1
|
Duffel MW, Lehmler HJ. Complex roles for sulfation in the toxicities of polychlorinated biphenyls. Crit Rev Toxicol 2024; 54:92-122. [PMID: 38363552 PMCID: PMC11067068 DOI: 10.1080/10408444.2024.2311270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic toxicants derived from legacy pollution sources and their formation as inadvertent byproducts of some current manufacturing processes. Metabolism of PCBs is often a critical component in their toxicity, and relevant metabolic pathways usually include their initial oxidation to form hydroxylated polychlorinated biphenyls (OH-PCBs). Subsequent sulfation of OH-PCBs was originally thought to be primarily a means of detoxication; however, there is strong evidence that it may also contribute to toxicities associated with PCBs and OH-PCBs. These contributions include either the direct interaction of PCB sulfates with receptors or their serving as a localized precursor for OH-PCBs. The formation of PCB sulfates is catalyzed by cytosolic sulfotransferases, and, when transported into the serum, these metabolites may be retained, taken up by other tissues, and subjected to hydrolysis catalyzed by intracellular sulfatase(s) to regenerate OH-PCBs. Dynamic cycling between PCB sulfates and OH-PCBs may lead to further metabolic activation of the resulting OH-PCBs. Ultimate toxic endpoints of such processes may include endocrine disruption, neurotoxicities, and many others that are associated with exposures to PCBs and OH-PCBs. This review highlights the current understanding of the complex roles that PCB sulfates can have in the toxicities of PCBs and OH-PCBs and research on the varied mechanisms that control these roles.
Collapse
Affiliation(s)
- Michael W. Duffel
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa, 52242, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa, 52242, United States
| |
Collapse
|
2
|
Toth D, Dudas B, Miteva MA, Balog E. Role of Conformational Dynamics of Sulfotransferases SULT1A1 and SULT1A3 in Substrate Specificity. Int J Mol Sci 2023; 24:16900. [PMID: 38069221 PMCID: PMC10706399 DOI: 10.3390/ijms242316900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Sulfotransferases (SULTs) are phase II metabolizing enzymes catalyzing the sulfoconjugation from the co-factor 3'-Phosphoadenosine 5'-Phosphosulfate (PAPS) to a wide variety of endogenous compounds, drugs and natural products. Although SULT1A1 and SULT1A3 share 93% identity, SULT1A1, the most abundant SULT isoform in humans, exhibits a broad substrate range with specificity for small phenolic compounds, while SULT1A3 displays a high affinity toward monoamine neurotransmitters like dopamine. To elucidate the factors determining the substrate specificity of the SULT1 isoenzymes, we studied the dynamic behavior and structural specificities of SULT1A1 and SULT1A3 by using molecular dynamics (MD) simulations and ensemble docking of common and specific substrates of the two isoforms. Our results demonstrated that while SULT1A1 exhibits a relatively rigid structure by showing lower conformational flexibility except for the lip (loop L1), the loop L2 and the cap (L3) of SULT1A3 are extremely flexible. We identified protein residues strongly involved in the recognition of different substrates for the two isoforms. Our analyses indicated that being more specific and highly flexible, the structure of SULT1A3 has particularities in the binding site, which are crucial for its substrate selectivity.
Collapse
Affiliation(s)
- Daniel Toth
- CiTCoM UMR 8038 CNRS, INSERM U1268 MCTR, Université Paris Cité, 75006 Paris, France; (D.T.); (B.D.)
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Balint Dudas
- CiTCoM UMR 8038 CNRS, INSERM U1268 MCTR, Université Paris Cité, 75006 Paris, France; (D.T.); (B.D.)
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - Maria A. Miteva
- CiTCoM UMR 8038 CNRS, INSERM U1268 MCTR, Université Paris Cité, 75006 Paris, France; (D.T.); (B.D.)
| | - Erika Balog
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
3
|
Mei X, Gohal SA, Zhou CY, Liu MC. Sulfation of hyperoside by the human cytosolic sulfotransferases (SULTs): impact of genetic polymorphisms on hyperoside-sulfating activity of SULT1C4 allozymes. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:75-84. [PMID: 35249434 DOI: 10.1080/10286020.2022.2047030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to identify human cytosolic sulfotransferases (SULTs) that are capable of mediating hyperoside sulfation and examine the impact of genetic polymorphisms on their sulfating activity. Of the thirteen known human SULTs analyzed, five (1A1, 1A2, 1A3, 1C2, and 1C4) displayed sulfating activity toward hyperoside. Kinetic parameters of SULT1C4 that showed the strongest sulfating activity were determined. Ten SULT1C4 allozymes previously prepared were shown to display differential sulfating activities toward hyperoside, revealing clearly the functional impact of SULT1C4 genetic polymorphisms. These findings provided a robust biochemical foundation for further studies on the metabolism of hyperoside by sulfation.
Collapse
Affiliation(s)
- Xue Mei
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA
- School of Pharmacy, Institute of Material Medica, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Saud A Gohal
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Chun-Yang Zhou
- School of Pharmacy, Institute of Material Medica, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Ming-Cheh Liu
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| |
Collapse
|
4
|
Pedersen LC, Yi M, Pedersen LG, Kaminski AM. From Steroid and Drug Metabolism to Glycobiology, Using Sulfotransferase Structures to Understand and Tailor Function. Drug Metab Dispos 2022; 50:1027-1041. [PMID: 35197313 PMCID: PMC10753775 DOI: 10.1124/dmd.121.000478] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022] Open
Abstract
Sulfotransferases are ubiquitous enzymes that transfer a sulfo group from the universal cofactor donor 3'-phosphoadenosine 5'-phosphosulfate to a broad range of acceptor substrates. In humans, the cytosolic sulfotransferases are involved in the sulfation of endogenous compounds such as steroids, neurotransmitters, hormones, and bile acids as well as xenobiotics including drugs, toxins, and environmental chemicals. The Golgi associated membrane-bound sulfotransferases are involved in post-translational modification of macromolecules from glycosaminoglycans to proteins. The sulfation of small molecules can have profound biologic effects on the functionality of the acceptor, including activation, deactivation, or enhanced metabolism and elimination. Sulfation of macromolecules has been shown to regulate a number of physiologic and pathophysiological pathways by enhancing binding affinity to regulatory proteins or binding partners. Over the last 25 years, crystal structures of these enzymes have provided a wealth of information on the mechanisms of this process and the specificity of these enzymes. This review will focus on the general commonalities of the sulfotransferases, from enzyme structure to catalytic mechanism as well as providing examples into how structural information is being used to either design drugs that inhibit sulfotransferases or to modify the enzymes to improve drug synthesis. SIGNIFICANCE STATEMENT: This manuscript honors Dr. Masahiko Negishi's contribution to the understanding of sulfotransferase mechanism, specificity, and roles in biology by analyzing the crystal structures that have been solved over the last 25 years.
