1
|
de Moraes FCA, de Almeida Barbosa AB, Sano VKT, Kelly FA, Burbano RMR. Pharmacogenetics of DPYD and treatment-related mortality on fluoropyrimidine chemotherapy for cancer patients: a meta-analysis and trial sequential analysis. BMC Cancer 2024; 24:1210. [PMID: 39350200 PMCID: PMC11441158 DOI: 10.1186/s12885-024-12981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Fluoropyrimidines are chemotherapy drugs utilized to treat a variety of solid tumors. These drugs predominantly rely on the enzyme dihydropyrimidine dehydrogenase (DPD), which is encoded by the DPYD gene, for their metabolism. Genetic mutations affecting this gene can cause DPYD deficiency, disrupting pyrimidine metabolism and increasing the risk of toxicity in cancer patients treated with 5-fluorouracil. The severity and type of toxic reactions are influenced by genetic and demographic factors and, in certain instances, can result in patient mortality. Among the more than 50 identified variants of DPYD, only a subset has clinical significance, leading to the production of enzymes that are either non-functional or impaired. The study aims to examine treatment-related mortality in cancer patients undergoing fluoropyrimidine chemotherapy, comparing those with and without DPD deficiency. METHODS The meta-analysis selected and evaluated 9685 studies from Pubmed, Cochrane, Embase and Web of Science databases. Only studies examining the main DPYD variants (DPYD*2A, DPYD p.D949V, DPYD*13 and DPYD HapB3) were included. Statistical Analysis was performed using R, version 4.2.3. Data were examined using the Mantel-Haenszel method and 95% CIs. Heterogeneity was assessed with I2 statistics. RESULTS There were 36 prospective and retrospective studies included, accounting for 16,005 patients. Most studies assessed colorectal cancer, representing 86.49% of patients. Other gastrointestinal cancers were evaluated by 11 studies, breast cancer by nine studies and head and neck cancers by five studies. Four DPYD variants were identified as predictors of severe fluoropyrimidines toxicity in literature review: DPYD*2A (rs3918290), DPYD p.D949V (rs67376798), DPYD*13 (rs55886062) and DPYD Hap23 (rs56038477). All 36 studies assessed the DPYD*2A variant, while 20 assessed DPYD p.D949V, 7 assessed DPYD*13, and 9 assessed DPYDHap23. Among the 587 patients who tested positive for at least one DPYD variant, 13 died from fluoropyrimidine toxicity. Conversely, in the non-carrier group there were 14 treatment-related deaths. Carriers of DPYD variants was found to be significantly correlated with treatment-related mortality (OR = 34.86, 95% CI 13.96-87.05; p < 0.05). CONCLUSIONS This study improves our comprehension of how the DPYD gene impacts cancer patients receiving fluoropyrimidine chemotherapy. Identifying mutations associated with dihydropyrimidine dehydrogenase deficiency may help predict the likelihood of serious side effects and fatalities. This knowledge can be applied to adjust medication doses before starting treatment, thus reducing the occurrence of these critical outcomes.
