1
|
Wong YC, Centanni M, de Lange ECM. Physiologically Based Modeling Approach to Predict Dopamine D2 Receptor Occupancy of Antipsychotics in Brain: Translation From Rat to Human. J Clin Pharmacol 2019; 59:731-747. [PMID: 30676661 PMCID: PMC6590357 DOI: 10.1002/jcph.1365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/24/2018] [Indexed: 12/17/2022]
Abstract
Receptor occupancy (RO) is a translational biomarker for assessing drug efficacy and safety. We aimed to apply a physiologically based pharmacokinetic (PBPK) modeling approach to predict the brain dopamine D2 RO time profiles of antipsychotics. Clozapine and risperidone were modeled together with their active metabolites, norclozapine and paliperidone, First, in PK‐Sim a rat PBPK model was developed and optimized using literature plasma PK data. Then, blood‐brain barrier parameters including the expression and efflux transport kinetics of P‐glycoprotein were optimized using literature microdialysis data on brain extracellular fluid (brainECF), which were further adapted when translating the rat PBPK model into the human PBPK model. Based on the simulated drug and metabolite concentrations in brainECF, drug‐D2 receptor binding kinetics (association and dissociation rates) were incorporated in MoBi to predict RO. From an extensive literature search, 32 plasma PK data sets (16 from rat and 16 from human studies) and 23 striatum RO data sets (13 from rat and 10 from human studies) were prepared and compared with the model predictions. The rat PBPK‐RO model adequately predicted the plasma concentrations of the parent drugs and metabolites and the RO levels. The human PBPK‐RO model also captured the plasma PK and RO levels despite the large interindividual and interstudy variability, although it tended to underestimate the plasma concentrations and RO measured at late time points after risperidone dosing. The developed human PBPK‐RO model was successfully applied to predict the plasma PK and RO changes observed after risperidone dose reduction in a clinical trial in schizophrenic patients.
Collapse
Affiliation(s)
- Yin Cheong Wong
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Maddalena Centanni
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
2
|
Wong YC, Ilkova T, van Wijk RC, Hartman R, de Lange ECM. Development of a population pharmacokinetic model to predict brain distribution and dopamine D2 receptor occupancy of raclopride in non-anesthetized rat. Eur J Pharm Sci 2017; 111:514-525. [PMID: 29106979 DOI: 10.1016/j.ejps.2017.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/13/2017] [Accepted: 10/22/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Raclopride is a selective antagonist of the dopamine D2 receptor. It is one of the most frequently used in vivo D2 tracers (at low doses) for assessing drug-induced receptor occupancy (RO) in animals and humans. It is also commonly used as a pharmacological blocker (at high doses) to occupy the available D2 receptors and antagonize the action of dopamine or drugs on D2 in preclinical studies. The aims of this study were to comprehensively evaluate its pharmacokinetic (PK) profiles in different brain compartments and to establish a PK-RO model that could predict the brain distribution and RO of raclopride in the freely moving rat using a LC-MS based approach. METHODS Rats (n=24) received a 10-min IV infusion of non-radiolabeled raclopride (1.61μmol/kg, i.e. 0.56mg/kg). Plasma and the brain tissues of striatum (with high density of D2 receptors) and cerebellum (with negligible amount of D2 receptors) were collected. Additional microdialysis experiments were performed in some rats (n=7) to measure the free drug concentration in the extracellular fluid of the striatum and cerebellum. Raclopride concentrations in all samples were analyzed by LC-MS. A population PK-RO model was constructed in NONMEM to describe the concentration-time profiles in the unbound plasma, brain extracellular fluid and brain tissue compartments and to estimate the RO based on raclopride-D2 receptor binding kinetics. RESULTS In plasma raclopride showed a rapid distribution phase followed by a slower elimination phase. The striatum tissue concentrations were consistently higher than that of cerebellum tissue throughout the whole experimental period (10-h) due to higher non-specific tissue binding and D2 receptor binding in the striatum. Model-based simulations accurately predicted the literature data on rat plasma PK, brain tissue PK and D2 RO at different time points after intravenous or subcutaneous administration of raclopride at tracer dose (RO <10%), sub-pharmacological dose (RO 10%-30%) and pharmacological dose (RO >30%). CONCLUSION For the first time a predictive model that could describe the quantitative in vivo relationship between dose, PK and D2 RO of raclopride in non-anesthetized rat was established. The PK-RO model could facilitate the selection of optimal dose and dosing time when raclopride is used as tracer or as pharmacological blocker in various rat studies. The LC-MS based approach, which doses and quantifies a non-radiolabeled tracer, could be useful in evaluating the systemic disposition and brain kinetics of tracers.
