1
|
El-Ashmawy NE, Al-Ashmawy GM, Hamada OB, Khedr NF. The role of ABCG2 in health and disease: Linking cancer therapy resistance and other disorders. Life Sci 2025; 360:123245. [PMID: 39561874 DOI: 10.1016/j.lfs.2024.123245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/13/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
All biological systems have adenosine triphosphate (ATP) binding cassette (ABC) transporters, one of the significant protein superfamilies involved in transport across membranes. ABC transporters have been implicated in the etiology of diseases like metabolic disorders, cancer, and Alzheimer's disease. ATP-binding cassette superfamily G member 2 (ABCG2), one of the ABC transporters, is necessary for the ATP-dependent efflux of several endogenous and exogenous substances. Consequently, it maintained cellular homeostasis and shielded tissue from xenobiotic substances. ABCG2 was initially identified in an Adriamycin-selected breast cancer cell line (MCF-7/AdrVp) and was linked to the emergence of multidrug resistance (MDR) in cancerous cells. Under many pathophysiological conditions, including inflammation, disease pathology, tissue injury, infection, and in response to xenobiotics and endogenous substances, the expression of ABCG2 undergoes alterations that result in modifications in its function and activity. Genetic variants in the ABCG2 transporter can potentially impact its expression and function, contributing to the development of many disorders. This review aimed to illustrate the impact of ABCG2 expression and its variants on oral drug bioavailability, MDR in specific cancer cells, explore the relationship between ABCG2 expression and other disorders such as gout, Alzheimer's disease, epilepsy, and erythropoietic protoporphyria, and demonstrate the influence of various synthetic and natural compounds in regulating ABCG2 expression.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Tanta University, Faculty of Pharmacy, Department of Biochemistry, Tanta Postal Code: 31527, Egypt; The British University in Egypt, Faculty of Pharmacy, Department of Pharmacology & Biochemistry, El Sherouk City, Cairo Postal Code: 11837, Egypt.
| | - Ghada M Al-Ashmawy
- Tanta University, Faculty of Pharmacy, Department of Biochemistry, Tanta Postal Code: 31527, Egypt; Alsalam University in Egypt, Faculty of Pharmacy, Department of Biochemistry, Kafr El Zayat, Egypt.
| | - Omnia B Hamada
- Tanta University, Faculty of Pharmacy, Department of Biochemistry, Tanta Postal Code: 31527, Egypt.
| | - Naglaa F Khedr
- Tanta University, Faculty of Pharmacy, Department of Biochemistry, Tanta Postal Code: 31527, Egypt.
| |
Collapse
|
2
|
Ibrahim H, El Kerdawy AM, Abdo A, Sharaf Eldin A. Similarity-based machine learning framework for predicting safety signals of adverse drug–drug interactions. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
3
|
Bile Duct Obstruction Leads to Increased Intestinal Expression of Breast Cancer Resistance Protein With Reduced Gastrointestinal Absorption of Imatinib. J Pharm Sci 2019; 108:3130-3137. [DOI: 10.1016/j.xphs.2019.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/04/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
|
4
|
Is a pharmacogenomic panel useful to estimate the risk of oxaliplatin-related neurotoxicity in colorectal cancer patients? THE PHARMACOGENOMICS JOURNAL 2019; 19:465-472. [PMID: 30713338 DOI: 10.1038/s41397-019-0078-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/22/2018] [Accepted: 12/21/2018] [Indexed: 11/09/2022]
Abstract
Oxaliplatin-induced peripheral neurotoxicity (OXPN) is a dose-limiting toxicity in colorectal cancer (CRC) patients. Single nucleotide polymorphisms (SNPs) in genes involved in drug transport may lead to higher intracellular oxaliplatin accumulation in the dorsal root ganglia and thus increased risk of OXPN. In this study, a panel of 5 SNPs, namely ABCC2 (-24C > T/rs717620 and c.4544 G > A/rs8187710), ABCG2 (c.421 C > A/rs2231142), ABCB1 (c.3435 C > T/rs1045642) and SLC31A1 (c.-36 + 2451 T > G/rs10981694), was evaluated to assess their association with grade 2-3 OXPN in metastatic CRC patients. SNPs were considered according to a dominant model (heterozygous + homozygous). Germline DNA was available from 120 patients who received oxaliplatin between 2010 and 2016. An external cohort of 80 patients was used to validate our results. At the univariable logistic analyses, there were no significant associations between SNPs and incidence of OXPN. Taking into account the strength of observed association between OXPN and the SNPs, a clinical risk score was developed as linear predictor from a multivariable logistic model including all the SNPs together. This score was significantly associated with grade 2-3 OXPN (p = 0.036), but the external calibration was not satisfactory due to relevant discrepancies between the two series. Our data suggest that the concomitant evaluation of multiple SNPs in oxaliplatin transporters is an exploratory strategy that may deserve further investigation for treatment customization in CRC patients.