Collapse
|
2
|
Wang Y, Meng L, Liu X. Capecitabine-associated gastrointestinal ulceration, haemorrhage, and obstruction: a pharmacovigilance analysis based on the FAERS. Front Pharmacol 2024; 15:1412938. [PMID: 38948471 PMCID: PMC11211585 DOI: 10.3389/fphar.2024.1412938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Background Capecitabine has been reported to be associated with severe gastrointestinal (GI) adverse drug reactions (gastrointestinal ulceration, haemorrhage, and obstruction). However, statistical correlations have not been demonstrated, and specific GI adverse drug reactions, such as GI obstruction, are not listed on its label. Aim We aimed to determine the associations between capecitabine and GI ulceration, haemorrhage, or obstruction among patients with breast cancer by examining data from the United States Food and Drug Administration Adverse Event Reporting System (FAERS). Methods We performed disproportionality analysis of GI ulceration, haemorrhage, and obstruction by evaluating the reporting odds ratio (ROR) and the information component (IC) with their 95% confidence intervals (CIs). Results We identified 279 patients with capecitabine-associated GI ulceration, haemorrhage, or obstruction reported between 1 January 2004 and 31 December 2020. One-fourth of the cases of GI ulceration, haemorrhage, or obstruction resulted in death. Capecitabine as a drug class had disproportionately high reporting rates for GI ulceration [ROR 1.94 (1.71-2.21); IC 0.80 (0.60-0.99)], haemorrhage [ROR 2.27 (1.86-2.76); IC 0.99 (0.69-1.28)], and obstruction [ROR 2.19 (1.63-2.95); IC 0.96 (0.51-1.40)]. Conclusion Pharmacovigilance research on the FAERS has revealed a slight increase in reports of GI ulceration, haemorrhage, and obstruction in capecitabine users, which may cause serious or deadly consequences. In addition to the adverse reactions described in the package insert, close attention should be paid to GI obstruction to avoid discontinuation or life-threatening outcomes.
Collapse
Affiliation(s)
- Yuwei Wang
- Department of Radiation Oncology, The Cancer Hospital of Chongqing University, Chongqing, China
| | - Long Meng
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Liu
- Department of Gastrointestinal Surgery, The Fifth People’s Hospital of Chongqing, Chongqing, China
| |
Collapse
|
3
|
Yan Z, Luan Y, Wang Y, Ren Y, Li Z, Zhao L, Shen L, Yang X, Liu T, Gao Y, Sun W. Constructing a Novel Amino Acid Metabolism Signature: A New Perspective on Pheochromocytoma Diagnosis, Immune Landscape, and Immunotherapy. Biochem Genet 2024:10.1007/s10528-024-10733-5. [PMID: 38526709 DOI: 10.1007/s10528-024-10733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/05/2024] [Indexed: 03/27/2024]
Abstract
Pheochromocytoma/paraganglioma (PGPG) is a rare neuroendocrine tumor. Amino acid metabolism is crucial for energy production, redox balance, and metabolic pathways in tumor cell proliferation. This study aimed to build a risk model using amino acid metabolism-related genes, enhancing PGPG diagnosis and treatment decisions. We analyzed RNA-sequencing data from the PCPG cohort in the GEO dataset as our training set and validated our findings using the TCGA dataset and an additional clinical cohort. WGCNA and LASSO were utilized to identify hub genes and develop risk prediction models. The single-sample gene set enrichment analysis, MCPCOUNTER, and ESTIMATE algorithm calculated the relationship between amino acid metabolism and immune cell infiltration in PCPG. The TIDE algorithm predicted the immunotherapy efficacy for PCPG patients. The analysis identified 292 genes with differential expression, which are involved in amino acid metabolism and immune pathways. Six genes (DDC, SYT11, GCLM, PSMB7, TYRO3, AGMAT) were identified as crucial for the risk prediction model. Patients with a high-risk profile demonstrated reduced immune infiltration but potentially higher benefits from immunotherapy. Notably, DDC and SYT11 showed strong diagnostic and prognostic potential. Validation through quantitative Real-Time Polymerase Chain Reaction and immunohistochemistry confirmed their differential expression, underscoring their significance in PCPG diagnosis and in predicting immunotherapy response. This study's integration of amino acid metabolism-related genes into a risk prediction model offers critical clinical insights for PCPG risk stratification, potential immunotherapy responses, drug development, and treatment planning, marking a significant step forward in the management of this complex condition.