Collapse
Affiliation(s)
- Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| | - MyeongJin Yi
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| | - Lee G Pedersen
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| | - Andrea M Kaminski
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| |
Collapse
|
5
|
Stewart V, Ronald PC. Sulfotyrosine residues: interaction specificity determinants for extracellular protein-protein interactions. J Biol Chem 2022; 298:102232. [PMID: 35798140 PMCID: PMC9372746 DOI: 10.1016/j.jbc.2022.102232] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022] Open
Abstract
Tyrosine sulfation, a post-translational modification, can determine and often enhance protein–protein interaction specificity. Sulfotyrosyl residues (sTyrs) are formed by the enzyme tyrosyl-protein sulfotransferase during protein maturation in the Golgi apparatus and most often occur singly or as a cluster within a six-residue span. With both negative charge and aromatic character, sTyr facilitates numerous atomic contacts as visualized in binding interface structural models, thus there is no discernible binding site consensus. Found exclusively in secreted proteins, in this review, we discuss the four broad sequence contexts in which sTyr has been observed: first, a solitary sTyr has been shown to be critical for diverse high-affinity interactions, such as between peptide hormones and their receptors, in both plants and animals. Second, sTyr clusters within structurally flexible anionic segments are essential for a variety of cellular processes, including coreceptor binding to the HIV-1 envelope spike protein during virus entry, chemokine interactions with receptors, and leukocyte rolling cell adhesion. Third, a subcategory of sTyr clusters is found in conserved acidic sequences termed hirudin-like motifs that enable proteins to interact with thrombin; consequently, many proven and potential therapeutic proteins derived from blood-consuming invertebrates depend on sTyrs for their activity. Finally, several proteins that interact with collagen or similar proteins contain one or more sTyrs within an acidic residue array. Refined methods to direct sTyr incorporation in peptides synthesized both in vitro and in vivo, together with continued advances in mass spectrometry and affinity detection, promise to accelerate discoveries of sTyr occurrence and function.
Collapse
Affiliation(s)
- Valley Stewart
- Department of Microbiology & Molecular Genetics, University of California, Davis, USA.
| | - Pamela C Ronald
- Department of Plant Pathology, University of California, Davis, USA; Genome Center, University of California, Davis, USA.
| |
Collapse
|
6
|
Huang H, Lan BD, Zhang YJ, Fan XJ, Hu MC, Qin GQ, Wang FG, Wu Y, Zheng T, Liu JH. Inhibition of Human Sulfotransferases by Phthalate Monoesters. Front Endocrinol (Lausanne) 2022; 13:868105. [PMID: 35528018 PMCID: PMC9072656 DOI: 10.3389/fendo.2022.868105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the inhibition of human important phase II metabolic enzyme sulfotransferases (SULTs) by phthalate monoesters, which are important metabolites of phthalate esters (PAEs). METHOD Recombinant SULT-catalyzed metabolism of p-nitrophenol (PNP) was employed as the probe reactions of SULTs to investigate the inhibition of 8 kinds of phthalate monoesters towards SULT isoforms. An in vitro incubation system was utilized for preliminary screening, and 100 μM of phthalate monoesters was used. Inhibition kinetics were carried out to determine the inhibition of SULTs by phthalate monoesters. RESULT Multiple phthalate monoesters have been demonstrated to exert strong inhibition potential towards SULT1A1, SULT1B1, and SULT1E1, and no significant inhibition of phthalate monoesters towards SULT1A3 was found. The activity of SULT1A1 was strongly inhibited by mono-hexyl phthalate (MHP), mono-octyl phthalate (MOP), mono-benzyl phthalate (MBZP), and mono-ethylhexyl phthalate (MEHP). Monobutyl phthalate (MBP), MHP, MOP, mono-cyclohexyl phthalate (MCHP), and MEHP significantly inhibited the activity of SULT1B1. MHP, MOP, and MEHP significantly inhibited the activity of SULT1E1. MOP was chosen as the representative phthalate monoester to determine the inhibition kinetic parameters (Ki) towards SULT1B1 and SULT1E1. The inhibition kinetic parameters (Ki) were calculated to be 2.23 μM for MOP-SULT1B1 and 5.54 μM for MOP-SULT1E1. In silico docking method was utilized to understand the inhibition mechanism of SULT1B1 by phthalate monoesters. CONCLUSIONS All these information will be beneficial for understanding the risk of phthalate monoester exposure from a new perspective.
Collapse
Affiliation(s)
- Hui Huang
- Department of Cardiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Bei-Di Lan
- Department of CardioMetabolic Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yu-Jing Zhang
- Department of Cardiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiao-Juan Fan
- Department of CardioMetabolic Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Min-Cui Hu
- Tianjin Life Science Research Center, Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Guo-Qiang Qin
- Human Resources Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Fei-Ge Wang
- Human Resources Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yue Wu
- Department of CardioMetabolic Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tao Zheng
- Department of CardioMetabolic Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Tao Zheng, ; Jun-Hui Liu,
| | - Jun-Hui Liu
- Department of CardioMetabolic Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Tao Zheng, ; Jun-Hui Liu,
| |
Collapse
|
7
|
Lessigiarska I, Peng Y, Tsakovska I, Alov P, Lagarde N, Jereva D, Villoutreix BO, Nicot AB, Pajeva I, Pencheva T, Miteva MA. Computational Analysis of Chemical Space of Natural Compounds Interacting with Sulfotransferases. Molecules 2021; 26:molecules26216360. [PMID: 34770768 PMCID: PMC8588419 DOI: 10.3390/molecules26216360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023] Open
Abstract
The aim of this study was to investigate the chemical space and interactions of natural compounds with sulfotransferases (SULTs) using ligand- and structure-based in silico methods. An in-house library of natural ligands (hormones, neurotransmitters, plant-derived compounds and their metabolites) reported to interact with SULTs was created. Their chemical structures and properties were compared to those of compounds of non-natural (synthetic) origin, known to interact with SULTs. The natural ligands interacting with SULTs were further compared to other natural products for which interactions with SULTs were not known. Various descriptors of the molecular structures were calculated and analyzed. Statistical methods (ANOVA, PCA, and clustering) were used to explore the chemical space of the studied compounds. Similarity search between the compounds in the different groups was performed with the ROCS software. The interactions with SULTs were additionally analyzed by docking into different experimental and modeled conformations of SULT1A1. Natural products with potentially strong interactions with SULTs were outlined. Our results contribute to a better understanding of chemical space and interactions of natural compounds with SULT enzymes and help to outline new potential ligands of these enzymes.
Collapse
Affiliation(s)
- Iglika Lessigiarska
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
| | - Yunhui Peng
- INSERM U1268 “Medicinal Chemistry and Translational Research”, CiTCoM UMR 8038 CNRS—Université de Paris, 75006 Paris, France;
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Ivanka Tsakovska
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
| | - Petko Alov
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
| | - Nathalie Lagarde
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et Métiers, 2 Rue Conté, Hésam Université, 75003 Paris, France;
| | - Dessislava Jereva
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
| | | | - Arnaud B. Nicot
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, F-44000 Nantes, France;
| | - Ilza Pajeva
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
| | - Tania Pencheva
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
- Correspondence: (T.P.); (M.A.M.)
| | - Maria A. Miteva
- INSERM U1268 “Medicinal Chemistry and Translational Research”, CiTCoM UMR 8038 CNRS—Université de Paris, 75006 Paris, France;
- Correspondence: (T.P.); (M.A.M.)
