1
|
Atta AH, Atta SA, Khattab MS, El-Aziz THA, Mouneir SM, Ibrahim MA, Nasr SM, Emam SR. Ceratonia siliqua pods (Carob) methanol extract alleviates doxorubicin-induced nephrotoxicity via antioxidant, anti-inflammatory and anti-apoptotic pathways in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83421-83438. [PMID: 37341944 PMCID: PMC10359411 DOI: 10.1007/s11356-023-28146-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023]
Abstract
Doxorubicin (DOX) is an anti-neoplastic therapy, but its use is limited by its deleterious toxic effects including nephrotoxicity and cardiotoxicity. This work aimed at assessing the potential protective effect of Ceratonia siliqua methanol extract (CME) on DOX-induced nephrotoxicity in 5 groups of Wistar rats. Nephrotoxicity was induced experimentally by intraperitoneal (IP) injection of DOX (15 mg/kg). DOX increased serum creatinine, urea, sodium, and potassium levels. It elevated MDA levels in the renal tissue but decreased the concentration of GSH and the activity of GST, CAT, and SOD. Meanwhile, it decreased the level of immunomodulatory anti-inflammatory mediators: IL-10 and TGF-β, as well as the activity of MPO but increased the level of IL-6, TNF-α, and caspase-3 in the renal tissue. DOX has upregulated COX-2, caspase-9, and Bax gene expression and downregulated the Bcl-2 gene expression. Immunolabeling of renal tubular epithelium in DOX-intoxicated rats was moderate to strong against Bax, COX-2, and NF-kβ and weak against Bcl-2. Treatment with CME significantly restored the levels of kidney function parameters and the levels of oxidative stress markers. It stimulated the production of IL-10 and TGF-β and decreased the level of IL-6 and TNF-α. CME reverted the gene expression of COX-2, caspase-9, and Bax. Microscopically, CME alleviated the DOX-induced renal damage. Phytochemical analysis revealed the presence of 26 compounds in the CME. No signs of acute toxicity were recorded by CME up to 4000 mg/kg b. wt. orally into mice. Finally, CME could effectively alleviate the deleterious effects of DOX on the kidney. The safety of carob extract encourages its use in the preparation of valuable therapeutic agents.
Collapse
Affiliation(s)
- Attia H. Atta
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 1211 Egypt
| | - Shimaa A. Atta
- Immunology Department, Theodor Belharz Research Institute, Giza, 12411 Egypt
| | - Marwa S. Khattab
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 1211 Egypt
| | - Tamer H. Abd El-Aziz
- Department of Parasitology and Animal Diseases, National Research Centre, 33 Bohouth St, DokkiGiza, 12622 Egypt
| | - Samar M. Mouneir
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 1211 Egypt
| | - Marwa A. Ibrahim
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 1211 Egypt
| | - Soad M. Nasr
- Department of Parasitology and Animal Diseases, National Research Centre, 33 Bohouth St, DokkiGiza, 12622 Egypt
| | - Shimaa R. Emam
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 1211 Egypt
| |
Collapse
|
2
|
Flavonoids of Haloxylon salicornicum (Rimth) prevent cisplatin-induced acute kidney injury by modulating oxidative stress, inflammation, Nrf2, and SIRT1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49197-49214. [PMID: 36773264 DOI: 10.1007/s11356-023-25694-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023]
Abstract
Cisplatin (CIS) is an effective chemotherapeutic drug used for the treatment of many types of cancers, but its use is associated with adverse effects. Nephrotoxicity is a serious side effect of CIS and limits its therapeutic utility. Haloxylon salicornicum is a desert shrub used traditionally in the treatment of inflammatory disorders, but neither its flavonoid content nor its protective efficacy against CIS nephrotoxicity has been investigated. In this study, seven flavonoids were isolated from H. salicornicum methanolic extract (HSE) and showed in silico binding affinity with NF-κB, Keap1, and SIRT1. The protective effect of HSE against CIS nephrotoxicity was investigated. Rats received HSE (100, 200, and 400 mg/kg) for 14 days followed by a single injection of CIS. The drug increased Kim-1, BUN, and creatinine and caused multiple histopathological changes. CIS-administered rats showed an increase in renal ROS, MDA, NO, TNF-α, IL-1β, and NF-κB p65. HSE prevented tissue injury, and diminished ROS, NF-κB, and inflammatory mediators. HSE enhanced antioxidants and Bcl-2 and downregulated pro-apoptosis markers. These effects were associated with downregulation of Keap1 and microRNA-34a, and upregulation of SIRT1 and Nrf2/HO-1 signaling. In conclusion, H. salicornicum is rich in flavonoids, and its extract prevented oxidative stress, inflammation, and kidney injury, and modulated Nrf2/HO-1 and SIRT1 signaling in CIS-treated rats.