Collapse
|
5
|
Correlation Analysis of Potential Breast Cancer Resistance Protein Probes in Different Monolayer Systems. J Pharm Sci 2018; 107:2742-2747. [DOI: 10.1016/j.xphs.2018.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 06/22/2018] [Accepted: 07/17/2018] [Indexed: 01/23/2023]
|
6
|
Liu H, Dong K, Zhang W, Summerfield SG, Terstappen GC. Prediction of brain:blood unbound concentration ratios in CNS drug discovery employing in silico and in vitro model systems. Drug Discov Today 2018; 23:1357-1372. [PMID: 29548981 DOI: 10.1016/j.drudis.2018.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/03/2018] [Accepted: 03/08/2018] [Indexed: 12/15/2022]
Abstract
Recent years have seen a paradigm shift away from optimizing the brain:blood concentration ratio toward the more relevant brain:blood unbound concentration ratio (Kp,uu,br) in CNS drug discovery. Here, we review the recent developments in the in silico and in vitro model systems to predict the Kp,uu,br of discovery compounds with special emphasis on the in-vitro-in-vivo correlation. We also discuss clinical 'translation' of rodent Kp,uu,br and highlight the future directions for improvement in brain penetration prediction. Important in this regard are in silico Kp,uu,br models built on larger datasets of high quality, calibration and deeper understanding of experimental in vitro transporter systems, and better understanding of blood-brain barrier transporters and their in vivo relevance aside from P-gp and BCRP.
Collapse
Affiliation(s)
- Houfu Liu
- Platform Technology and Science, GlaxoSmithKline R&D Center, Shanghai, China.
| | - Kelly Dong
- Platform Technology and Science, GlaxoSmithKline R&D Center, Shanghai, China
| | - Wandong Zhang
- Platform Technology and Science, GlaxoSmithKline R&D Center, Shanghai, China
| | - Scott G Summerfield
- Bioanalysis, Immunogenicity and Biomarker, Platform Technology and Science, GlaxoSmithKline, Ware, UK
| | - Georg C Terstappen
- Platform Technology and Science, GlaxoSmithKline R&D Center, Shanghai, China
| |
Collapse
|
7
|
Fu ZY. Role of ATP-binding cassette transporters, apoptosis, and long non-coding RNAs in gastric cancer multidrug resistance. Shijie Huaren Xiaohua Zazhi 2017; 25:2838-2850. [DOI: 10.11569/wcjd.v25.i32.2838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer multidrug resistance refers to the cross resistance of cancer cells to a variety of anticancer drugs, which can be primary or secondary. Several mechanisms attribute to cancer multidrug resistance. In this paper, the recent progress in the understanding of the mechanisms of multi-drug resistance of gastric cancer cells with regard to the role of adenosine triphosphate binding cassette transporters, apoptosis, and long non-coding RNAs is reviewed.
Collapse
Affiliation(s)
- Zhao-Ying Fu
- Institute of Molecular Biology and Immunology, Medical School of Yan'an University, Yan'an 716000, Shaanxi Province, China
| |
Collapse
|
8
|
Liu H, Huang L, Li Y, Fu T, Sun X, Zhang YY, Gao R, Chen Q, Zhang W, Sahi J, Summerfield S, Dong K. Correlation between Membrane Protein Expression Levels and Transcellular Transport Activity for Breast Cancer Resistance Protein. Drug Metab Dispos 2017; 45:449-456. [DOI: 10.1124/dmd.116.074245] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/10/2017] [Indexed: 01/16/2023] Open
|
9
|
Manzini L, Halwachs S, Girolami F, Badino P, Honscha W, Nebbia C. Interaction of mammary bovine ABCG2 with AFB1 and its metabolites and regulation by PCB 126 in a MDCKII in vitro model. J Vet Pharmacol Ther 2017; 40:591-598. [PMID: 28198024 DOI: 10.1111/jvp.12397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/23/2016] [Indexed: 12/27/2022]
Abstract
The ATP-binding cassette efflux transporter ABCG2 plays a key role in the mammary excretion of drugs and toxins in humans and animals. Aflatoxins (AF) are worldwide contaminants of food and feed commodities, while PCB 126 is a dioxin-like PCB which may contaminate milk and dairy products. Both compounds are known human carcinogens. The interactions between AF and bovine ABCG2 (bABCG2) as well as the effects of PCB 126 on its efflux activity have been investigated by means of the Hoechst H33342 transport assay in MDCKII cells stably expressing mammary bABCG2. Both AFB1 and its main milk metabolite AFM1 showed interaction with bABCG2 even at concentrations approaching the legal limits in feed and food commodities. Moreover, PCB 126 significantly enhanced bABCG2 functional activity. Specific inhibitors of either AhR (CH233191) or ABCG2 (Ko143) were able to reverse the PCB 126-induced increase in bABCG2 transport activity, showing the specific upregulation of the efflux protein by the AhR pathway. The incubation of PCB 126-pretreated cells with AFM1 was able to substantially reverse such effect, with still unknown mechanism(s). Overall, results from this study point to AFB1 and AFM1 as likely bABCG2 substrates. The PCB 126-dependent increased activity of the transporter could enhance the ABCG2-mediated excretion into dairy milk of chemicals (i.e., drugs and toxins) potentially harmful to neonates and consumers.