Collapse
Affiliation(s)
- Zechen Yan
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Henan Engineering Research Center of Tumor Molecular Diagnosis and Treatment, Zhengzhou, 450001, Henan, People's Republic of China
- Institute of Molecular Cancer Surgery, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yongkun Luan
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Henan Engineering Research Center of Tumor Molecular Diagnosis and Treatment, Zhengzhou, 450001, Henan, People's Republic of China
- Institute of Molecular Cancer Surgery, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yu Wang
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Institute of Molecular Cancer Surgery, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yilin Ren
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Henan Engineering Research Center of Tumor Molecular Diagnosis and Treatment, Zhengzhou, 450001, Henan, People's Republic of China
| | - Zhiyuan Li
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Henan Engineering Research Center of Tumor Molecular Diagnosis and Treatment, Zhengzhou, 450001, Henan, People's Republic of China
| | - Luyang Zhao
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Henan Engineering Research Center of Tumor Molecular Diagnosis and Treatment, Zhengzhou, 450001, Henan, People's Republic of China
- Institute of Molecular Cancer Surgery, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Linnuo Shen
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Henan Engineering Research Center of Tumor Molecular Diagnosis and Treatment, Zhengzhou, 450001, Henan, People's Republic of China
- Institute of Molecular Cancer Surgery, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiaojie Yang
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Henan Engineering Research Center of Tumor Molecular Diagnosis and Treatment, Zhengzhou, 450001, Henan, People's Republic of China
- Institute of Molecular Cancer Surgery, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Tonghu Liu
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- Henan Engineering Research Center of Tumor Molecular Diagnosis and Treatment, Zhengzhou, 450001, Henan, People's Republic of China.
- Institute of Molecular Cancer Surgery, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Yukui Gao
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- Institute of Molecular Cancer Surgery, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Weibo Sun
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- Institute of Molecular Cancer Surgery, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- Department of Radiation Oncology and Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450000, China.
| |
Collapse
|
4
|
Sharma A, Chorawala MR, Rawal RM, Shrivastava N. Integrated blood and organ profile analysis to evaluate ameliorative effects of kaempferol on 5-fluorouracil-induced toxicity. Sci Rep 2024; 14:2363. [PMID: 38287048 PMCID: PMC10824726 DOI: 10.1038/s41598-024-52915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/25/2024] [Indexed: 01/31/2024] Open
Abstract
Colorectal cancer (CRC) treatment strategies encompass a triad of medical interventions: surgery, radiotherapy, and chemotherapy. Among these, the use of chemotherapy, specifically 5-fluorouracil (5-FU), has become a cornerstone in CRC management. However, it is imperative to explore novel approaches that harness the synergistic potential of chemotherapy agents alongside adjunctive compounds to mitigate the severe adverse effects that often accompany treatment. In light of this pressing need, this study focuses on evaluating Kaempferol (KMP) in combination with 5-FU in a DMH-induced CRC animal model, scrutinizing its impact on haematological indices, organ health, and gastrointestinal, hepatotoxic, and nephrotoxic effects. Remarkably, KMP demonstrated haemato-protective attributes and exerted an immunomodulatory influence, effectively counteracting 5-FU-induced damage. Furthermore, organ assessments affirm the safety profile of the combined treatments while suggesting KMP's potential role in preserving the structural integrity of the intestine, and spleen. Histopathological assessments unveiled KMP's capacity to ameliorate liver injury and mitigate CRC-induced renal impairment. These multifaceted findings underscore KMP's candidacy as a promising adjunctive therapeutic option for CRC, underlining the pivotal need for personalized therapeutic strategies that concurrently optimize treatment efficacy and safeguard organ health. KMP holds tremendous promise in elevating the paradigm of CRC management.