Collapse
Affiliation(s)
- Yin Cheong Wong
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Trayana Ilkova
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Rob C van Wijk
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Robin Hartman
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
3
|
Raish M, Ahmad A, Alkharfy KM, Jan BL, Mohsin K, Ahad A, Al-Jenoobi FI, Al-Mohizea AM. Effects of Paeonia emodi on hepatic cytochrome P450 (CYP3A2 and CYP2C11) expression and pharmacokinetics of carbamazepine in rats. Biomed Pharmacother 2017; 90:694-698. [PMID: 28419964 DOI: 10.1016/j.biopha.2017.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/30/2017] [Accepted: 04/10/2017] [Indexed: 11/16/2022] Open
Abstract
Herbal medicines, dietary supplements, and other foods may pharmacokinetically and/or pharmacodynamically interact with carbamazepine (CBZ), which could lead to potential clinical consequences. Paeonia emodi (PE) is one of the herbs used as complementary therapy in the treatment of epileptic patients in some cultures, and may also be co-administered with CBZ. This study evaluates the effects of PE on the pharmacokinetics of CBZ and determines a possible mechanism of interaction. Rats were administered vehicle saline or PE (200mg/kg, p.o. daily for 7days), then administered a single CBZ dose (80mg/kg, p.o.) on day 7. Plasma samples were analyzed for CBZ concentrations using a sensitive reversed-phase high-performance liquid chromatography (RP-HPLC) assay. Pharmacokinetic parameters were calculated using non-compartmental analysis. The co-administration of PE with CBZ resulted in increased plasma maximum concentration (Cmax), area under the curve (AUC0-∞), and half-life (T½), by 14.61%, 48.12%, and 43.72%, respectively. The calculated oral clearance (CL/F) was reduced by 33.54%, while the volume of distribution (Vss) was unaffected. The PE extract also showed a significant potential to reduce CYP3A and CYP2C protein expression by approximately 50%. Therefore, a reduction in the metabolic capacity responsible for CBZ clearance appears to be the mechanism behind this herb-drug interaction. Consequently, the concomitant administration of PE and CBZ should be viewed cautiously. Further studies are needed to determine the clinical relevance of these observations.
Collapse
Affiliation(s)
- Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Ajaz Ahmad
- Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalid M Alkharfy
- Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Basit L Jan
- Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kazi Mohsin
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fahad I Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdullah M Al-Mohizea
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Mariaule G, De Cesco S, Airaghi F, Kurian J, Schiavini P, Rocheleau S, Huskić I, Auclair K, Mittermaier A, Moitessier N. 3-Oxo-hexahydro-1H-isoindole-4-carboxylic Acid as a Drug Chiral Bicyclic Scaffold: Structure-Based Design and Preparation of Conformationally Constrained Covalent and Noncovalent Prolyl Oligopeptidase Inhibitors. J Med Chem 2015; 59:4221-34. [PMID: 26619267 DOI: 10.1021/acs.jmedchem.5b01296] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Gaëlle Mariaule
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Stéphane De Cesco
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Francesco Airaghi
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Jerry Kurian
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Paolo Schiavini
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Sylvain Rocheleau
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Igor Huskić
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Anthony Mittermaier
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Nicolas Moitessier
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| |
Collapse
|
5
|
Qian S, Wang Q, Zuo Z. Improved brain uptake of peptide-based CNS drugs via alternative routes of administrations of its nanocarrier delivery systems: a promising strategy for CNS targeting delivery of peptides. Expert Opin Drug Metab Toxicol 2014; 10:1491-508. [DOI: 10.1517/17425255.2014.956080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Qian S, Wong YC, Zuo Z. Development, characterization and application of in situ gel systems for intranasal delivery of tacrine. Int J Pharm 2014; 468:272-82. [DOI: 10.1016/j.ijpharm.2014.04.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 04/03/2014] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