Collapse
|
3
|
7-hydroxycoumarin modulates Nrf2/HO-1 and microRNA-34a/SIRT1 signaling and prevents cisplatin-induced oxidative stress, inflammation, and kidney injury in rats. Life Sci 2022; 310:121104. [PMID: 36270424 DOI: 10.1016/j.lfs.2022.121104] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022]
Abstract
The kidneys are vulnerable to toxicity and acute kidney injury (AKI) is the main adverse effect associated with the clinical use of the chemotherapeutic agent cisplatin (CIS). Oxidative stress and inflammation are implicated in CIS nephrotoxicity. In this study, the effect of the antioxidant 7-hydroxycoumarin (7-HC) against CIS-induced renal intoxication was evaluated. Rats received 7-HC (25, 50, and 100 mg/kg) orally for 14 days and CIS (7 mg/kg) at day 15, and samples were collected 3 days after CIS administration. CIS increased serum urea, creatinine and kidney injury molecule (Kim)-1, caused multiple histopathological changes and increased renal reactive oxygen species (ROS), malondialdehyde (MDA), nitric oxide (NO), NF-κB p65, iNOS, and pro-inflammatory cytokines. 7-HC dose-dependently prevented kidney dysfunction and tissue injury and suppressed ROS and inflammatory mediators. 7-HC boosted renal antioxidants and Bcl-2 while decreased Bax and caspase-3 expression in CIS-administered rats. In addition, 7-HC downregulated Keap-1 and microRNA-34a and upregulated Nrf2, NQO-1, HO-1, and SIRT1. Molecular docking revealed the binding affinity of 7-HC towards NF-κB, Keap-1, and SIRT1. In Conclusion, 7-HC prevented CIS nephrotoxicity by attenuating tissue injury, oxidative stress, inflammation, and apoptotic cell death. The protective efficacy of 7-HC was associated with inhibiting NF-κB and Keap-1, and modulating Nrf2/HO-1 and microRNA34a/Sirt1 signaling.
Collapse
|
4
|
Kwon D, Zhang Z, Zeisler J, Kuo HT, Lin KS, Benard F. Reducing the Kidney Uptake of High Contrast CXCR4 PET Imaging Agents via Linker Modifications. Pharmaceutics 2022; 14:pharmaceutics14071502. [PMID: 35890397 PMCID: PMC9316317 DOI: 10.3390/pharmaceutics14071502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
Purpose: The C-X-C chemokine receptor 4 (CXCR4) is highly expressed in many subtypes of cancers, notably in several kidney-based malignancies. We synthesized, labeled, and assessed a series of radiotracers based on a previous high contrast PET imaging radiopharmaceutical [68Ga]Ga-BL02, with modifications to its linker and metal chelator, in order to improve its tumor-to-kidney contrast ratio. Methods: Based on the design of BL02, a piperidine-based cationic linker (BL06) and several anionic linkers (tri-Aad (BL17); tri-D-Glu (BL20); tri-Asp (BL25); and tri-cysteic acid (BL31)) were substituted for the triglutamate linker. Additionally, the DOTA chelator was swapped for a DOTAGA chelator (BL30). Each radiotracer was labeled with 68Ga and evaluated in CXCR4-expressing Daudi xenograft mice with biodistribution and/or PET imaging studies. Results: Of all the evaluated radiotracers, [68Ga]Ga-BL31 showed the most promising biodistribution profile, with a lower kidney uptake compared to [68Ga]Ga-BL02, while retaining the high imaging contrast capabilities of [68Ga]Ga-BL02. [68Ga]Ga-BL31 also compared favorably to [68Ga]Ga-Pentixafor, with superior imaging contrast in all non-target organs. The other anionic linker-based radiotracers showed either equivocal or worse contrast ratios compared to [68Ga]Ga-BL02; however, [68Ga]Ga-BL25 also showed lower kidney uptake, as compared to that of [68Ga]Ga-BL02. Meanwhile, [68Ga]Ga-BL06 had high non-target organ uptake and relatively lower tumor uptake, while [68Ga]Ga-BL30 showed significantly increased kidney uptake and similar tumor uptake values. Conclusions: [68Ga]Ga-BL31 is an optimized CXCR4-targeting radiopharmaceutical with lower kidney retention that has clinical potential for PET imaging and radioligand therapy.