| |
Collapse
|
8
|
Dudas B, Toth D, Perahia D, Nicot AB, Balog E, Miteva MA. Insights into the substrate binding mechanism of SULT1A1 through molecular dynamics with excited normal modes simulations. Sci Rep 2021; 11:13129. [PMID: 34162941 PMCID: PMC8222352 DOI: 10.1038/s41598-021-92480-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/10/2021] [Indexed: 11/14/2022] Open
Abstract
Sulfotransferases (SULTs) are phase II drug-metabolizing enzymes catalyzing the sulfoconjugation from the co-factor 3′-phosphoadenosine 5′-phosphosulfate (PAPS) to a substrate. It has been previously suggested that a considerable shift of SULT structure caused by PAPS binding could control the capability of SULT to bind large substrates. We employed molecular dynamics (MD) simulations and the recently developed approach of MD with excited normal modes (MDeNM) to elucidate molecular mechanisms guiding the recognition of diverse substrates and inhibitors by SULT1A1. MDeNM allowed exploring an extended conformational space of PAPS-bound SULT1A1, which has not been achieved up to now by using classical MD. The generated ensembles combined with docking of 132 SULT1A1 ligands shed new light on substrate and inhibitor binding mechanisms. Unexpectedly, our simulations and analyses on binding of the substrates estradiol and fulvestrant demonstrated that large conformational changes of the PAPS-bound SULT1A1 could occur independently of the co-factor movements that could be sufficient to accommodate large substrates as fulvestrant. Such structural displacements detected by the MDeNM simulations in the presence of the co-factor suggest that a wider range of drugs could be recognized by PAPS-bound SULT1A1 and highlight the utility of including MDeNM in protein–ligand interactions studies where major rearrangements are expected.
Collapse
Affiliation(s)
- Balint Dudas
- Inserm U1268 MCTR, CiTCoM UMR 8038 CNRS - University of Paris, Pharmacy Faculty of Paris, Paris, France.,Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, UMR 8113, CNRS, Gif-sur-Yvette, France
| | - Daniel Toth
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - David Perahia
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, UMR 8113, CNRS, Gif-sur-Yvette, France
| | - Arnaud B Nicot
- Inserm, Université de Nantes, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000, Nantes, France
| | - Erika Balog
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
| | - Maria A Miteva
- Inserm U1268 MCTR, CiTCoM UMR 8038 CNRS - University of Paris, Pharmacy Faculty of Paris, Paris, France.
| |
Collapse
|
9
|
Chao Y, Ou Q, Shang J. Expression and prognostic value of SULT1A2 in bladder cancer. Exp Ther Med 2021; 22:779. [PMID: 34055078 PMCID: PMC8145616 DOI: 10.3892/etm.2021.10211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 03/02/2021] [Indexed: 12/31/2022] Open
Abstract
Sulfotransferase Family 1A Member 2 (SULT1A2) is a protein coding gene. Several studies have reported that SULT1A2 may have a chemical carcinogenic effect if expressed as a functional protein. The present study aimed to investigate the expression and potential role of SULT1A2 in bladder cancer (BC). Data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases were used to analyze SULT1A2 expression in BC. In addition, reverse transcription-quantitative PCR and western blot analyses were performed to detect SULT1A2 expression in BC cells and tissues. Immunohistochemistry analysis was performed on 100 formalin-fixed, paraffin-embedded BC tissues and corresponding adjacent normal bladder tissues (ANBTs) to verify SULT1A2 expression and determine the clinical significance of SULT1A2 in BC. Gene set enrichment analysis (GSEA) was performed to determine the potential biological processes and internal molecular mechanisms. The results demonstrated that SULT1A2 was highly expressed in BC tissues compared with ANBTs. Furthermore, high SULT1A2 expression was significantly associated with the staging of BC. Analyses of TCGA datasets and BC tissue microarray indicated that high SULT1A2 expression was significantly associated with a favorable overall survival in patients with BC. In addition, GSEA revealed pathways, diseases and biological processes associated with SULT1A2. Taken together, the results of the present study suggest that SULT1A2 acts as an oncogene in BC, and thus may serve as a biomarker for tumor staging and prognosis in patients with BC.
Collapse
Affiliation(s)
- Yinghui Chao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qifeng Ou
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jin Shang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
10
|
Gohal SA, Rasool MI, Bairam AF, Alatwi ES, Alherz FA, Abunnaja MS, El Daibani AA, Kurogi K, Liu MC. Effects of Genetic Polymorphisms on the Sulfation of Doxorubicin by Human SULT1C4 Allozymes. J Biochem 2021; 170:419-426. [PMID: 33950190 DOI: 10.1093/jb/mvab055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin is a chemotherapeutic drug widely utilized in cancer treatment. An enzyme critical to doxorubicin metabolism is the cytosolic sulfotransferase (SULT) SULT1C4. This study investigated the functional impact of SULT1C4 single nucleotide polymorphisms (SNPs) on the sulfation of doxorubicin by SULT1C4 allozymes. A comprehensive database search was performed to identify various SULT1C4 SNPs. Ten nonsynonymous SULT1C4 SNPs were selected, and the corresponding cDNAs, packaged in pGEX-2TK expression vector, were generated via site-directed mutagenesis. Respective SULT1C4 allozymes were bacterially expressed and purified by affinity chromatography. Purified SULT1C4 allozymes, in comparison with the wild-type enzyme, were analyzed for sulfating activities toward doxorubicin and 4-nitrophenol, a prototype substrate. Results obtained showed clearly differential doxorubicin-sulfating activity of SULT1C4 allozymes, implying differential metabolism of doxorubicin through sulfation in individuals with distinct SULT1C4 genotypes.
Collapse
Affiliation(s)
- Saud A Gohal
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA
| | - Mohammed I Rasool
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA.,Department of Pharmacology, College of Pharmacy, University of Karbala, Karbala, Iraq
| | - Ahsan F Bairam
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA.,Department of Pharmacology, College of Pharmacy, University of Kufa, Najaf, Iraq
| | - Eid S Alatwi
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA
| | - Fatemah A Alherz
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA.,Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Maryam S Abunnaja
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA
| | - Amal A El Daibani
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA
| | - Katsuhisa Kurogi
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA.,Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192 Japan
| | - Ming-Cheh Liu
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614 USA
| |
Collapse
|
11
|
Zhu J, Qi R, Liu Y, Zhao L, Han W. Mechanistic Insights into the Effect of Ligands on Structural Stability and Selectivity of Sulfotransferase 2A1 (SULT2A1). ACS OMEGA 2019; 4:22021-22034. [PMID: 31891082 PMCID: PMC6933797 DOI: 10.1021/acsomega.9b03136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/14/2019] [Indexed: 05/04/2023]
Abstract
Cytosolic sulfotransferases (SULTs) acting as phase II metabolic enzymes can be used in the sulfonation of small molecules by transferring a sulfonate group from the unique co-factor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to the substrates. In the present study, molecular dynamics (MD) simulations and ensemble docking study were employed to theoretically characterize the mechanism for the effect of co-factor (PAP) and ligands (LCA, raloxifene, α-hydroxytamoxifen, ouabain, and 3'-phosphoadenylyl sulfate) on structural stability and selectivity of SULT2A1 from the perspective of the dynamic behavior of SULT2A1 structures. Structural stability and network analyses indicated that the cooperation between PAP and LCA may enhance the thermal stability and compact communication in enzymes. During the MD simulations, the obviously rigid region and inward displacement were detected in the active-site cap (loop16) of the conformation containing PAP, which may be responsible for the significant changes in substrate accessibility and catalytic activity. The smaller substrates such as LCA could bind stably to the active pocket in the presence of PAP. However, the substrates or inhibitors with a large spatial structure needed to bind to the open conformation (without PAP) prior to PAPS binding.