Collapse
Affiliation(s)
- Abhilasha Sharma
- Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | | | - Rakesh M Rawal
- Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | | |
Collapse
|
5
|
Tekin C, Ercelik M, Dunaev P, Galembikova A, Tezcan G, Aksoy SA, Budak F, Isık O, Ugras N, Boichuk S, Tunca B. Leaf Extract from European Olive (Olea europaea L.) Post-Transcriptionally Suppresses the Epithelial-Mesenchymal Transition and Sensitizes Gastric Cancer Cells to Chemotherapy. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:97-115. [PMID: 38467548 DOI: 10.1134/s0006297924010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 03/13/2024]
Abstract
The overall survival of patients with the advanced and recurrent gastric cancer (GC) remains unfavorable. In particular, this is due to cancer spreading and resistance to chemotherapy associated with the epithelial-mesenchymal transition (EMT) of tumor cells. EMT can be identified by the transcriptome profiling of GC for EMT markers. Indeed, analysis of the TCGA and GTEx databases (n = 408) and a cohort of GC patients (n = 43) revealed that expression of the CDH2 gene was significantly decreased in the tumors vs. non-tumor tissues and correlated with the overall survival of GC patients. Expression of the EMT-promoting transcription factors SNAIL and ZEB1 was significantly increased in GC. These data suggest that targeting the EMT might be an attractive therapeutic approach for patients with GC. Previously, we demonstrated a potent anti-cancer activity of the olive leaf extract (OLE). However, its effect on the EMT regulation in GC remained unknown. Here, we showed that OLE efficiently potentiated the inhibitory effect of the chemotherapeutic agents 5-fluorouracil (5-FU) and cisplatin (Cis) on the EMT and their pro-apoptotic activity, as was demonstrated by changes in the expression of the EMT markers (E- and N-cadherins, vimentin, claudin-1) in GC cells treated with the aforementioned chemotherapeutic agents in the presence of OLE. Thus, culturing GC cells with 5-FU + OLE or Cis + OLE attenuated the invasive properties of cancer cells. Importantly, upregulation of expression of the apoptotic markers (PARP cleaved form) and increase in the number of cells undergoing apoptosis (annexin V-positive) were observed for GC cells treated with a combination of OLE and 5-FU or Cis. Collectively, our data illustrate that OLE efficiently interferes with the EMT in GC cells and potentiates the pro-apoptotic activity of certain chemotherapeutic agents used for GC therapy.
Collapse
Affiliation(s)
- Cagla Tekin
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Melis Ercelik
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Pavel Dunaev
- Department of Pathology, Kazan State Medical University, Kazan, Russia
| | - Aigul Galembikova
- Department of Pathology, Kazan State Medical University, Kazan, Russia
| | - Gulcin Tezcan
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa, Turkey
| | - Secil Ak Aksoy
- Inegol Vocation School, Bursa Uludag University, Bursa, Turkey
- Experimental Animal Breeding and Research Unit, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ferah Budak
- Department of Immunology, Medical Faculty, Bursa Uludag University Bursa, Turkey
| | - Ozgen Isık
- Department of General Surgery, Medical Faculty, Bursa Uludag University Bursa, Turkey
| | - Nesrin Ugras
- Department of Pathology, Medical Faculty, Bursa Uludag University, Bursa, Turkey
| | - Sergei Boichuk
- Department of Pathology, Kazan State Medical University, Kazan, Russia.
- Department of Radiotherapy and Radiology, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
- "Biomarker" Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Berrin Tunca
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.
| |
Collapse
|
6
|
Cura Y, Sánchez-Martín A, Márquez-Pete N, González-Flores E, Martínez-Martínez F, Pérez-Ramírez C, Jiménez-Morales A. Role of Single-Nucleotide Polymorphisms in Genes Implicated in Capecitabine Pharmacodynamics on the Effectiveness of Adjuvant Therapy in Colorectal Cancer. Int J Mol Sci 2023; 25:104. [PMID: 38203276 PMCID: PMC10778960 DOI: 10.3390/ijms25010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Colorectal cancer (CRC) is a highly prevalent form of neoplasm worldwide. Capecitabine, an oral antimetabolite, is widely used for CRC treatment; however, there exists substantial variation in individual therapy response. This may be due to genetic variations in genes involved in capecitabine pharmacodynamics (PD). In this study, we investigated the role of single-nucleotide polymorphisms (SNPs) related to capecitabine's PD on disease-free survival (DFS) in CRC patients under adjuvant treatment. Thirteen SNPs in the TYMS, ENOSF1, MTHFR, ERCC1/2, and XRCC1/3 genes were genotyped in 142 CRC patients using real-time PCR with predesigned TaqMan® probes. A significant association was found between favorable DFS and the ENOSF1 rs2612091-T allele (p = 0.010; HR = 0.34; 95% CI = 0.14-0.83), as well as with the TYMS/ENOSF1 region ACT haplotype (p = 0.012; HR = 0.37; 95% CI = 0.17-0.80). Other factors such as low histological grade (p = 0.009; HR = 0.34; 95% CI = 0.14-0.79) and a family history of cancer (p = 0.040; HR = 0.48; 95% CI = 0.23-0.99) were also linked to improved DFS. Therefore, the SNP ENOSF1 rs2612091 could be considered as a predictive genetic biomarker for survival in CRC patients receiving capecitabine-based adjuvant regimens.