Collapse
Affiliation(s)
- Daniel Kwon
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (Z.Z.); (J.Z.); (H.-T.K.); (K.-S.L.)
| | - Zhengxing Zhang
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (Z.Z.); (J.Z.); (H.-T.K.); (K.-S.L.)
| | - Jutta Zeisler
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (Z.Z.); (J.Z.); (H.-T.K.); (K.-S.L.)
| | - Hsiou-Ting Kuo
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (Z.Z.); (J.Z.); (H.-T.K.); (K.-S.L.)
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (Z.Z.); (J.Z.); (H.-T.K.); (K.-S.L.)
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Francois Benard
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (Z.Z.); (J.Z.); (H.-T.K.); (K.-S.L.)
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Correspondence: ; Tel.: +1-604-675-8206
| |
Collapse
|
5
|
Hall AM, Trepiccione F, Unwin RJ. Drug toxicity in the proximal tubule: new models, methods and mechanisms. Pediatr Nephrol 2022; 37:973-982. [PMID: 34050397 PMCID: PMC9023418 DOI: 10.1007/s00467-021-05121-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/23/2021] [Accepted: 05/05/2021] [Indexed: 10/28/2022]
Abstract
The proximal tubule (PT) reabsorbs most of the glomerular filtrate and plays an important role in the uptake, metabolism and excretion of xenobiotics. Some therapeutic drugs are harmful to the PT, and resulting nephrotoxicity is thought to be responsible for approximately 1 in 6 of cases of children hospitalized with acute kidney injury (AKI). Clinically, PT dysfunction leads to urinary wasting of important solutes normally reabsorbed by this nephron segment, leading to systemic complications such as bone demineralization and a clinical scenario known as the renal Fanconi syndrome (RFS). While PT defects can be diagnosed using a combination of blood and urine markers, including urinary excretion of low molecular weight proteins (LMWP), standardized definitions of what constitutes clinically significant toxicity are lacking, and identifying which patients will go on to develop progressive loss of kidney function remains a major challenge. In addition, much of our understanding of cellular mechanisms of drug toxicity is still limited, partly due to the constraints of available cell and animal models. However, advances in new and more sophisticated in vitro models of the PT, along with the application of high-content analytical methods that can provide readouts more relevant to the clinical manifestations of nephrotoxicity, are beginning to extend our knowledge. Such technical progress should help in discovering new biomarkers that can better detect nephrotoxicity earlier and predict its long-term consequences, and herald a new era of more personalized medicine.
Collapse
Affiliation(s)
- Andrew M. Hall
- grid.7400.30000 0004 1937 0650Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland ,grid.412004.30000 0004 0478 9977Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Francesco Trepiccione
- grid.9841.40000 0001 2200 8888Department of Translational Medical Science, University of Campania ‘Luigi Vanvitelli’, Naples, Italy ,grid.428067.f0000 0004 4674 1402Biogem Research Institute, Ariano Irpino, Italy
| | - Robert J. Unwin
- grid.83440.3b0000000121901201Department of Renal Medicine, University College London, London, UK
| |
Collapse
|
6
|
Role of rivaroxaban in sunitinib-induced renal injuries via inhibition of oxidative stress-induced apoptosis and inflammation through the tissue nacrosis factor-α induced nuclear factor-κappa B signaling pathway in rats. J Thromb Thrombolysis 2021; 50:361-370. [PMID: 32358665 DOI: 10.1007/s11239-020-02123-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rivaroxaban (RIVA) inhibits factor Xa and exhibits antithrombotic and anti-inflammatory activities by inhibiting several cellular signaling molecules. Sunitinib (SUN) is FDA approved first-line drug for metastatic renal cancers and advanced cancerous states of gastrointestinal tract. Present hypothesis was aimed to examine the nephroprotective potential of RIVA in SUN-induced nephrotoxicity, mediated through the inhibition of oxidative stress-induced apoptosis and inflammation, via the TNF-α/NFk-B signaling pathways. Wistar rats 200-250 g were selected and divided randomely in 5 groups (n = 6): Group 1 kept as normal control; Group 2 as disease control and exposed to SUN 50 mg/kg thrice-weekly upto 21 days; Groups 3 and 4, were treatment groups and administered SUN 50 mg/kg thrice-weekly as of group 2 and treated with RIVA 5 and 10 mg/kg/daily for 21 days, respectively; and Group 5 fed with RIVA alone (10 mg/kg/daily for 21 days). Serum was separated from blood to estimate serum biochemical parameters and kidney tissues were collected to estimate antioxidant enzyme, mRNA and protein expression. SUN exposure significantly elevated levels of creatinine, urea, uric acid, blood urea nitrogen, albumin, and bilirubin, and decreased serum magnesium and iron levels. Malondialdehyde and catalase levels were significantly increased and glutathione and glutathione reductase levels were significantly decreased. Intracellular levels of caspase-3 and TNF-α were significantly increased; RIVA treatment restored the altered levels. In SUN-exposed animals, western blotting revealed significantly elevated NFk-B, IL-17, and MCP-1 expression, and IKBα levels were significantly downregulated; RIVA restored these levels to normal values.RIVA treatment significantly restored the apoptotic and inflammatory parameters in SUN-damaged renal tissues.