Collapse
Affiliation(s)
- L Manzini
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - S Halwachs
- Institute of Veterinary Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - F Girolami
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - P Badino
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - W Honscha
- Institute of Veterinary Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - C Nebbia
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| |
Collapse
|
10
|
Gay C, Toulet D, Le Corre P. Pharmacokinetic drug-drug interactions of tyrosine kinase inhibitors: A focus on cytochrome P450, transporters, and acid suppression therapy. Hematol Oncol 2016; 35:259-280. [DOI: 10.1002/hon.2335] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Caroline Gay
- Pôle Pharmacie; Service Hospitalo-Universitaire de Pharmacie; CHU de Rennes Rennes Cedex France
| | - Delphine Toulet
- Pôle Pharmacie; Service Hospitalo-Universitaire de Pharmacie; CHU de Rennes Rennes Cedex France
| | - Pascal Le Corre
- Pôle Pharmacie; Service Hospitalo-Universitaire de Pharmacie; CHU de Rennes Rennes Cedex France
- Laboratoire de Pharmacie Galénique, Biopharmacie et Pharmacie Clinique; IRSET U1085, Faculté de Pharmacie, Université de Rennes 1; Rennes Cedex France
| |
Collapse
|
11
|
Li XF, Huang QY, Yang WZ, Wang HJ, Li CW. Alterations in ACE and ABCG2 expression levels in the testes of rats subjected to atropine-induced toxicity. Mol Med Rep 2016; 14:5211-5216. [PMID: 27779686 DOI: 10.3892/mmr.2016.5857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 07/20/2016] [Indexed: 11/06/2022] Open
Abstract
Atropine-induced damage is associated with enzyme and protein alterations. The aim of the present study was to investigate atropine‑induced alterations in testicular expression levels of angiotensin‑converting enzyme (ACE) and adenosine 5'-triphosphate binding cassette sub‑family G member 2 (ABCG2) following atropine treatment. Male Wistar rats received 15 mg/kg/day atropine for 7 days; control rats received an identical volume of saline, Following treatment, the testes were harvested for immunohistochemistry and in situ hybridization to examine the protein and gene expression levels of ACE and ABCG2 by digital image analysis. ACE gene and protein expression levels were significantly reduced in the testes of atropine‑treated rats, compared with control rats (P=0.0001 and P<0.001, respectively). In addition, ABCG2 gene and protein expression levels were significantly increased in the testes of atropine‑treated rats, compared with control rats (P=0.0017 and P<0.001, respectively). Thus, the results of the present study demonstrate that testicular protein and gene expression levels of ACE and ABCG2 were altered as a result of atropine‑induced toxicity in the rats. These alterations may result in abnormal testicular function, and the proteins and genes identified in the present study may be useful to elucidate the mechanisms underlying atropine‑induced toxicity and provide a direction for further studies.
Collapse
Affiliation(s)
- Xue-Fang Li
- Library of Dali University, Dali, Yunnan 671003, P.R. China
| | - Quan-Yong Huang
- Department of Pathology, School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, P.R. China
| | - Wen-Zhong Yang
- Department of Pathology, School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, P.R. China
| | - Hui-Jie Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, P.R. China
| | - Can-Wei Li
- Department of Epidemiology and Health Statistics, School of Public Health, Dali University, Dali, Yunnan 671000, P.R. China
| |
Collapse
|
12
|
|
13
|
Schwenk MH, Pai AB. Drug Transporter Function--Implications in CKD. Adv Chronic Kidney Dis 2016; 23:76-81. [PMID: 26979146 DOI: 10.1053/j.ackd.2016.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 01/01/2023]
Abstract
Drug transporters typically move substrates, including drugs, in an intracellular to extracellular direction and thus are efflux transporters. There is a small subset of transporters that move substrates in the opposite direction and are classified as influx transporters. Collectively, drug transporters contribute to the pharmacokinetic profile of a wide variety of drugs and other molecules including xenobiotics, metabolites, and endogenous solutes. Identification of genetic variants in the genes that encode these transporters is an emerging area of pharmacogenomics. Many polymorphisms of the multitude of genes that code for the transporters within the 2 major superfamilies (ATP-binding cassette transporters and solute carrier transporters) have been identified. Studies have shown that many single-nucleotide polymorphisms are associated with changes in protein expression, functionality, and drug exposure; however, there are limited data for most single-nucleotide polymorphisms and impact on clinical end points. Preliminary data suggest that patients with CKD may have reduced transporter function that may have effects on exposure and toxicity profiles. Additional research translating the functional significance of polymorphisms on clinical pharmacokinetics and relevant disease-specific end points will provide further understanding of the role of genetic variations in transporter genes.