Collapse
|
12
|
Dash R, Ali MC, Dash N, Azad MAK, Hosen SMZ, Hannan MA, Moon IS. Structural and Dynamic Characterizations Highlight the Deleterious Role of SULT1A1 R213H Polymorphism in Substrate Binding. Int J Mol Sci 2019; 20:ijms20246256. [PMID: 31835852 PMCID: PMC6969939 DOI: 10.3390/ijms20246256] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022] Open
Abstract
Sulfotransferase 1A1 (SULT1A1) is responsible for catalyzing various types of endogenous and exogenous compounds. Accumulating data indicates that the polymorphism rs9282861 (R213H) is responsible for inefficient enzymatic activity and associated with cancer progression. To characterize the detailed functional consequences of this mutation behind the loss-of-function of SULT1A1, the present study deployed molecular dynamics simulation to get insights into changes in the conformation and binding energy. The dynamics scenario of SULT1A1 in both wild and mutated types as well as with and without ligand showed that R213H induced local conformational changes, especially in the substrate-binding loop rather than impairing overall stability of the protein structure. The higher conformational changes were observed in the loop3 (residues, 235-263), turning loop conformation to A-helix and B-bridge, which ultimately disrupted the plasticity of the active site. This alteration reduced the binding site volume and hydrophobicity to decrease the binding affinity of the enzyme to substrates, which was highlighted by the MM-PBSA binding energy analysis. These findings highlight the key insights of structural consequences caused by R213H mutation, which would enrich the understanding regarding the role of SULT1A1 mutation in cancer development and also xenobiotics management to individuals in the different treatment stages.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Md Chayan Ali
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Nayan Dash
- Department of Computer Science and Engineering, BGC Trust University, Bangladesh, Chittagong 4381, Bangladesh
| | - Md Abul Kalam Azad
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - S M Zahid Hosen
- Pancreatic Research Group, South Western Sydney Clinical School, University of New South Wales, and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| |
Collapse
|
13
|
Laderoute H, Bone C, Squires EJ. The sulfoconjugation of androstenone and dehydroepiandrosterone by human and porcine sulfotransferase enzymes. Steroids 2018; 136:8-16. [PMID: 29792900 DOI: 10.1016/j.steroids.2018.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/26/2018] [Accepted: 05/14/2018] [Indexed: 10/16/2022]
Abstract
Porcine sulfotransferase 2A1 (pSULT2A1) is a key enzyme involved in the testicular and hepatic sulfoconjugation of steroids such as dehydroepiandrosterone (DHEA) and potentially androstenone. This latter steroid is a major cause of boar taint, which is an unpleasant off-odour and off-flavour in pork from male pigs. Sulfotransferase 2B1 (pSULT2B1) may also be important, although no direct evidence exists for its involvement in sulfoconjugation of steroids. The purpose of this study was to investigate the sulfoconjugation activity of human and porcine sulfotransferases towards DHEA and androstenone. pcDNA 3.1 vectors expressing porcine (p) SULT2A1, pSULT2B1, human (h) SULT2A1, hSULT2B1a, and hSULT2B1b enzymes were transfected into human embryonic kidney cells. Transfected cells were then incubated with either androstenone or dehydroepiandrosterone (DHEA) in both time-course and enzyme kinetics studies. The production of sulfonates of androstenone metabolites and DHEA sulfonate increased over time for all enzymes with the exception of pSULT2B1. Enzyme kinetics analysis showed that androstenone and DHEA were poor substrates for the human orthologs, hSULT2B1a and hSULT2B1b. Human and porcine SULT2A1 showed substantially different substrate affinities for androstenone (Km 5.8 ± 0.6 µM and 74.1 ± 15.9 µM, respectively) and DHEA (Km 9.4 ± 2.5 µM and 3.3 ± 1.9 µM, respectively). However, these enzymes did show relatively similar sulfonation efficiencies for DHEA (Vmax/Km 50.5 and 72.9 for hSULT2A1 and pSULT2A1, respectively). These results highlight the species differences in sulfonation activity and provide direct evidence, for the first time, suggesting that pSULT2B1 is not involved in sulfonation of either androstenone metabolites or DHEA.
Collapse
Affiliation(s)
- Heidi Laderoute
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Christine Bone
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - E James Squires
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G2W1, Canada.
| |
Collapse
|
14
|
Guo L, Yu F, Zhang T, Wu B. The Clock Protein Bmal1 Regulates Circadian Expression and Activity of Sulfotransferase 1a1 in Mice. Drug Metab Dispos 2018; 46:1403-1410. [DOI: 10.1124/dmd.118.082503] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/23/2018] [Indexed: 12/27/2022] Open
|
15
|
Xie C, Yan TM, Chen JM, Li XY, Zou J, Zhu LJ, Lu LL, Wang Y, Zhou FY, Liu ZQ, Hu M. LC-MS/MS quantification of sulfotransferases is better than conventional immunogenic methods in determining human liver SULT activities: implication in precision medicine. Sci Rep 2017. [PMID: 28634336 PMCID: PMC5478605 DOI: 10.1038/s41598-017-04202-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study aims to determine whether enzyme activities are correlated with protein amounts and mRNA expression levels of five major human sulfotransferase (SULT) enzymes in 10 matched pericarcinomatous and hepatocellular carcinoma liver samples. The MRM UHPLC-MS/MS method, Western blot and RT-PCR were used along with SULT activity measurement using probe substrates. The LC-MS/MS method was specific for all five tested SULTs, whereas Western blot was specific for only two isoforms. The activities of SULT1A1, SULT1B1, SULT1E1 and SULT2A1 in 9 of 10 samples showed a significant decrease in tumor tissues relative to matched pericarcinomatous tissues, whereas the activities of SULT1A3 in 7 of 10 samples increased. The turnover numbers of SULTs did not change, except for SULT1A1. A generally high degree of correlations was observed between SULT activities and protein amounts (r2 ≥ 0.59 except one), whereas a low degree of correlations was observed between SULT activities and mRNA expression levels (r2 ≤ 0.48 except one). HCC reduced the SULT activities via impaired protein amounts. LC-MS/MS quantification of SULTs is highly reliable measurement of SULT activities, and may be adopted for implementing precision medicine with respect to drugs mainly metabolized by SULTs in healthy and HCC patients.
Collapse
Affiliation(s)
- Cong Xie
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Tong-Meng Yan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China
| | - Jia-Mei Chen
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiao-Yan Li
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Juan Zou
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Li-Jun Zhu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Lin-Lin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Fu-Yuan Zhou
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China. .,Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Zhong-Qiu Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China. .,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Suiko M, Kurogi K, Hashiguchi T, Sakakibara Y, Liu MC. Updated perspectives on the cytosolic sulfotransferases (SULTs) and SULT-mediated sulfation. Biosci Biotechnol Biochem 2016; 81:63-72. [PMID: 27649811 DOI: 10.1080/09168451.2016.1222266] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The cytosolic sulfotransferases (SULTs) are Phase II detoxifying enzymes that mediate the sulfate conjugation of numerous xenobiotic molecules. While the research on the SULTs has lagged behind the research on Phase I cytochrome P-450 enzymes and other Phase II conjugating enzymes, it has gained more momentum in recent years. This review aims to summarize information obtained in several fronts of the research on the SULTs, including the range of the SULTs in different life forms, concerted actions of the SULTs and other Phase II enzymes, insights into the structure-function relationships of the SULTs, regulation of SULT expression and activity, developmental expression of SULTs, as well as the use of a zebrafish model for studying the developmental pharmacology/toxicology.