|
7
|
Wong YC, Qian S, Zuo Z. Pharmacokinetic Comparison Between the Long-Term Anesthetized, Short-Term Anesthetized and Conscious Rat Models in Nasal Drug Delivery. Pharm Res 2014; 31:2107-23. [DOI: 10.1007/s11095-014-1312-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 01/16/2014] [Indexed: 01/30/2023]
|
8
|
Fong SYK, Wong YC, Zuo Z. Alterations in the CNS effects of anti-epileptic drugs by Chinese herbal medicines. Expert Opin Drug Metab Toxicol 2013; 10:249-67. [DOI: 10.1517/17425255.2014.870554] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Interaction of carbamazepine with herbs, dietary supplements, and food: a systematic review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:898261. [PMID: 24023584 PMCID: PMC3760091 DOI: 10.1155/2013/898261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/17/2013] [Indexed: 11/17/2022]
Abstract
Background. Carbamazepine (CBZ) is a first-line antiepileptic drug which may be prone to drug interactions. Systematic review of herb- and food-drug interactions on CBZ is warranted to provide guidance for medical professionals when prescribing CBZ. Method. A systematic review was conducted on six English databases and four Chinese databases. Results. 196 out of 3179 articles fulfilled inclusion criteria, of which 74 articles were reviewed and 33 herbal products/dietary supplement/food interacting with CBZ were identified. No fatal or severe interactions were documented. The majority of the interactions were pharmacokinetic-based (80%). Traditional Chinese medicine accounted for most of the interactions (n = 17), followed by food (n = 10), dietary supplements (n = 3), and other herbs/botanicals (n = 3). Coadministration of 11 and 12 of the studied herbal products/dietary supplement/food significantly decreased or increased the plasma concentrations of CBZ. Regarding pharmacodynamic interaction, Xiao-yao-san, melatonin, and alcohol increased the side effects of CBZ while caffeine lowered the antiepileptic efficacy of CBZ. Conclusion. This review provides a comprehensive summary of the documented interactions between CBZ and herbal products/food/dietary supplements which assists healthcare professionals to identify potential herb-drug and food-drug interactions, thereby preventing potential adverse events and improving patients' therapeutic outcomes when prescribing CBZ.
Collapse
|
10
|
Wong YC, Zuo Z. Brain Disposition and Catalepsy After Intranasal Delivery of Loxapine: Role of Metabolism in PK/PD of Intranasal CNS Drugs. Pharm Res 2013; 30:2368-84. [DOI: 10.1007/s11095-013-1080-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/12/2013] [Indexed: 02/03/2023]
|
11
|
Campagna-Slater V, Pottel J, Therrien E, Cantin LD, Moitessier N. Development of a computational tool to rival experts in the prediction of sites of metabolism of xenobiotics by p450s. J Chem Inf Model 2012; 52:2471-83. [PMID: 22916680 DOI: 10.1021/ci3003073] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The metabolism of xenobiotics--and more specifically drugs--in the liver is a critical process controlling their half-life. Although there exist experimental methods, which measure the metabolic stability of xenobiotics and identify their metabolites, developing higher throughput predictive methods is an avenue of research. It is expected that predicting the chemical nature of the metabolites would be an asset for designing safer drugs and/or drugs with modulated half-lives. We have developed IMPACTS (In-silico Metabolism Prediction by Activated Cytochromes and Transition States), a computational tool combining docking to metabolic enzymes, transition state modeling, and rule-based substrate reactivity prediction to predict the site of metabolism (SoM) of xenobiotics. Its application to sets of CYP1A2, CYP2C9, CYP2D6, and CYP3A4 substrates and comparison to experts' predictions demonstrates its accuracy and significance. IMPACTS identified an experimentally observed SoM in the top 2 predicted sites for 77% of the substrates, while the accuracy of biotransformation experts' prediction was 65%. Application of IMPACTS to external sets and comparison of its accuracy to those of eleven other methods further validated the method implemented in IMPACTS.
Collapse
Affiliation(s)
- Valérie Campagna-Slater
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, QC H3A 0B8, Canada
| | | | | | | | | |
Collapse
|