Collapse
|
14
|
Chang K, Kong YY, Dai B, Ye DW, Qu YY, Wang Y, Jia ZW, Li GX. Combination of circulating tumor cell enumeration and tumor marker detection in predicting prognosis and treatment effect in metastatic castration-resistant prostate cancer. Oncotarget 2015; 6:41825-36. [PMID: 26497689 PMCID: PMC4747191 DOI: 10.18632/oncotarget.6167] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/04/2015] [Indexed: 12/13/2022] Open
Abstract
Although circulating tumor cell (CTC) enumeration in peripheral blood has already been validated as a reliable biomarker in predicting prognosis in metastatic castration-resistant prostate cancer (mCRPC), patients with favorable CTC counts (CTC < 5/7.5 ml) still experience various survival times. Assays that can reduce patients' risks are urgently needed. In this study, we set up a real-time quantitative polymerase chain reaction (RT-qPCR) method to detect epithelial-mesenchymal transition (EMT) and stem cell gene expression status in peripheral blood to validate whether they could complement CTC enumeration. From January 2013 to June 2014 we collected peripheral blood from 70 mCRPC patients and enumerated CTC in these blood samples using CellSearch system. At the same time, stem cell-related genes (ABCG2, PROM1 and PSCA) and EMT-related genes (TWIST1 and vimentin) were detected in these peripheral blood samples using an RT-qPCR assay. Patient overall survival (OS) and treatment methods were recorded in the follow-up. For patients who received first-line chemotherapy, docetaxel plus prednisone, PSA progression-free survival (PSA-PFS) and PSA response rate were recorded. At the time of analysis, 35 patients had died of prostate cancer with a median follow-up of 16.0 months. Unfavorable CTC enumerations (CTC ≥5/7.5 ml) were predictive of shorter OS (p = 0.01). Also, positive stem cell gene expression indicated poor prognosis in mCRPC patients (p = 0.01). However, EMT gene expression status failed to show any prognostic value in OS (p = 0.78). A multivariate analysis indicated that serum albumin (p = 0.04), ECOG performance status (p < 0.01), CTC enumeration (p = 0.02) and stem cell gene expression status (p = 0.01) were independent prognostic factors for OS. For the 40 patients categorized into the favorable CTC enumeration group, positive stem cell gene expression also suggested poor prognosis (p < 0.01). A combined prognostic model consisting of stem cell gene expression and CTC enumeration increased the concordance probability estimated value from 0.716 to 0.889 in comparison with CTC enumeration alone. For patients who received docetaxel plus prednisone as first-line chemotherapy, positive stem cell gene expression suggested a poor PSA-PFS (p = 0.01) and a low PSA response rate (p = 0.008). However, CTC enumeration and EMT gene expression status did not affect PSA-PFS or PSA response rates. As a result, detection of peripheral blood stem cell gene expression could complement CTC enumeration in predicting OS and docetaxel-based treatment effects in mCRPC patients.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Cell Count
- Cell Line, Tumor
- Disease-Free Survival
- Docetaxel
- Epithelial-Mesenchymal Transition/drug effects
- Epithelial-Mesenchymal Transition/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Kallikreins/blood
- Kaplan-Meier Estimate
- Male
- Middle Aged
- Multivariate Analysis
- Neoplasm Metastasis
- Neoplastic Cells, Circulating/drug effects
- Neoplastic Cells, Circulating/pathology
- Neoplastic Stem Cells/chemistry
- Neoplastic Stem Cells/drug effects
- Predictive Value of Tests
- Prednisone/administration & dosage
- Proportional Hazards Models
- Prospective Studies
- Prostate-Specific Antigen/blood
- Prostatic Neoplasms, Castration-Resistant/blood
- Prostatic Neoplasms, Castration-Resistant/diagnosis
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/mortality
- Prostatic Neoplasms, Castration-Resistant/pathology
- Real-Time Polymerase Chain Reaction
- Reproducibility of Results
- Risk Factors
- Serum Albumin/analysis
- Serum Albumin, Human
- Taxoids/administration & dosage
- Time Factors
- Treatment Outcome
Collapse
Affiliation(s)
- Kun Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yun-Yi Kong
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan-Yuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhong-Wei Jia
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gao-Xiang Li