Collapse
Affiliation(s)
- Yasmin Cura
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (Y.C.)
| | - Almudena Sánchez-Martín
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (Y.C.)
| | - Noelia Márquez-Pete
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (Y.C.)
| | - Encarnación González-Flores
- Medical Oncology, University Hospital Virgen de las Nieves, 18014 Granada, Spain
- Biomedical Research Institute—ibs.Granada, 18012 Granada, Spain
| | | | - Cristina Pérez-Ramírez
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Alberto Jiménez-Morales
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (Y.C.)
| |
Collapse
|
7
|
Schmitt A, Royer B, Boidot R, Berthier J, Ghiringhelli F. Case report: 5-Fluorouracil treatment in patient with an important partial DPD deficiency. Front Oncol 2023; 13:1187052. [PMID: 37409256 PMCID: PMC10319454 DOI: 10.3389/fonc.2023.1187052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
Esophageal cancer is a cancer with poor prognosis and the standard 1st line treatment for metastatic or recurrent EC is systemic chemotherapy with doublet chemotherapy based on platinum and 5-fluorouracil (5-FU). However, 5-FU could be a source of severe treatment-related toxicities due to deficiency of dihydropyrimidine dehydrogenase (DPD). In this case report, a 74-year-old man with metastatic esophageal cancer was found to have partial DPD deficiency based on uracilemia measurements (about 90 ng/mL). Despite this, 5-FU was safely administered thanks to therapeutic drug monitoring (TDM). The case report highlights the importance of TDM in administering 5-FU to patients with partial DPD deficiency, as it allows individualized dosing and prevents severe toxicity.
Collapse
Affiliation(s)
- Antonin Schmitt
- Pharmacy Department, Centre Georges-François Leclerc, Dijon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1231, University of Burgundy Franche-Comté, Dijon, France
| | - Bernard Royer
- Pharmacology and Toxicology Laboratory, Besançon University Hospital, Dijon, France
| | - Romain Boidot
- Unit of Molecular Biology, Centre Georges-François Leclerc, Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 6302, Dijon, France
| | - Joseph Berthier
- Pharmacology and Toxicology Laboratory, Dijon University Hospital, Dijon, France
| | - François Ghiringhelli
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1231, University of Burgundy Franche-Comté, Dijon, France
- Medical Oncology Department, Centre Georges-François Leclerc, Dijon, France
| |
Collapse
|
8
|
Rodrigues JCG, Fernandes MR, Ribeiro-dos-Santos AM, de Araújo GS, de Souza SJ, Guerreiro JF, Ribeiro-dos-Santos Â, de Assumpção PP, dos Santos NPC, Santos S. Pharmacogenomic Profile of Amazonian Amerindians. J Pers Med 2022; 12:jpm12060952. [PMID: 35743738 PMCID: PMC9224798 DOI: 10.3390/jpm12060952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
Given the role of pharmacogenomics in the large variability observed in drug efficacy/safety, an assessment about the pharmacogenomic profile of patients prior to drug prescription or dose adjustment is paramount to improve adherence to treatment and prevent adverse drug reaction events. A population commonly underrepresented in pharmacogenomic studies is the Native American populations, which have a unique genetic profile due to a long process of geographic isolation and other genetic and evolutionary processes. Here, we describe the pharmacogenetic variability of Native American populations regarding 160 pharmacogenes involved in absorption, distribution, metabolism, and excretion processes and biological pathways of different therapies. Data were obtained through complete exome sequencing of individuals from 12 different Amerindian groups of the Brazilian Amazon. The study reports a total of 3311 variants; of this, 167 are exclusive to Amerindian populations, and 1183 are located in coding regions. Among these new variants, we found non-synonymous coding variants in the DPYD and the IFNL4 genes and variants with high allelic frequencies in intronic regions of the MTHFR, TYMS, GSTT1, and CYP2D6 genes. Additionally, 332 variants with either high or moderate (disruptive or non-disruptive impact in protein effectiveness, respectively) significance were found with a minimum of 1% frequency in the Amazonian Amerindian population. The data reported here serve as scientific basis for future design of specific treatment protocols for Amazonian Amerindian populations as well as for populations admixed with them, such as the Northern Brazilian population.