Collapse
|
7
|
Elshopakey GE, Almeer R, Alfaraj S, Albasher G, Abdelgawad ME, Abdel Moneim AE, Essawy EA. Zingerone mitigates inflammation, apoptosis and oxidative injuries associated with renal impairment in adriamycin-intoxicated mice. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1923528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Gehad E. Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Alfaraj
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Essameldin Abdelgawad
- Biochemistry & Molecular Biotechnology Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
- Innovative Cellular Microenvironment Optimization Platform (ICMOP), Helwan University, Cairo, Egypt
| | - Ahmed E. Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ehab A. Essawy
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
8
|
Elmansy RA, Seleem HS, Mahmoud AR, Hassanein EHM, Ali FEM. Rebamipide potentially mitigates methotrexate-induced nephrotoxicity via inhibition of oxidative stress and inflammation: A molecular and histochemical study. Anat Rec (Hoboken) 2021; 304:647-661. [PMID: 32589351 DOI: 10.1002/ar.24482] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/21/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022]
Abstract
Methotrexate (MTX) is a widely used chemotherapeutic agent; nevertheless, the nephrotoxicity associated with its use has limited its clinical use. Rebamipide (REB) is a gastro-protective agent with diverse promising biological activities. Here, we investigated the renoprotective effects of REB against MTX-induced nephrotoxicity in rats. Male Wistar rats were allocated into four groups: the normal control group, the REB group (100 mg kg-1 day-1 , PO, for 12 days), the MTX group (which received a single injection of 20 mg/kg, ip), and the REB + MTX group (which received 100 mg kg-1 day-1 REB for 7 days before and 5 days after being injected with 20 mg/kg MTX). Interestingly, MTX triggered kidney injury, characterized by renal dysfunction along with histopathological alterations. Moreover, increased reactive oxygen species level and inflammatory response were detected in the kidney of MTX-treated rats. However, REB prevented MTX-induced oxidative kidney injury and boosted an antioxidant balance. Mechanistically, REB markedly activated the NRF-2 protein and upregulated the expression of both SIRT-1 and FOXO-3 genes. Additionally, REB administration strongly inhibited the inflammatory response by downregulating both NF-κB-p65 and TLR-4. Finally, the coadministration of REB and MTX activated the mTOR/PI3K/AKT signaling pathway. Simultaneously, REB treatment attenuated the reduction in glomerular size, the widening of the capsular spaces, and the tubular cell damage due to MTX administration. Taken together, these results indicate the potential of REB as adjuvant therapy to prevent nephrotoxicity in patients receiving MTX treatment.