Collapse
Affiliation(s)
- Masahito Suiko
- a Faculty of Agriculture, Department of Biochemistry and Applied Biosciences , University of Miyazaki , Miyazaki , Japan
| | - Katsuhisa Kurogi
- a Faculty of Agriculture, Department of Biochemistry and Applied Biosciences , University of Miyazaki , Miyazaki , Japan.,b Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences , University of Toledo Health Science Campus , Toledo , OH , USA
| | - Takuyu Hashiguchi
- a Faculty of Agriculture, Department of Biochemistry and Applied Biosciences , University of Miyazaki , Miyazaki , Japan
| | - Yoichi Sakakibara
- a Faculty of Agriculture, Department of Biochemistry and Applied Biosciences , University of Miyazaki , Miyazaki , Japan
| | - Ming-Cheh Liu
- b Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences , University of Toledo Health Science Campus , Toledo , OH , USA
| |
Collapse
|
17
|
Ulaganathan T, Shi R, Yao D, Gu RX, Garron ML, Cherney M, Tieleman DP, Sterner E, Li G, Li L, Linhardt RJ, Cygler M. Conformational flexibility of PL12 family heparinases: structure and substrate specificity of heparinase III from Bacteroides thetaiotaomicron (BT4657). Glycobiology 2016; 27:176-187. [PMID: 27621378 DOI: 10.1093/glycob/cww096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 01/19/2023] Open
Abstract
Glycosaminoglycans (GAGs) are linear polysaccharides comprised of disaccharide repeat units, a hexuronic acid, glucuronic acid or iduronic acid, linked to a hexosamine, N-acetylglucosamine (GlcNAc) or N-acetylgalactosamine. GAGs undergo further modification such as epimerization and sulfation. These polysaccharides are abundant in the extracellular matrix and connective tissues. GAGs function in stabilization of the fibrillar extracellular matrix, control of hydration, regulation of tissue, organism development by controlling cell cycle, cell behavior and differentiation. Niche adapted bacteria express enzymes called polysaccharide lyases (PL), which degrade GAGs for their nutrient content. PL have been classified into 24 sequence-related families. Comparison of 3D structures of the prototypic members of these families allowed identification of distant evolutionary relationships between lyases that were unrecognized at the sequence level, and identified occurrences of convergent evolution. We have characterized structurally and enzymatically heparinase III from Bacteroides thetaiotaomicron (BtHepIII; gene BT4657), which is classified within the PL12 family. BtHepIII is a 72.5 kDa protein. We present the X-ray structures of two crystal forms of BtHepIII at resolution 1.8 and 2.4 Å. BtHepIII contains two domains, the N-terminal α-helical domain forming a toroid and the C-terminal β-sheet domain. Comparison with recently determined structures of two other heparinases from the same PL12 family allowed us to identify structural flexibility in the arrangement of the domains indicating open-close movement. Based on comparison with other GAG lyases, we identified Tyr301 as the main catalytic residue and confirmed this by site-directed mutagenesis. We have characterized substrate preference of BtHepIII toward sulfate-poor heparan sulfate substrate.
Collapse
Affiliation(s)
| | - Rong Shi
- Département de Biochimie, de Microbiologie et de Bio-informatique, PROTEO, and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, Québec City, QC G1V 0A6, Canada
| | - Deqiang Yao
- National Center for Protein Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China
| | - Ruo-Xu Gu
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada H4P 2R2, Canada
| | - Marie-Line Garron
- the Architecture et Fonction des Macromolécules Biologiques, UMR7257 CNRS, Aix-Marseille University, F-13288 Marseille, France, the INRA, USC1408 Architecture et Fonction des Macromolécules Biologiques, F-13288 Marseille, France
| | - Maia Cherney
- Department of Biochemistry, University of Saskatchewan, Saskatoon, S7N 5E5 Saskatchewan, Canada
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada H4P 2R2, Canada
| | - Eric Sterner
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Guoyun Li
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lingyun Li
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Miroslaw Cygler
- Department of Biochemistry, University of Saskatchewan, Saskatoon, S7N 5E5 Saskatchewan, Canada
| |
Collapse
|
18
|
Investigating the substrate binding mechanism of sulfotransferase 2A1 based on substrate tunnel analysis: a molecular dynamics simulation study. J Mol Model 2016; 22:176. [DOI: 10.1007/s00894-016-3041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
|
19
|
|
20
|
N-Monosubstituted Methoxy-oligo(ethylene glycol) Carbamate Ester Prodrugs of Resveratrol. Molecules 2015; 20:16085-102. [PMID: 26404221 PMCID: PMC6332312 DOI: 10.3390/molecules200916085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 12/18/2022] Open
Abstract
Resveratrol is a natural polyphenol with many interesting biological activities. Its pharmacological exploitation in vivo is, however, hindered by its rapid elimination via phase II conjugative metabolism at the intestinal and, most importantly, hepatic levels. One approach to bypass this problem relies on prodrugs. We report here the synthesis, characterization, hydrolysis, and in vivo pharmacokinetic behavior of resveratrol prodrugs in which the OH groups are engaged in an N-monosubstituted carbamate ester linkage. As promoiety, methoxy-oligo(ethylene glycol) groups (m-OEG) (CH3–[OCH2CH2]n–) of defined chain length (n = 3, 4, 6) were used. These are expected to modulate the chemico-physical properties of the resulting derivatives, much like longer poly(ethylene glycol) (PEG) chains, while retaining a relatively low MW and, thus, a favorable drug loading capacity. Intragastric administration to rats resulted in the appearance in the bloodstream of the prodrug and of the products of its partial hydrolysis, confirming protection from first-pass metabolism during absorption.
Collapse
|
21
|
Chen J, Gao L, Baek D, Liu C, Ruan Y, Shi H. Detoxification function of the Arabidopsis sulphotransferase AtSOT12 by sulphonation of xenobiotics. PLANT, CELL & ENVIRONMENT 2015; 38:1673-1682. [PMID: 25736839 DOI: 10.1111/pce.12525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 06/04/2023]
Abstract
Cytosolic sulphotransferases have been implicated in inactivation of endogenous steroid hormones and detoxification of xenobiotics in human and animals. Yet, the function of plant sulphotransferases in xenobiotic sulphonation and detoxification has not been reported. In this study, we show that the Arabidopsis sulphotransferase AtSOT12 could sulphonate the bacterial-produced toxin cycloheximide. Loss-of-function mutant sot12 exhibited hypersensitive phenotype to cycloheximide, and expression of AtSOT12 protein in yeast cells conferred resistance to this toxic compound. AtSOT12 exhibited broad specificity and could sulphonate a variety of xenobiotics including phenolic and polycyclic compounds. Enzyme kinetics analysis indicated that AtSOT12 has different selectivity for simple phenolics with different side chains, and the position of the side chain in the simple phenolic compounds affects substrate binding affinity and catalytic efficiency. We proposed that the broad specificity and induced production of AtSOT12 may have rendered this enzyme to not only modify endogenous molecules such as salicylic acid as we previously reported, but also sulphonate pathogen-produced toxic small molecules to protect them from infection. Sulphonation of small molecules in plants may constitute a rapid way to inactivate or change the physiochemical properties of biologically active molecules that could have profound effects on plant growth, development and defence.