Collapse
Affiliation(s)
- Juliana Carla Gomes Rodrigues
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belem 66073-000, Brazil; (M.R.F.); (Â.R.-d.-S.); (P.P.d.A.); (N.P.C.d.S.); (S.S.)
- Correspondence: ; Tel.: +55-(91)-983973173
| | - Marianne Rodrigues Fernandes
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belem 66073-000, Brazil; (M.R.F.); (Â.R.-d.-S.); (P.P.d.A.); (N.P.C.d.S.); (S.S.)
| | - André Maurício Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belem 66075-110, Brazil; (A.M.R.-d.-S.); (G.S.d.A.); (J.F.G.)
| | - Gilderlanio Santana de Araújo
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belem 66075-110, Brazil; (A.M.R.-d.-S.); (G.S.d.A.); (J.F.G.)
| | | | - João Farias Guerreiro
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belem 66075-110, Brazil; (A.M.R.-d.-S.); (G.S.d.A.); (J.F.G.)
| | - Ândrea Ribeiro-dos-Santos
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belem 66073-000, Brazil; (M.R.F.); (Â.R.-d.-S.); (P.P.d.A.); (N.P.C.d.S.); (S.S.)
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belem 66075-110, Brazil; (A.M.R.-d.-S.); (G.S.d.A.); (J.F.G.)
| | - Paulo Pimentel de Assumpção
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belem 66073-000, Brazil; (M.R.F.); (Â.R.-d.-S.); (P.P.d.A.); (N.P.C.d.S.); (S.S.)
| | - Ney Pereira Carneiro dos Santos
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belem 66073-000, Brazil; (M.R.F.); (Â.R.-d.-S.); (P.P.d.A.); (N.P.C.d.S.); (S.S.)
| | - Sidney Santos
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belem 66073-000, Brazil; (M.R.F.); (Â.R.-d.-S.); (P.P.d.A.); (N.P.C.d.S.); (S.S.)
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belem 66075-110, Brazil; (A.M.R.-d.-S.); (G.S.d.A.); (J.F.G.)
| |
Collapse
|
9
|
Precision Medicine in Head and Neck Cancers: Genomic and Preclinical Approaches. J Pers Med 2022; 12:jpm12060854. [PMID: 35743639 PMCID: PMC9224778 DOI: 10.3390/jpm12060854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
Head and neck cancers (HNCs) represent the sixth most widespread malignancy worldwide. Surgery, radiotherapy, chemotherapeutic and immunotherapeutic drugs represent the main clinical approaches for HNC patients. Moreover, HNCs are characterised by an elevated mutational load; however, specific genetic mutations or biomarkers have not yet been found. In this scenario, personalised medicine is showing its efficacy. To study the reliability and the effects of personalised treatments, preclinical research can take advantage of next-generation sequencing and innovative technologies that have been developed to obtain genomic and multi-omic profiles to drive personalised treatments. The crosstalk between malignant and healthy components, as well as interactions with extracellular matrices, are important features which are responsible for treatment failure. Preclinical research has constantly implemented in vitro and in vivo models to mimic the natural tumour microenvironment. Among them, 3D systems have been developed to reproduce the tumour mass architecture, such as biomimetic scaffolds and organoids. In addition, in vivo models have been changed over the last decades to overcome problems such as animal management complexity and time-consuming experiments. In this review, we will explore the new approaches aimed to improve preclinical tools to study and apply precision medicine as a therapeutic option for patients affected by HNCs.