Collapse
Affiliation(s)
- Rasha A Elmansy
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.,Anatomy Unit, Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Hanan S Seleem
- Histology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt.,Histology Unit, Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amany R Mahmoud
- Anatomy Unit, Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Buraydah, Saudi Arabia.,Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
9
|
Jado JC, Humanes B, González-Nicolás MÁ, Camaño S, Lara JM, López B, Cercenado E, García-Bordas J, Tejedor A, Lázaro A. Nephroprotective Effect of Cilastatin against Gentamicin-Induced Renal Injury In Vitro and In Vivo without Altering Its Bactericidal Efficiency. Antioxidants (Basel) 2020; 9:antiox9090821. [PMID: 32899204 PMCID: PMC7555100 DOI: 10.3390/antiox9090821] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Gentamicin is a used antibiotic that causes nephrotoxicity in 10-20% of treatment periods, which limits its use considerably. Our results have shown that cilastatin may be a promising therapeutic alternative in toxin-induced acute kidney injury (AKI). Here, we investigated its potential use as a nephroprotector against gentamicin-induced AKI in vitro and in vivo. Porcine renal cells and rats were treated with gentamicin and/or cilastatin. In vivo nephrotoxicity was analyzed by measuring biochemical markers and renal morphology. Different apoptotic, oxidative and inflammatory parameters were studied at cellular and systemic levels. Megalin, mainly responsible for the entry of gentamicin into the cells, was also analyzed. Results show that cilastatin protects cells from gentamicin-induced AKI. Cilastatin decreased creatinine, BUN, kidney injury molecule-1 (KIM-1) and severe morphological changes previously increased by gentamicin in rats. The interference of cilastatin with lipid rafts cycling leads to decreased expression of megalin, and therefore gentamicin uptake and myeloid bodies, resulting in a decrease of apoptotic, oxidative and inflammatory events. Moreover, cilastatin did not prevent bacterial death by gentamicin. Cilastatin reduced gentamicin-induced AKI by preventing key steps in the amplification of the damage, which is associated to the disruption of megalin-gentamicin endocytosis. Therefore, cilastatin might represent a novel therapeutic tool in the prevention and treatment of gentamicin-induced AKI in the clinical setting.
Collapse
Affiliation(s)
- Juan Carlos Jado
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.C.J.); (B.H.); (M.Á.G.-N.); (S.C.); (A.T.)
| | - Blanca Humanes
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.C.J.); (B.H.); (M.Á.G.-N.); (S.C.); (A.T.)
| | - María Ángeles González-Nicolás
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.C.J.); (B.H.); (M.Á.G.-N.); (S.C.); (A.T.)
- Department of Medicine, School of Medicine, Universidad Complutense, 28040 Madrid, Spain
| | - Sonia Camaño
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.C.J.); (B.H.); (M.Á.G.-N.); (S.C.); (A.T.)
| | - José Manuel Lara
- Department of Pathology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.M.L.); (B.L.); (J.G.-B.)
| | - Beatriz López
- Department of Pathology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.M.L.); (B.L.); (J.G.-B.)
| | - Emilia Cercenado
- Department of Microbiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain;
| | - Julio García-Bordas
- Department of Pathology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.M.L.); (B.L.); (J.G.-B.)
| | - Alberto Tejedor
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.C.J.); (B.H.); (M.Á.G.-N.); (S.C.); (A.T.)
- Department of Medicine, School of Medicine, Universidad Complutense, 28040 Madrid, Spain
| | - Alberto Lázaro
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.C.J.); (B.H.); (M.Á.G.-N.); (S.C.); (A.T.)
- Department of Physiology, School of Medicine, Universidad Complutense, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-914265145
| |
Collapse
|
10
|
Singh HP, Singh TG, Singh R. Sinapic acid attenuates cisplatin-induced nephrotoxicity through peroxisome proliferator-activated receptor gamma agonism in rats. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2020; 12:146-154. [PMID: 32742113 PMCID: PMC7373114 DOI: 10.4103/jpbs.jpbs_220_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 01/07/2020] [Indexed: 01/16/2023] Open
Abstract
AIM The aim of this study was to investigate the involvement of peroxisome proliferator-activated receptor gamma (PPAR-γ) in renal protection offered by sinapic acid in cisplatin-induced nephrotoxicity in male rats. MATERIALS AND METHODS Nephrotoxicity was induced by single dose of cisplatin (5 mg/kg, intraperitoneal [i.p.]) in rats. Cisplatin-induced nephrotoxicity was assessed by measuring serum creatinine, creatinine clearance, urea, uric acid, potassium, magnesium levels, fractional excretion of sodium, and microproteinuria in rats. Superoxide anion generation, thiobarbituric acid reactive substances, myeloperoxidase activity, and reduced glutathione levels were measured to assess oxidative stress in renal tissues. Hematoxylin and eosin stain showed renal histological changes. RESULTS The significant changes in serum and urinary parameters, elevated oxidative stress, and renal histological changes established the induction of nephrotoxicity. Sinapic acid treatment (20 and 40 mg/kg, orally [p.o.]) provides dose-dependent and significant (P < 0.05) nephroprotection against cisplatin-mediated nephrotoxicity in rats. Nephroprotective effect of sinapic acid was abolished by PPAR-γ inhibitor, bisphenol A diglycidyl ether (30 mg/kg, i.p.) in rats. CONCLUSION It is concluded that PPAR-γ agonism serves as one of the mechanisms in sinapic acid-mediated renoprotection.