Collapse
Affiliation(s)
- Jinhua Chen
- Pre-National Laboratory for Crop Germplasm Innovation and Resource Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Liqiong Gao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Dongwon Baek
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Chunlin Liu
- Pre-National Laboratory for Crop Germplasm Innovation and Resource Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Ying Ruan
- Pre-National Laboratory for Crop Germplasm Innovation and Resource Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
22
|
The impact of ligands on the structure and flexibility of sulfotransferases: a molecular dynamics simulation study. J Mol Model 2015; 21:190. [DOI: 10.1007/s00894-015-2739-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/15/2015] [Indexed: 01/11/2023]
|
23
|
Chen BH, Wang CC, Hou YH, Mao YC, Yang YS. Mechanism of sulfotransferase pharmacogenetics in altered xenobiotic metabolism. Expert Opin Drug Metab Toxicol 2015; 11:1053-71. [DOI: 10.1517/17425255.2015.1045486] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Zhang PP, Zhao L, Long SY, Tian P. The effect of ligands on the thermal stability of sulfotransferases: a molecular dynamics simulation study. J Mol Model 2015; 21:72. [PMID: 25750022 DOI: 10.1007/s00894-015-2625-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 02/15/2015] [Indexed: 11/24/2022]
Abstract
Human cytosolic sulfotransferases (hSULTs) are important phase II metabolic enzymes. They catalyze transfer of the sulfuryl-group (-SO3) from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to the hydroxyl or primary amine moieties of a large number of endogenous and xenobiotic substrates. Broad selectivity and specificity of binding and activity within the sulfortransferases family could be detected by thermal denaturation assays, which have been made more and more suitable for high throughput screening based on recent technical advances. Here molecular dynamics simulations were used to explore the effect of the cofactor (PAPS) and substrate (LCA) on the thermal stability of the enzyme. It was found that the apo-enzyme unfolded fastest upon heating. The holo-enzyme with bound substrate LCA unfolded slowest. This thermo-denaturation order is consistent with that observed in experiments. Further it was found that the cofactor and substrate will pronouncedly increase the thermal stability of the active pocket regions that interact directly with the ligands. In addition, cofactor and substrate show noticeable synergy effect on the thermal stability of the enzyme.
Collapse
Affiliation(s)
- Pu-pu Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | | | | | | |
Collapse
|
25
|
Tibbs ZE, Rohn-Glowacki KJ, Crittenden F, Guidry AL, Falany CN. Structural plasticity in the human cytosolic sulfotransferase dimer and its role in substrate selectivity and catalysis. Drug Metab Pharmacokinet 2015; 30:3-20. [DOI: 10.1016/j.dmpk.2014.10.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/02/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
|
26
|
Rakers C, Wolber G. Combining pharmacophore- and MD-based modelling for phase II metabolism prediction. J Cheminform 2014; 6:O15. [PMID: 24765113 PMCID: PMC3980176 DOI: 10.1186/1758-2946-6-s1-o15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Christin Rakers
- Computer-Aided Drug Design, Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Gerhard Wolber
- Computer-Aided Drug Design, Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
27
|
Abstract
INTRODUCTION Metabolism is one of the most important clearance pathways representing the major clearance route of 75% drugs. The four most common drug metabolizing enzymes (DME) that contribute significantly to elimination pathways of new chemical entities are cytochrome P450s, UDP-glucuronosyltransferases, aldehyde oxidase and sulfotransferases. Accurate prediction of human in vivo clearance by these enzymes, using both in vitro and in vivo tools, is critical for the success of drug candidates in human translation. AREAS COVERED Important recent advances of key DME are reviewed and highlighted in the following areas: major isoforms, tissue distribution, generic polymorphism, substrate specificity, species differences, mechanism of catalysis, in vitro-in vivo extrapolation and the importance of using optimal assay conditions and relevant animal models. EXPERT OPINION Understanding the clearance mechanism of a compound is the first step toward successful prediction of human clearance. It is critical to apply appropriate in vitro and in vivo methodologies and physiologically based models in human translation. While high-confidence prediction for P450-mediated clearance has been achieved, the accuracy of human clearance prediction is significantly lower for other enzyme classes. More accurate predictive methods and models are being developed to address these challenges.
Collapse
Affiliation(s)
- Li Di
- Pfizer, Inc., Pharmacokinetics, Dynamics and Metabolism , Groton, CT 06340 , USA +1 860 715 6172 ;
| |
Collapse
|
28
|
Butt CM, Stapleton HM. Inhibition of thyroid hormone sulfotransferase activity by brominated flame retardants and halogenated phenolics. Chem Res Toxicol 2013; 26:1692-702. [PMID: 24089703 DOI: 10.1021/tx400342k] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Many halogenated organic contaminants (HOCs) are considered endocrine disruptors and affect the hypothalamic-pituitary-thyroid axis, often by interfering with circulating levels of thyroid hormones (THs). We investigated one potential mechanism for TH disruption, inhibition of sulfotransferase activity. One of the primary roles of TH sulfation is to support the regulation of biologically active T3 through the formation of inactive THs. We investigated TH sulfotransferase inhibition by 14 hydroxylated polybrominated diphenyl ethers (OH BDEs), BDE 47, triclosan, and fluorinated, chlorinated, brominated, and iodinated analogues of 2,4,6-trihalogenated phenol and bisphenol A (BPA). A new mass spectrometry-based method was also developed to measure the formation rates of 3,3'-T2 sulfate (3,3'-T2S). Using pooled human liver cytosol, we investigated the influence of these HOCs on the sulfation of 3,3'-T2, a major substrate for TH sulfation. For the formation of 3,3'-T2S, the Michaelis constant (Km) was 1070 ± 120 nM and the Vmax was 153 ± 6.6 pmol min(-1) (mg of protein)(-1). All chemicals investigated inhibited sulfotransferase activity with the exception of BDE 47. The 2,4,6-trihalogenated phenols were the most potent inhibitors followed by the OH BDEs and then halogenated BPAs. The IC50 values for the OH BDEs were primarily in the low nanomolar range, which may be environmentally relevant. In silico molecular modeling techniques were also used to simulate the binding of OH BDE to SULT1A1. This study suggests that some HOCs, including antimicrobial chemicals and metabolites of flame retardants, may interfere with TH regulation through inhibition of sulfotransferase activity.
Collapse
Affiliation(s)
- Craig M Butt
- Nicholas School of the Environment, Duke University , Durham, North Carolina 27708, United States
| | | |
Collapse
|
29
|
Runge-Morris M, Kocarek TA. Expression of the sulfotransferase 1C family: implications for xenobiotic toxicity. Drug Metab Rev 2013; 45:450-9. [PMID: 24028175 DOI: 10.3109/03602532.2013.835634] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The SULT1C enzymes are a relatively under-studied branch of the cytosolic sulfotransferase (SULT) multigene family. Concrete information about SULT1C tissue-specific expression, substrate preference, role in physiology and regulation is just emerging in the literature. The role of SULT1Cs in normal physiology is uncertain, but SULT1C-catalyzed sulfonation of thyroid hormones may be a mechanism to titrate the pre-receptor levels of biologically active thyroid hormone in target tissues. Both rat and human cytosolic SULT1Cs are most noted for their ability to bioactivate potent procarcinogens such as N-hydroxy-2-acetylaminofluorene. This implicates a possible role for the SULT1Cs as modulators of environmental carcinogen exposure and determinants of neoplastic transformation. In humans, the SULT1Cs are likely to function physiologically in cell proliferation and organogenesis pathways during development, as SULT1Cs appear to be preferentially expressed during fetal life. In recent years, the SULT1C nomenclature as presented in the literature has undergone major changes in response to updated genomic information. The purpose of this review is to summarize the current literature on the SULT1Cs and to clarify perspectives on SULT1C species differences, tissue-specific expression, nomenclature and role in pathophysiology. The ultimate goal is to understand the undiscovered impact of SULT1C expression on hormone homeostasis and xenobiotic toxicity during human development and as a prelude to disease development later in life.
