmacokinet 2007; 46:449-70. [PMID: 17518506 DOI: 10.2165/00003088-200746060-00001] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adenosine triphosphate-binding cassette (ABC)-type transport proteins were initially described for their ability to reduce intracellular concentrations of anticancer compounds, thereby conferring drug resistance. In recent years, expression of this type of proteins has also been reported in numerous cell types under physiological conditions; here, these transporters are often reported to alter systemic and local drug disposition (e.g. in the brain or the gastrointestinal tract). In this context, peripheral blood cells have also been found to express several ABC-type transporters. While erythrocytes mainly express multidrug resistance protein (MRP) 1, MRP4 and MRP5, which are discussed with regard to their involvement in glutathione homeostasis (MRP1) and in the efflux of cyclic nucleotides (MRP4 and MRP5), leukocytes also express P-glycoprotein and breast cancer resistance protein. In the latter cell types, the main function of efflux transporters may be protection against toxins, as these cells demonstrate a very high turnover rate. In platelets, only two ABC transporters have been described so far. Besides MRP1, platelets express relatively high amounts of MRP4 not only in the plasma membrane but also in the membrane of dense granules, suggesting relevance for mediator storage. In addition to its physiological function, ABC transporter expression in these structures can be of pharmacological relevance since all systemic drugs reach their targets via circulation, thereby enabling interaction of the therapeutic agent with peripheral blood cells. Moreover, both intended effects and unwanted side effects occur in peripheral blood cells, and intracellular micropharmacokinetics can be affected by these transport proteins. The present review summarises the data available on expression of ABC transport proteins in peripheral blood cells.
Collapse
Affiliation(s)
- Kathleen Köck
- Department of Pharmacology, Research Center of Pharmacology and Experimental Therapeutics, Ernst Moritz Arndt University, Greifswald, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Cecchelli R, Berezowski V, Lundquist S, Culot M, Renftel M, Dehouck MP, Fenart L. Modelling of the blood–brain barrier in drug discovery and development. Nat Rev Drug Discov 2007; 6:650-61. [PMID: 17667956 DOI: 10.1038/nrd2368] [Citation(s) in RCA: 435] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The market for neuropharmaceuticals is potentially one of the largest sectors of the global pharmaceutical market owing to the increase in average life expectancy and the fact that many neurological disorders have been largely refractory to pharmacotherapy. The brain is a delicate organ that can efficiently protect itself from harmful compounds and precisely regulate its microenvironment. Unfortunately, the same mechanisms can also prove to be formidable hurdles in drug development. An improved understanding of the regulatory interfaces that exist between blood and brain may provide novel and more effective strategies to treat neurological disorders.
Collapse
Affiliation(s)
- Romeo Cecchelli
- Laboratoire de physiopathologie de la barrière hémato-encéphalique E.A.2465, IMPRT IFR-114, Université d'Artois, Faculté Jean Perrin, 62307 Lens, France.
| | | | | | | | | | | | | |
Collapse
|
43
|
Perrière N, Yousif S, Cazaubon S, Chaverot N, Bourasset F, Cisternino S, Declèves X, Hori S, Terasaki T, Deli M, Scherrmann JM, Temsamani J, Roux F, Couraud PO. A functional in vitro model of rat blood-brain barrier for molecular analysis of efflux transporters. Brain Res 2007; 1150:1-13. [PMID: 17434463 DOI: 10.1016/j.brainres.2007.02.091] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 02/09/2007] [Accepted: 02/11/2007] [Indexed: 11/15/2022]
Abstract
Physiological studies of the blood-brain barrier (BBB) are often performed in rats. We describe the functional characterization of a reproducible in vitro model of the rat BBB and its validation for investigating mechanisms involved in BBB regulation. Puromycin-purified primary cultures of brain endothelial cells, co-cultured with astrocytes in the presence of hydrocortisone (HC) and cAMP, presented low sucrose permeability (< or =0.1 x 10(-3) cm/min) and high transendothelial electrical resistance (> or =270 Omega cm(2)). Expression of specific BBB markers and their transcripts was detected by immunostaining and RT-PCR, respectively: tight junction proteins (claudin-3 and -5, ZO-1 and occludin) and transporters (P-gp, Bcrp and Oatp-2). RT-PCR experiments demonstrated a role of treatment by astrocytes, HC and cAMP in regulation of the transcript level of tight junction proteins (claudin-5 and ZO-1) as well as transporters (Mdr1a, Mrp3, Mrp4, Bcrp, Glut-1), while transcript level of Mdr1b was significantly decreased. The functionality of efflux pumps (P-gp, Mrps and Bcrp) was demonstrated in the presence of specific inhibitors (PSC833, MK571 or Ko143, respectively) by (i) assessing the uptake of the common substrates rhodamine 123 and daunorubicin and (ii) evaluating apical to basolateral and basolateral to apical polarized transport of daunorubicin. In addition, a good correlation (R=0.94) was obtained between the permeability coefficients of a series of compounds of various lipophilicity and their corresponding in vivo rodent blood-brain transfer coefficients. Taken together, our results provide compelling evidence that puromycin-purified rat brain endothelial cells constitute a reliable model of the rat BBB for physiological and pharmacological characterization of BBB transporters.
Collapse
Affiliation(s)
- Nicolas Perrière
- Institut Cochin, Département Biologie Cellulaire, Paris 75014, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Saengkhae C, Salerno M, Adès D, Siove A, Le Moyec L, Migonney V, Garnier-Suillerot A. Ability of carbazole salts, inhibitors of Alzheimer beta-amyloid fibril formation, to cross cellular membranes. Eur J Pharmacol 2007; 559:124-31. [PMID: 17291491 DOI: 10.1016/j.ejphar.2007.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 01/03/2007] [Accepted: 01/08/2007] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease is characterized by the presence of beta-amyloid fibril formation. The inhibition of this peptide accumulation may be a prevention method for Alzheimer's disease. Several classes of molecules have been reported to inhibit beta-amyloid fibril formation and among them carbazoles. However, very few studies have been performed to determine the destination of such molecules in vivo and especially if they can pass the blood brain barrier. The aim of this paper is to study whether carbazoles could pass the blood brain barrier, i.e. if they can circumvent ATP Binding Cassette (ABC) transporters such as P-glycoprotein (P-gp) and Multidrug Resistance-associated protein (MRP1) which efficiently limit drug brain uptake. For this purpose we have synthesized a fluorescent derivative of carbazole benzothiazolium iodide 1,2 disubstituted ethylene (referred as carbazole thiazole: CT), which can be easily detected and followed in the pre-trial study phases in cells or in tissue. We use cellular models overexpressing P-gp and MRP1. Our results show that: i) CT is able to cross membranes and to penetrate rapidly inside the cells, ii) CT is a P-gp substrate and consequently its accumulation in P-gp overexpressing cells is very low, iii) CT is a poor MRP1 substrate. In addition once inside the cells, CT rapidly binds to DNA and is then slowly reduced by intracellular reducing agents. In conclusion, the efficiency of carbazole derivatives in inhibiting the beta-amyloid formation in vivo could be highly compromised because, as P-gp substrates, they will probably not cross the blood brain barrier.
Collapse
Affiliation(s)
- Chantarawan Saengkhae
- Laboratoire de Biophysique Moléculaire, Cellulaire et Tissulaire, UMR CNRS 7033, Université Paris 13 et Paris 6, 74 rue Marcel Cachin, 93017 Bobigny, France
| | | | | | | | | | | | | |
Collapse
|