Collapse
Affiliation(s)
- Hardevinder Pal Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
- Department of Pharmacy, Government Medical College, Patiala, Punjab, India
| | | | - Randhir Singh
- Department of Pharmacology, MM College of Pharmacy, Maharishi Markandeshwar University, Ambala, Haryana, India
| |
Collapse
|
11
|
The Predictive Role of the Biomarker Kidney Molecule-1 (KIM-1) in Acute Kidney Injury (AKI) Cisplatin-Induced Nephrotoxicity. Int J Mol Sci 2019; 20:ijms20205238. [PMID: 31652595 PMCID: PMC6834366 DOI: 10.3390/ijms20205238] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) following platinum-based chemotherapeutics is a frequently reported serious side-effect. However, there are no approved biomarkers that can properly identify proximal tubular injury while routine assessments such as serum creatinine lack sensitivity. Kidney-injury-molecule 1 (KIM-1) is showing promise in identifying cisplatin-induced renal injury both in vitro and in vivo studies. In this review, we focus on describing the mechanisms of renal tubular cells cisplatin-induced apoptosis, the associated inflammatory response and oxidative stress and the role of KIM-1 as a possible biomarker used to predict cisplatin associated AKI.
Collapse
|
12
|
Mitochondrial dysfunction and oxidative stress are involved in the mechanism of methotrexate-induced renal injury and electrolytes imbalance. Biomed Pharmacother 2018; 107:834-840. [DOI: 10.1016/j.biopha.2018.08.050] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
|
13
|
Abd El-Twab SM, Hozayen WG, Hussein OE, Mahmoud AM. 18β-Glycyrrhetinic acid protects against methotrexate-induced kidney injury by up-regulating the Nrf2/ARE/HO-1 pathway and endogenous antioxidants. Ren Fail 2016; 38:1516-1527. [DOI: 10.1080/0886022x.2016.1216722] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
14
|
Mukherjea D, Ghosh S, Bhatta P, Sheth S, Tupal S, Borse V, Brozoski T, Sheehan KE, Rybak LP, Ramkumar V. Early investigational drugs for hearing loss. Expert Opin Investig Drugs 2014; 24:201-17. [PMID: 25243609 DOI: 10.1517/13543784.2015.960076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Sensorineural hearing loss (HL) is becoming a global phenomenon at an alarming rate. Nearly 600 million people have been estimated to have significant HL in at least one ear. There are several different causes of sensorineural HL included in this review of new investigational drugs for HL. They are noise-induced, drug-induced, sudden sensorineural HL, presbycusis and HL due to cytomegalovirus infections. AREAS COVERED This review presents trends in research for new investigational drugs encompassing a variety of causes of HL. The studies presented here are the latest developments either in the research laboratories or in preclinical, Phase 0, Phase I or Phase II clinical trials for drugs targeting HL. EXPERT OPINION While it is important that prophylactic measures are developed, it is extremely crucial that rescue strategies for unexpected or unavoidable cochlear insult be established. To achieve this goal for the development of drugs for HL, innovative strategies and extensive testing are required for progress from the bench to bedside. However, although a great deal of research needs to be done to achieve the ultimate goal of protecting the ear against acquired sensorineural HL, we are likely to see exciting breakthroughs in the near future.