Collapse
Affiliation(s)
- Melissa Runge-Morris
- Institute of Environmental Health Sciences, Wayne State University , Detroit, MI , USA
| | | |
Collapse
|
30
|
Leyh TS, Cook I, Wang T. Structure, dynamics and selectivity in the sulfotransferase family. Drug Metab Rev 2013; 45:423-30. [PMID: 24025091 DOI: 10.3109/03602532.2013.835625] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Combined structure, function and molecular dynamics studies of human cytosolic sulfotransferases (SULT1A1 and 2A1) have revealed that these enzymes contain a ≈ 30-residue active-site cap whose structure responds to substrates and mediates their interactions. The binding of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) gates access to the active site by a remodeling of the cap that constricts the pore through which acceptors must pass to enter the active site. While the PAPS-bound enzyme spends the majority (≈ 95%) of its time in the constricted state, the pore isomerizes between the open and closed states when the nucleotide (PAPS) is bound. The dimensions of the open and closed pores place widely different steric constraints on substrate selectivity. Nature appears to have crafted these enzymes with two specificity settings - a closed-pore setting that admits a set of closely related structures, and an open setting that allows a far wider spectrum of acceptor geometries. The specificities of these settings seem well matched to the metabolic demands for homeostatic and defensive SULT functions. The departure of nucleotide requires that the cap open. This isomerization dependent release can explain both the product bursts and substrate inhibition seen in many SULTs. Here, the experimental underpinnings of the cap-mechanism are reviewed, and the advantages of such a mechanism are considered in the context of the cellular and metabolic environment in which these enzymes operate.
Collapse
Affiliation(s)
- Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine , Bronx, NY , USA
| | | | | |
Collapse
|
31
|
In silico mechanistic profiling to probe small molecule binding to sulfotransferases. PLoS One 2013; 8:e73587. [PMID: 24039991 PMCID: PMC3765257 DOI: 10.1371/journal.pone.0073587] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/28/2013] [Indexed: 01/01/2023] Open
Abstract
Drug metabolizing enzymes play a key role in the metabolism, elimination and detoxification of xenobiotics, drugs and endogenous molecules. While their principal role is to detoxify organisms by modifying compounds, such as pollutants or drugs, for a rapid excretion, in some cases they render their substrates more toxic thereby inducing severe side effects and adverse drug reactions, or their inhibition can lead to drug–drug interactions. We focus on sulfotransferases (SULTs), a family of phase II metabolizing enzymes, acting on a large number of drugs and hormones and showing important structural flexibility. Here we report a novel in silico structure-based approach to probe ligand binding to SULTs. We explored the flexibility of SULTs by molecular dynamics (MD) simulations in order to identify the most suitable multiple receptor conformations for ligand binding prediction. Then, we employed structure-based docking-scoring approach to predict ligand binding and finally we combined the predicted interaction energies by using a QSAR methodology. The results showed that our protocol successfully prioritizes potent binders for the studied here SULT1 isoforms, and give new insights on specific molecular mechanisms for diverse ligands’ binding related to their binding sites plasticity. Our best QSAR models, introducing predicted protein-ligand interaction energy by using docking, showed accuracy of 67.28%, 78.00% and 75.46%, for the isoforms SULT1A1, SULT1A3 and SULT1E1, respectively. To the best of our knowledge our protocol is the first in silico structure-based approach consisting of a protein-ligand interaction analysis at atomic level that considers both ligand and enzyme flexibility, along with a QSAR approach, to identify small molecules that can interact with II phase dug metabolizing enzymes.
Collapse
|
32
|
Thomas MP, Potter BVL. The structural biology of oestrogen metabolism. J Steroid Biochem Mol Biol 2013; 137:27-49. [PMID: 23291110 PMCID: PMC3866684 DOI: 10.1016/j.jsbmb.2012.12.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 02/07/2023]
Abstract
Many enzymes catalyse reactions that have an oestrogen as a substrate and/or a product. The reactions catalysed include aromatisation, oxidation, reduction, sulfonation, desulfonation, hydroxylation and methoxylation. The enzymes that catalyse these reactions must all recognise and bind oestrogen but, despite this, they have diverse structures. This review looks at each of these enzymes in turn, describing the structure and discussing the mechanism of the catalysed reaction. Since oestrogen has a role in many disease states inhibition of the enzymes of oestrogen metabolism may have an impact on the state or progression of the disease and inhibitors of these enzymes are briefly discussed. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Key Words
- 17β-HSD
- 17β-Hydroxysteroid dehydrogenase
- 17β-hydroxysteroid dehydrogenase
- 3,5-dinitrocatechol
- 3-(((8R,9S,13S,14S,16R,17S)-3,17-dihydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-16-yl)methyl)benzamide
- 3′-phosphoadenosine-5′-phosphate
- 3′-phosphoadenosine-5′-phosphosulfate
- Aromatase
- COMT
- DHEA(S)
- DHETNA
- DNC
- E1(S)
- E2(S)
- E2B
- E3
- E4
- ER
- FAD/FMN
- FG
- HFG(S)
- NADP(+)
- NADPH
- O5′-[9-(3,17β-dihydroxy-1,3,5(10)-estratrien-16β-yl)-nonanoyl]adenosine
- Oestrogen
- PAP
- PAPS
- Protein structure
- Reaction mechanism
- S-adenosyl methionine
- SAM
- SDR
- Sulfatase
- Sulfotransferase
- catechol-O-methyl transferase
- dehydroepiandrosterone (sulfate)
- estetrol
- estradiol (sulfate)
- estriol
- estrogen receptor
- estrone (sulfate)
- flavin adenine dinucleotide/flavin mononucleotide
- formylglycine
- hydroxyformylglycine (sulfate)
- mb-COMT
- membrane-bound COMT
- nicotinamide adenine dinucleotide phosphate (oxidised)
- nicotinamide adenine dinucleotide phosphate (reduced)
- s-COMT
- short-chain dehydrogenase/reductase
- soluble COMT
Collapse
Affiliation(s)
- Mark P Thomas
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | | |
Collapse
|
33
|
Cook I, Wang T, Almo SC, Kim J, Falany CN, Leyh TS. Testing the sulfotransferase molecular pore hypothesis. J Biol Chem 2013; 288:8619-8626. [PMID: 23362278 DOI: 10.1074/jbc.m112.445015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human cytosolic sulfotransferases (SULTs) regulate the activities of hundreds of signaling metabolites via transfer of the sulfuryl moiety (-SO3) from activated sulfate (3'-phosphoadenosine 5'-phosphosulfate) to the hydroxyls and primary amines of xeno- and endobiotics. How SULTs select substrates from the scores of competing ligands present in a cytosolic milieu is an important issue in the field. Selectivity appears to be sterically controlled by a molecular pore that opens and closes in response to nucleotide binding. This point of view is fostered by structures showing nucleotide-dependent pore closure and the fact that nucleotide binding induces an isomerization that restricts access to the acceptor-binding pocket. Molecular dynamics models underscore the importance of pore isomerization in selectivity and predict that specific molecular linkages stabilize the closed pore in response to nucleotide binding. To test the pore model, these linkages were disrupted in SULT2A1 via mutagenesis, and the effects on selectivity were determined. The mutations uncoupled nucleotide binding from selectivity and produced enzymes that no longer discriminated between large and small substrates. The mutations did not affect the affinity or turnover of small substrates but resulted in a 183-fold gain in catalytic efficiently toward large substrates. Models predict that an 11-residue "flap" covering the acceptor-binding pocket can open and admit large substrates when nucleotide is bound; a mutant structure demonstrated that this is so. In summary, the model was shown to be a robust, accurate predictor of SULT structure and selectivity whose general features will likely apply to other members of the SULT family.