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Kang D, Park JM, Jung CK, Lee BI, Oh ST, Choi MG. Prognostic impact of membranous ATP-binding cassette Sub-family G member 2 expression in patients with colorectal carcinoma after surgical resection. Cancer Biol Ther 2015; 16:1438-44. [PMID: 26176272 DOI: 10.1080/15384047.2015.1071736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ATP-binding cassette sub-family G member 2 (ABCG2) is a transporter protein that has been associated with multidrug resistance and poor prognosis in several types of cancers. In colorectal cancers, however, the prognostic value of ABCG2 expression is not yet clear. ABCG2 expression was analyzed by immunohistochemistry using tissue microarrays in 234 consecutive patients who underwent surgical resection. The ABCG2 expression level was defined by the composite score, determined by multiplying intensity and percentage of tumor staining scores. This was dichotomized at the median, and the association of ABCG2 expression with disease severity and patient survival was determined. ABCG2 expression in the cytoplasm and membrane was observed in 77.8% and 61.5% of the samples, respectively. High expression of ABCG2 in both the cytoplasm and membrane was found more frequently in well-differentiated lesions (P < 0.05). High expression of membranous ABCG2 was significantly associated with better overall survival (hazard ratio [HR], 0.624; 95% confidence interval [CI], 0.411-0.948; P = 0.027) and disease-specific survival (HR, 0.499; 95% CI, 0.308 - 0.808; P = 0.005) compared to low expression. However, cytoplasmic expression of ABCG2 was not significantly associated with patient survival. The expression level of membranous ABCG2 in colorectal tumors can predict post-operative patient survival, suggesting the potential for ABCG2 as a prognostic biomarker.
Collapse
Affiliation(s)
- Donghoon Kang
- a Department of Internal Medicine ; College of Medicine ; The Catholic University of Korea ; Seoul , Korea
| | - Jae Myung Park
- a Department of Internal Medicine ; College of Medicine ; The Catholic University of Korea ; Seoul , Korea
| | - Chan Kwon Jung
- b Hospital Pathology ; College of Medicine ; The Catholic University of Korea ; Seoul , Korea
| | - Bo-In Lee
- a Department of Internal Medicine ; College of Medicine ; The Catholic University of Korea ; Seoul , Korea
| | - Seong Taek Oh
- c Surgery: College of Medicine ; The Catholic University of Korea ; Seoul , Korea
| | - Myung-Gyu Choi
- a Department of Internal Medicine ; College of Medicine ; The Catholic University of Korea ; Seoul , Korea
| |
Collapse
|
16
|
Ai N, Fan X, Ekins S. In silico methods for predicting drug-drug interactions with cytochrome P-450s, transporters and beyond. Adv Drug Deliv Rev 2015; 86:46-60. [PMID: 25796619 DOI: 10.1016/j.addr.2015.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/05/2015] [Accepted: 03/11/2015] [Indexed: 12/13/2022]
Abstract
Drug-drug interactions (DDIs) are associated with severe adverse effects that may lead to the patient requiring alternative therapeutics and could ultimately lead to drug withdrawal from the market if they are severe. To prevent the occurrence of DDI in the clinic, experimental systems to evaluate drug interaction have been integrated into the various stages of the drug discovery and development process. A large body of knowledge about DDI has also accumulated through these studies and pharmacovigillence systems. Much of this work to date has focused on the drug metabolizing enzymes such as cytochrome P-450s as well as drug transporters, ion channels and occasionally other proteins. This combined knowledge provides a foundation for a hypothesis-driven in silico approach, using either cheminformatics or physiologically based pharmacokinetics (PK) modeling methods to assess DDI potential. Here we review recent advances in these approaches with emphasis on hypothesis-driven mechanistic models for important protein targets involved in PK-based DDI. Recent efforts with other informatics approaches to detect DDI are highlighted. Besides DDI, we also briefly introduce drug interactions with other substances, such as Traditional Chinese Medicines to illustrate how in silico modeling can be useful in this domain. We also summarize valuable data sources and web-based tools that are available for DDI prediction. We finally explore the challenges we see faced by in silico approaches for predicting DDI and propose future directions to make these computational models more reliable, accurate, and publically accessible.