Collapse
Affiliation(s)
- Debashree Mukherjea
- Southern Illinois University School of Medicine, Department of Surgery , P.O. Box 19629, Springfield, IL 62794-9629 , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kim SY, Moon A. Drug-induced nephrotoxicity and its biomarkers. Biomol Ther (Seoul) 2014; 20:268-72. [PMID: 24130922 PMCID: PMC3794522 DOI: 10.4062/biomolther.2012.20.3.268] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 11/09/2011] [Accepted: 11/09/2011] [Indexed: 12/28/2022] Open
Abstract
Nephrotoxicity occurs when kidney-specific detoxification and excretion do not work properly due to the damage or destruction of kidney function by exogenous or endogenous toxicants. Exposure to drugs often results in toxicity in kidney which represents the major control system maintaining homeostasis of body and thus is especially susceptible to xenobiotics. Understanding the toxic mechanisms for nephrotoxicity provides useful information on the development of drugs with therapeutic benefi ts with reduced side effects. Mechanisms for drug-induced nephrotoxicity include changes in glomerular hemodynamics, tubular cell toxicity, inflammation, crystal nephropathy, rhabdomyolysis, and thrombotic microangiopathy. Biomarkers have been identifi ed for the assessment of nephrotoxicity. The discovery and development of novel biomarkers that can diagnose kidney damage earlier and more accurately are needed for effective prevention of drug-induced nephrotoxicity. Although some of them fail to confer specificity and sensitivity, several promising candidates of biomarkers were recently proved for assessment of nephrotoxicity. In this review, we summarize mechanisms of drug-induced nephrotoxicity and present the list of drugs that cause nephrotoxicity and biomarkers that can be used for early assessment of nephrotoxicity.
Collapse
Affiliation(s)
- Sun Young Kim
- College of Pharmacy, Duksung Women's University, Seoul 132-714, Republic of Korea
| | | |
Collapse
|
16
|
Mahadevappa R, Nielsen R, Christensen EI, Birn H. Megalin in acute kidney injury: foe and friend. Am J Physiol Renal Physiol 2013; 306:F147-54. [PMID: 24197071 DOI: 10.1152/ajprenal.00378.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The kidney proximal tubule is a key target in many forms of acute kidney injury (AKI). The multiligand receptor megalin is responsible for the normal proximal tubule uptake of filtered molecules, including nephrotoxins, cytokines, and markers of AKI. By mediating the uptake of nephrotoxins, megalin plays an essential role in the development of some types of AKI. However, megalin also mediates the tubular uptake of molecules implicated in the protection against AKI, and changes in megalin expression have been demonstrated in AKI in animal models. Thus, modulation of megalin expression in response to AKI may be an important part of the tubule cell adaption to cellular protection and regeneration and should be further investigated as a potential target of intervention. This review explores current evidence linking megalin expression and function to the development, diagnosis, and progression of AKI as well as renal protection against AKI.
Collapse
Affiliation(s)
- Ravikiran Mahadevappa
- Dept. of Biomedicine, Aarhus Univ., Wilhelm Meyers Allé 3, Bldg. 1234, Aarhus DK-8000, Denmark.
| | | | | | | |
Collapse
|
17
|
Konopska B, Gburek J, Gołąb K, Warwas M. Influence of aminoglycoside antibiotics on chicken cystatin binding to renal brush-border membranes. J Pharm Pharmacol 2013; 65:988-94. [DOI: 10.1111/jphp.12058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 02/11/2013] [Indexed: 01/08/2023]
Abstract
Abstract
Objectives
Drug-induced kidney injury is a serious adverse event which needs to be monitored during aminoglycoside therapy. Urine cystatin C is considered an early and sensitive marker of nephrotoxicity. Cystatin C, a low-molecular-weight serum protein, and basic drugs have a common transport system expressed in the apical membrane of renal proximal tubular cells. The aim of this study was to investigate whether aminoglycoside antibiotics influenced cystatin C binding to the renal brush-border membrane.
Methods
The binding study was performed using a rapid filtration technique and affinity column displacement method.
Key findings
Concentration-dependent inhibition of chicken cystatin binding to brush-border membranes by gentamicin was observed. The gentamicin interaction with brush-border membranes was of relatively low affinity (Ki = 32 μm) in comparison with the chicken cystatin affinity to the binding sites (Kd = 3.6 μm). Amikacin and gentamicin were only able to displace chicken cystatin from the chromatographic affinity column in concentrations several times higher than normally found in the tubular fluid during standard aminoglycoside therapy.
Conclusion
Cystatin reabsorption in the proximal tubule cannot be significantly affected by aminoglycoside antibiotics because of their relatively low affinity to common binding sites on the brush-border membrane.