Collapse
Affiliation(s)
- Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926
| | - Ting Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461-1926
| | - Jungwook Kim
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461-1926
| | - Charles N Falany
- Department Pharmacology and Toxicology, University of Alabama School of Medicine, Birmingham, Alabama 35294-0019
| | - Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926.
| |
Collapse
|
34
|
Chen Y, Zhang S, Zhou T, Huang C, McLaughlin A, Chen G. Liver X receptor alpha mediated genistein induction of human dehydroepiandrosterone sulfotransferase (hSULT2A1) in Hep G2 cells. Toxicol Appl Pharmacol 2013; 268:106-12. [PMID: 23352501 DOI: 10.1016/j.taap.2013.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 01/02/2013] [Accepted: 01/12/2013] [Indexed: 12/11/2022]
Abstract
Cytosolic sulfotransferases are one of the major families of phase II drug metabolizing enzymes. Sulfotransferase-catalyzed sulfonation regulates hormone activities, metabolizes drugs, detoxifies xenobiotics, and bioactivates carcinogens. Human dehydroepiandrosterone sulfotransferase (hSULT2A1) plays important biological roles by sulfating endogenous hydroxysteroids and exogenous xenobiotics. Genistein, mainly existing in soy food products, is a naturally occurring phytoestrogen with both chemopreventive and chemotherapeutic potential. Our previous studies have shown that genistein significantly induces hSULT2A1 in Hep G2 and Caco-2 cells. In this study, we investigated the roles of liver X receptor (LXRα) in the genistein induction of hSULT2A1. LXRs have been shown to induce expression of mouse Sult2a9 and hSULT2A1 gene. Our results demonstrate that LXRα mediates the genistein induction of hSULT2A1, supported by Western blot analysis results, hSULT2A1 promoter driven luciferase reporter gene assay results, and mRNA interference results. Chromatin immunoprecipitation (ChIP) assay results demonstrate that genistein increase the recruitment of hLXRα binding to the hSULT2A1 promoter. These results suggest that hLXRα plays an important role in the hSULT2A1 gene regulation. The biological functions of phytoestrogens may partially relate to their induction activity toward hydroxysteroid SULT.
Collapse
Affiliation(s)
- Yue Chen
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | | | |
Collapse
|
35
|
Human cytosolic glutathione transferases: structure, function, and drug discovery. Trends Pharmacol Sci 2012; 33:656-68. [DOI: 10.1016/j.tips.2012.09.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 11/19/2022]
|
36
|
Sulfonation of glycopeptide antibiotics by sulfotransferase StaL depends on conformational flexibility of aglycone scaffold. Proc Natl Acad Sci U S A 2012; 109:11824-9. [PMID: 22753479 DOI: 10.1073/pnas.1205377109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although glycopeptide antibiotics (GPAs), including vancomycin and teicoplanin, represent the most important class of anti-infective agents in the treatment of serious gram-positive bacterial infections, their usefulness is threatened by the emergence of resistant strains. GPAs are complex natural products consisting of a heptapeptide skeleton assembled via nonribosomal peptide synthesis and constrained through multiple crosslinks, with diversity resulting from enzymatic modifications by a variety of tailoring enzymes, which can be used to produce GPA analogues that could overcome antibiotic resistance. GPA-modifying sulfotransferases are promising tools for generating the unique derivatives. Despite significant sequence and structural similarities, these sulfotransferases modify distinct side chains on the GPA scaffold. To provide insight into the spatial diversity of modifications, we have determined the crystal structure of the ternary complex of bacterial sulfotransferase StaL with the cofactor product 3'-phosphoadenosine 5'-phosphate and desulfo-A47934 aglycone substrate. Desulfo-A47934 binds with the hydroxyl group on the 4-hydroxyphenylglycine in residue 1 directed toward the 3'-phosphoadenosine 5'-phosphate and hydrogen-bonded to the catalytic His67. Homodimeric StaL can accommodate GPA substrate in only one of the two active sites because of potential steric clashes. Importantly, the aglycone substrate demonstrates a flattened conformation, in contrast to the cup-shaped structures observed previously. Analysis of the conformations of this scaffold showed that despite the apparent rigidity due to crosslinking between the side chains, the aglycone scaffold displays substantial flexibility, important for enzymatic modifications by the GPA-tailoring enzymes. We also discuss the potential of using the current structural information in generating unique GPA derivatives.
Collapse
|
37
|
Cook I, Wang T, Falany CN, Leyh TS. A nucleotide-gated molecular pore selects sulfotransferase substrates. Biochemistry 2012; 51:5674-83. [PMID: 22703301 DOI: 10.1021/bi300631g] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human SULT2A1 is one of two predominant sulfotransferases in liver and catalyzes transfer of the sulfuryl moiety (-SO(3)) from activated sulfate (PAPS, 3'-phosphoadenosine 5-phosphosulfate) to hundreds of acceptors (metabolites and xenobiotics). Sulfation recodes the biologic activity of acceptors by altering their receptor interactions. The molecular basis on which these enzymes select and sulfonate specific acceptors from complex mixtures of competitors in vivo is a long-standing issue in the SULT field. Raloxifene, a synthetic steroid used in the prevention of osteoporosis, and dehydroepiandrosterone (DHEA), a ubiquitous steroid precusor, are reported to be sulfated efficiently by SULT2A1 in vitro, yet unlike DHEA, raloxifene is not sulfated in vivo. This selectivity was explored in initial rate and equilibrium binding studies that demonstrate pronounced binding antisynergy (21-fold) between PAPS and raloxifene, but not DHEA. Analysis of crystal structures suggests that PAP binding restricts access to the acceptor-binding pocket by restructuring a nine-residue segment of the pocket edge that constricts the active site opening, or "pore", that sieves substrates on the basis of their geometries. In silico docking predicts that raloxifene, which is considerably larger than DHEA, can bind only to the unliganded (open) enzyme, whereas DHEA binds both the open and closed forms. The predictions of these structures with regard to substrate binding are tested using equilibrium and pre-steady-state ligand binding studies, and the results confirm that a nucleotide-driven isomerization controls access to the acceptor-binding pocket and plays an important role in substrate selection by SULT2A1 and possibly other sulfotransferases.
Collapse
Affiliation(s)
- Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461-1926, USA
| | | | | | | |
Collapse
|