Collapse
|
10
|
Marcu LG, Marcu DC. Current Omics Trends in Personalised Head and Neck Cancer Chemoradiotherapy. J Pers Med 2021; 11:jpm11111094. [PMID: 34834445 PMCID: PMC8625829 DOI: 10.3390/jpm11111094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Chemoradiotherapy remains the most common management of locally advanced head and neck cancer. While both treatment components have greatly developed over the years, the quality of life and long-term survival of patients undergoing treatment for head and neck malignancies are still poor. Research in head and neck oncology is equally focused on the improvement of tumour response to treatment and on the limitation of normal tissue toxicity. In this regard, personalised therapy through a multi-omics approach targeting patient management from diagnosis to treatment shows promising results. The aim of this paper is to discuss the latest results regarding the personalised approach to chemoradiotherapy of head and neck cancer by gathering the findings of the newest omics, involving radiotherapy (dosiomics), chemotherapy (pharmacomics), and medical imaging for treatment monitoring (radiomics). The incorporation of these omics into head and neck cancer management offers multiple viewpoints to treatment that represent the foundation of personalised therapy.
Collapse
Affiliation(s)
- Loredana G. Marcu
- Faculty of Informatics & Science, University of Oradea, 410087 Oradea, Romania
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- Correspondence:
| | - David C. Marcu
- Faculty of Electrical Engineering & Information Technology, University of Oradea, 410087 Oradea, Romania;
| |
Collapse
|
11
|
Deligonul A, Aksoy S, Tezcan G, Tunca B, Kanat O, Cubukcu E, Yilmazlar T, Ozturk E, Egeli U, Cecener G, Alemdar A, Evrensel T. DPYD c.1905 + 1G>A Promotes Fluoropyrimidine-Induced Anemia, a Prognostic Factor in Disease-Free Survival, in Colorectal Cancer. Genet Test Mol Biomarkers 2021; 25:276-283. [PMID: 33877893 DOI: 10.1089/gtmb.2020.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background and Aim: In 10-30% of colorectal cancer (CRC) patients, toxic reactions occur after fluoropyrimidine-based chemotherapy. A dihydropyridine dehydrogenase (DPYD) gene variant, c.1905 + 1G>A, leads to intolerance to fluoropyrimidines. Due to the low frequency of this variant in many populations, the prevalence of fluoropyrimidine-induced hematologic side effects in CRC patients with the c.1905 + 1G>A variant is unclear. In this study, we investigated the prevalence of the DPYD c.1905 + 1 variants in a Turkish CRC cohort and the potential effects of these variants on fluoropyrimidine-induced hematologic side effects. Materials and Methods: The DPYD c.1905 + 1 variant was genotyped using polymerase chain reaction-restriction fragment length polymorphism analysis and confirmed by Sanger sequencing in peripheral blood samples of 100 CRC patients who received fluoropyrimidine-based chemotherapy and 60 healthy volunteers. The association of c.1905 + 1 variants with susceptibility to hematologic side effects was evaluated. Results: The DPYD c.1905 + 1G>A variant was more common in the CRC group than in the healthy control group (p = 0.001). The presence of the c.1905 + 1G>A variant was associated with thrombocytopenia (p = 0.039) and anemia (p = 0.035). CRC patients with fluoropyrimidine-induced anemia had shorter disease-free survival than CRC patients without fluoropyrimidine-induced anemia (p = 0.0009). Conclusions: Before administering fluoropyrimidine-based chemotherapy, genetic screening for the DPYD c.1905 + 1G>A variant should be performed with the aim of preventing anemia and anemia-induced complications in CRC patients.