Collapse
Affiliation(s)
- Ni Ai
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| | - Sean Ekins
- Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, NC 27526, USA.
| |
Collapse
|
17
|
Lee MR, Ji SY, Mia-Jan K, Cho MY. Chemoresistance of CD133(+) colon cancer may be related with increased survivin expression. Biochem Biophys Res Commun 2015; 463:229-34. [PMID: 26002465 DOI: 10.1016/j.bbrc.2015.05.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 05/09/2015] [Indexed: 12/21/2022]
Abstract
CD133, putative cancer stem cell marker, deemed to aid chemoresistance. However, this claim has been challenged recently and we previously reported that patients with CD133(+) colon cancer have benefit from 5-fluorouracil (5-FU) chemotherapy incontrast to no benefit in patients with CD133(-) cancer. To elucidate the role of CD133 expression in chemoresistance, we silenced the CD133 expression in a colon cancer cell line and determined its effect on the biological characteristics downstream. We comparatively analyzed the sequential changes of MDR1, ABCG2, AKT1 and survivin expression and the result of proliferation assay (WST-1 assay) with 5-FU treatment in CD133(+) and siRNA-induced CD133(-) cells, derived from Caco-2 colon cancer cell line. 5-FU treatment induced significantly increase of the mRNA expression of MDR1, ABCG2 and AKT1genes, but not protein level. CD133 had little to no effect on the mRNA and protein expression of these genes. However, survivin expression at mRNA and protein level were significantly increased in CD133(+) cells compared with siRNA-induced CD133-cells and Mock (not sorted CD133(+) cells) at 96 h after siRNA transfection. The cytotoxicity assay demonstrated notable increase of chemoresistance to 5-FU treatment (10 μM) in CD133(+) cells at 96 h after siRNA transfection. From this study, we conclude that CD133(+) cells may have chemoresistance to 5-FU through the mechanism which is related with survivin expression, instead of MDR1, ABCG2 and AKT1 expression. Therefore a survivin inhibitor can be a new target for effective treatment of CD133(+) colon cancer.
Collapse
Affiliation(s)
- Mi-Ra Lee
- Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju, South Korea
| | - Sun-Young Ji
- Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju, South Korea
| | - Khalilullah Mia-Jan
- Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju, South Korea
| | - Mee-Yon Cho
- Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju, South Korea; Institute of Genomic Cohort, Yonsei University, Wonju College of Medicine, Wonju, South Korea.
| |
Collapse
|
18
|
Ion channel expression as promising cancer biomarker. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2685-702. [PMID: 25542783 DOI: 10.1016/j.bbamem.2014.12.016] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/10/2014] [Accepted: 12/16/2014] [Indexed: 12/11/2022]
Abstract
Cancer is a disease with marked heterogeneity in both response to therapy and survival. Clinical and histopathological characteristics have long determined prognosis and therapy. The introduction of molecular diagnostics has heralded an explosion in new prognostic factors. Overall, histopathology, immunohistochemistry and molecular biology techniques have described important new prognostic subgroups in the different cancer categories. Ion channels and transporters (ICT) are a new class of membrane proteins which are aberrantly expressed in several types of human cancers. Besides regulating different aspect of cancer cell behavior, ICT can now represent novel cancer biomarkers. A summary of the data obtained so far and relative to breast, prostate, lung, colorectal, esophagus, pancreatic and gastric cancers are reported. Special emphasis is given to those studies aimed at relating specific ICT or a peculiar ICT profile with current diagnostic methods. Overall, we are close to exploit ICTs for diagnostic, prognostic or predictive purposes in cancer. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
|
19
|
Basseville A, Robey RW, Bahr JC, Bates SE. Breast Cancer Resistance Protein (BCRP) or ABCG2. DRUG TRANSPORTERS 2014:187-221. [DOI: 10.1002/9781118705308.ch11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Poirier A, Portmann R, Cascais AC, Bader U, Walter I, Ullah M, Funk C. The need for human breast cancer resistance protein substrate and inhibition evaluation in drug discovery and development: why, when, and how? Drug Metab Dispos 2014; 42:1466-77. [PMID: 24989889 DOI: 10.1124/dmd.114.058248] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although the multiplicity in transport proteins assessed during drug development is continuously increasing, the clinical relevance of the breast cancer resistance protein (BCRP) is still under debate. Here, our aim is to rationalize the need to consider BCRP substrate and inhibitor interactions and to define optimum selection and acceptance criteria between cell-based and vesicle-based assays in vitro. Information on the preclinical and clinical pharmacokinetics (PK), drug-drug interactions, and pharmacogenomics data was collated for 13 marketed drugs whose PK is reportedly associated with BCRP interaction. Clinical examples where BCRP impacts drug PK and efficacy appear to be rare and confounded by interactions with other transporters. Thirty-seven compounds were selected to be tested as BCRP substrates in a cell-based assay using MDCKII cells (Madin-Darby canine kidney cells) and 18 in membrane vesicles. Depending on the physicochemical compound properties, we observed both in vitro systems to give false-negative readouts. In addition, the inhibition potential of 19 compounds against BCRP was assessed in vesicles and in MDCKII cells, where we observed significant system and substrate-dependent IC50 values. Therefore, neither of the two test systems is superior to the other. Instead, one system may offer advantages under certain situations (e.g., low permeability) and thus should be selected based on the physicochemical compound properties. Finally, given the clinical relevance of BCRP, we propose that its evaluation should remain issue-driven: for low permeable, low bioavailable drugs, in particular when other more common processes do not allow a mechanistic understanding of any unexpected absorption or brain disposition, and for drugs with a low therapeutic window.