Collapse
Affiliation(s)
- Bogusława Konopska
- Department of Pharmaceutical Biochemistry, Wroclaw Medical University, Wrocław, Poland
| | - Jakub Gburek
- Department of Pharmaceutical Biochemistry, Wroclaw Medical University, Wrocław, Poland
| | - Krzysztof Gołąb
- Department of Pharmaceutical Biochemistry, Wroclaw Medical University, Wrocław, Poland
| | - Maria Warwas
- Department of Pharmaceutical Biochemistry, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
18
|
Boyer A, Gruson D, Bouchet S, Clouzeau B, Hoang-Nam B, Vargas F, Gilles H, Molimard M, Rogues AM, Moore N. Aminoglycosides in Septic Shock. Drug Saf 2013; 36:217-30. [DOI: 10.1007/s40264-013-0031-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Breaud AR, Henemyre-Harris CL, Schools S, Emezienna N, Clarke W. Rapid quantification of the aminoglycoside arbekacin in serum using high performance liquid chromatography–tandem mass spectrometry. Clin Chim Acta 2013; 418:102-6. [DOI: 10.1016/j.cca.2013.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
|
20
|
Nagai J, Komeda T, Yumoto R, Takano M. Effect of protamine on the accumulation of gentamicin in opossum kidney epithelial cells. J Pharm Pharmacol 2012; 65:441-6. [DOI: 10.1111/jphp.12005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/11/2012] [Indexed: 11/28/2022]
Abstract
Abstract
Objectives
The purpose of this study was to examine whether or not protamine, an arginine-rich basic protein mixture, inhibits the accumulation of gentamicin, a nephrotoxic drug, in cultured opossum kidney (OK) epithelial cells.
Methods
The effect of protamine from salmon on accumulation and binding of [3H]gentamicin was investigated in OK cells.
Key findings
Protamine inhibited the binding and accumulation of [3H]gentamicin in a concentration-dependent manner. The accumulation of [14C]inulin, a marker of fluid-phase endocytosis, was not affected by protamine at concentrations up to 1 mm. l-Arginine at concentrations up to 10 mm had no significant effect on the accumulation of [3H]gentamicin. On the other hand, preincubation with 100 μm protamine for 5 min decreased the accumulation of [3H]gentamicin to almost the same extent as coincubation with 100 μm protamine for 60 min.
Conclusions
Our results indicate that protamine decreases the accumulation of gentamicin in OK cells. These findings suggest that protamine or its derivatives might be useful in preventing the nephrotoxicity of aminoglycoside antibiotics including gentamicin.
Collapse
Affiliation(s)
- Junya Nagai
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takuji Komeda
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryoko Yumoto
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mikihisa Takano
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
21
|
Cryptic parasite revealed improved prospects for treatment and control of human cryptosporidiosis through advanced technologies. ADVANCES IN PARASITOLOGY 2012; 77:141-73. [PMID: 22137584 DOI: 10.1016/b978-0-12-391429-3.00007-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cryptosporidium is an important genus of parasitic protozoa of humans and other vertebrates and is a major cause of intestinal disease globally. Unlike many common causes of infectious enteritis, there are no widely available, effective vaccine or drug-based intervention strategies for Cryptosporidium, and control is focused mainly on prevention. This approach is particularly deficient for infections of severely immunocompromised and/or suppressed, the elderly or malnourished people. However, cryptosporidiosis also presents a significant burden on immunocompetent individuals, and can, for example have lasting effects on the physical and mental development of children infected at an early age. In the last few decades, our understanding of Cryptosporidium has expanded significantly in numerous areas, including the parasite life-cycle, the processes of excystation, cellular invasion and reproduction, and the interplay between parasite and host. Nonetheless, despite extensive research, many aspects of the biology of Cryptosporidium remain unknown, and treatment and control are challenging. Here, we review the current state of knowledge of Cryptosporidium, with a focus on major advances arising from the recently completed genome sequences of the two species of greatest relevance in humans, namely Cryptosporidium hominis and Cryptosporidium parvum. In addition, we discuss the potential of next-generation sequencing technologies, new advances in in silico analyses and progress in in vitro culturing systems to bridge these gaps and to lead toward effective treatment and control of cryptosporidiosis.
Collapse
|
22
|
Naud J, Michaud J, Beauchemin S, Hébert MJ, Roger M, Lefrancois S, Leblond FA, Pichette V. Effects of Chronic Renal Failure on Kidney Drug Transporters and Cytochrome P450 in Rats. Drug Metab Dispos 2011; 39:1363-9. [DOI: 10.1124/dmd.111.039115] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|