Collapse
Affiliation(s)
- Agnès Poirier
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Renée Portmann
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Anne-Christine Cascais
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Urs Bader
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Isabelle Walter
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Mohammed Ullah
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Christoph Funk
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
21
|
González-Lobato L, Real R, Herrero D, de la Fuente A, Prieto J, Marqués M, Álvarez A, Merino G. Novelin vitrosystems for prediction of veterinary drug residues in ovine milk and dairy products. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 31:1026-37. [DOI: 10.1080/19440049.2014.908261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Genetic factors affecting statin concentrations and subsequent myopathy: a HuGENet systematic review. Genet Med 2014; 16:810-9. [PMID: 24810685 DOI: 10.1038/gim.2014.41] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/31/2014] [Indexed: 01/14/2023] Open
Abstract
Statins, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors, have proven efficacy in both lowering low-density-lipoprotein levels and preventing major coronary events, making them one of the most commonly prescribed drugs in the United States. Statins exhibit a class-wide side effect of muscle toxicity and weakness, which has led regulators to impose both dosage limitations and a recall. This review focuses on the best-characterized genetic factors associated with increased statin muscle concentrations, including the genes encoding cytochrome P450 enzymes (CYP2D6, CYP3A4, and CYP3A5), a mitochondrial enzyme (GATM), an influx transporter (SLCO1B1), and efflux transporters (ABCB1 and ABCG2). A systematic literature review was conducted to identify relevant research evaluating the significance of genetic variants predictive of altered statin concentrations and subsequent statin-related myopathy. Studies eligible for inclusion must have incorporated genotype information and must have associated it with some measure of myopathy, either creatine kinase levels or self-reported muscle aches and pains. After an initial review, focus was placed on seven genes that were adequately characterized to provide a substantive review: CYP2D6, CYP3A4, CYP3A5, GATM, SLCO1B1, ABCB1, and ABCG2. All statins were included in this review. Among the genetic factors evaluated, statin-related myopathy appears to be most strongly associated with variants in SLCO1B1.
Collapse
|
23
|
Ding YL, Shih YH, Tsai FY, Leong MK. In silico prediction of inhibition of promiscuous breast cancer resistance protein (BCRP/ABCG2). PLoS One 2014; 9:e90689. [PMID: 24614353 PMCID: PMC3948701 DOI: 10.1371/journal.pone.0090689] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 02/03/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Breast cancer resistant protein has an essential role in active transport of endogenous substances and xenobiotics across extracellular and intracellular membranes along with P-glycoprotein. It also plays a major role in multiple drug resistance and permeation of blood-brain barrier. Therefore, it is of great importance to derive theoretical models to predict the inhibition of both transporters in the process of drug discovery and development. Hitherto, very limited BCRP inhibition predictive models have been proposed as compared with its P-gp counterpart. METHODOLOGY/PRINCIPAL FINDINGS An in silico BCRP inhibition model was developed in this study using the pharmacophore ensemble/support vector machine scheme to take into account the promiscuous nature of BCRP. The predictions by the PhE/SVM model were found to be in good agreement with the observed values for those molecules in the training set (n= 22, r2 =0.82, qCV2=0.73, RMSE= 0.40, s = 0.24), test set (n =97, q2=0.75-0.89, RMSE= 0.31, s= 0.21), and outlier set (n= 16, q2 =0.72-0.91, RMSE= 0.29, s=0.17). When subjected to a variety of statistical validations, the developed PhE/SVM model consistently met the most stringent criteria. A mock test by HIV protease inhibitors also asserted its predictivity. CONCLUSIONS/SIGNIFICANCE It was found that this accurate, fast, and robust PhE/SVM model can be employed to predict the BCRP inhibition of structurally diverse molecules that otherwise cannot be carried out by any other methods in a high-throughput fashion to design therapeutic agents with insignificant drug toxicity and unfavorable drug-drug interactions mediated by BCRP to enhance clinical efficacy and/or circumvent drug resistance.
Collapse
Affiliation(s)
- Yi-Lung Ding
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, Taiwan
| | - Yu-Hsuan Shih
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, Taiwan
| | - Fu-Yuan Tsai
- Center for General Education, Chang Gung University, Taoyuan, Taiwan
| | - Max K Leong
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, Taiwan; Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Shoufeng, Hualien, Taiwan; Department of Medical Research and Teaching, Mennonite Christian Hospital, Hualien, Taiwan
| |
Collapse
|
24
|
Abstract
This chapter provides a review of the pharmacogenetics of membrane transporters, including ABC transporters and OATPs. Membrane transporters are heavily involved in drug disposition, by actively transporting substrate drugs between organs and tissues. As such, polymorphisms in the genes encoding these proteins may have a significant effect on the absorption, distribution, metabolism, excretion, and activity of compounds. Although few drug transporter polymorphisms have transitioned from the bench to the bedside, this chapter discusses clinical development of transporter pharmacogenetic markers. Finally, development of SLCO1B1 genotyping to avoid statin induced adverse drug reactions is discussed as a model case for transporter pharmacogenetics clinical development.
Collapse
|
25
|
Clinical relevance of drug efflux pumps in the gut. Curr Opin Pharmacol 2013; 13:847-52. [DOI: 10.1016/j.coph.2013.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/02/2013] [Accepted: 08/21/2013] [Indexed: 12/16/2022]
|
26
|
Zhang Q, Li K, Xu JH, Zhao CG, Gao Q, Wu B, Liu XY. Role of ABCG2 expression driven by cisplatin in platinum-containing chemotherapy for gastric cancer. World J Gastroenterol 2013; 19:6630-6636. [PMID: 24151392 PMCID: PMC3801379 DOI: 10.3748/wjg.v19.i39.6630] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the relationship between increases in expression time of ABCG2 mRNA driven by cisplatin and efficacy of platinum-containing chemotherapy for gastric cancer.
METHODS: Tumor specimens and normal control tissues were collected from 78 patients with gastric cancer treated from January 2008 to December 2011. Fresh tumor tissue obtained from the surgically resected specimens was tested within 6 h. Polymerase chain reaction products were run on 2% agarose gels and analyzed under ultraviolet light after ethidium bromide staining. Increases in ABCG2 mRNA expression time were assessed after cancer cells were incubated with cisplatin, and were divided into terciles and compared in relation to clinical outcomes.
RESULTS: Among groups classified by expression time of ABCG2 mRNA, no significant differences in baseline clinical characteristics and pathological findings were detected. The median overall time was 14.2 (95%CI: 9.7-18.6), 11.4 (95%CI: 6.3-16.5) and 8.1 (95%CI: 5.4-10.8) in patients with low, intermediate and high increases in ABCG2 mRNA expression times (P < 0.05), respectively. Median survival associated with performance status and tumor node metastasis (TNM) stage showed a similar trend, with longer survival and higher risk for mortality associated with lower performance status score and TNM stage. In a multivariate analysis for survival with Cox proportional-hazards model, increased ABCG2 mRNA expression time was an independent predictor for overall survival. Overall survival was longer with increased ABCG2 mRNA expression times ≤ 0.71 than increased ABCG2 mRNA expression times > 0.71, with a hazard ratio for death of 0.855 (95%CI: 0.615-0.962, P = 0.038).
CONCLUSION: Increased ABCG2 mRNA expression time driven by cisplatin is associated with survival of gastric cancer patients, and this may help modify the therapeutic strategies.
Collapse
|
27
|
Abstract
ABCG2 impacts oral availability, tissue distribution and excretion of its substrates, including anticancer and anti-infectious drugs. Highly expressed at physiological barriers, its secretion level significantly controls drug distribution. Furthermore, its increased content into many types of cancer may lead to cell chemoresistance. Owing to the clinical relevance of ABCG2 in the multidrug resistance phenomenon, ABCG2 constitutes an appealing therapeutic target to increase drug distribution. Development of ABCG2 inhibitors can be used in combination with anticancer drugs to block the drug secretion from cancer cells. Very recently, an alternative use of ABCG2 inhibitors in enhancing the bioavailability of ABCG2 substrates has emerged. Hence, it is important to investigate ABCG2 inhibitors with high selectivity, high potency and safety. New inhibitors discovered during the last 5 years will be presented and discussed.
Collapse
|