Collapse
Affiliation(s)
- Adem Deligonul
- Department of Medical Oncology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Secil Aksoy
- First and Emergency Aid Program, Vocational School of Inegol, Bursa Uludag University, Bursa, Turkey
| | - Gulcin Tezcan
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa, Turkey
| | - Berrin Tunca
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ozkan Kanat
- Department of Medical Oncology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Erdem Cubukcu
- Department of Medical Oncology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Tuncay Yilmazlar
- Department of General Surgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ersin Ozturk
- Department of General Surgery, Faculty of Medicine, Karatay University, Konya, Turkey.,Department of General Surgery, Medicana Hospital Bursa, Bursa, Turkey
| | - Unal Egeli
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Gulsah Cecener
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Adem Alemdar
- Institution of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Turkkan Evrensel
- Department of Medical Oncology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
12
|
Fernandes MR, Rodrigues JCG, Dobbin EAF, Pastana LF, da Costa DF, Barra WF, Modesto AAC, de Assumpção PB, da Costa Silva AL, Dos Santos SEB, Burbano RMR, de Assumpção PP, Dos Santos NPC. Influence of FPGS, ABCC4, SLC29A1, and MTHFR genes on the pharmacogenomics of fluoropyrimidines in patients with gastrointestinal cancer from the Brazilian Amazon. Cancer Chemother Pharmacol 2021; 88:837-844. [PMID: 34331561 DOI: 10.1007/s00280-021-04327-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Fluoropyrimidines are one of the most used drug class to treat cancer patients, although they show high levels of associated toxicity. This study analyzed 33 polymorphisms in 17 pharmacogenes involved with the pharmacogenomics of fluoropyrimidines, in gastrointestinal cancer patients undergoing fluoropyrimidine-based treatment in the Brazilian Amazon. METHODS The study population was composed of 216 patients, 92 of whom have an anatomopathological diagnosis of gastric cancer and 124 of colorectal cancer. The single nucleotide polymorphisms (SNP) were genotyped by allelic discrimination using the TaqMan OpenArray Genotyping technology, with a panel of 32 customized assays, run in a QuantStudio ™ 12K Flex Real-Time PCR System (Applied Biosystems, Life Technologies, Carlsbad USA). Ancestry analysis was performed using 61 autosomal ancestry informative markers (AIMs). RESULTS The study population show mean values of 48.1% European, 31.1% Amerindian, and 20.8% African ancestries. A significant risk association for general and severe toxicity was found in the rs4451422 of FPGS (p = 0.001; OR 3.40; CI 95% 1.65-7.00 and p = 0.006; OR 4.63; CI 95% 1.56-13.72, respectively) and the rs9524885 of ABCC4 (p = 0.023; OR 2.74; CI 95% 1.14-6.65 and p = 0.024; OR 5.36; IC 95% 1.24-23.11, respectively) genes. The rs760370 in the SLC29A1 gene (p = 0.009; OR 6.71; CI 95% 1.16-8.21) and the rs1801133 in the MTHFR toxicity (p = 0.023; OR 3.09; CI 95% 1.16-8.21) gene also demonstrated to be significant, although only for severe toxicity. The results found in this study did not have statistics analysis correction. CONCLUSION Four polymorphisms of the ABCC4, FPGS, SLC29A1, and MTHFR genes are likely to be potential predictive biomarkers for precision medicine in fluoropyrimidine-based treatments in the population of the Brazilian Amazon, which is constituted by a unique genetic background.
Collapse
Affiliation(s)
- Marianne Rodrigues Fernandes
- Núcleo de Pesquisas Em Oncologia, Universidade Federal Do Pará, Belém, Pará, Brazil.,Hospital Ophir Loyola, Belém, Pará, Brazil
| | | | | | | | | | | | | | | | - Artur Luiz da Costa Silva
- Centro de Genômica E Biologia de Sistemas, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, Pará, Brazil
| | | | - Rommel Mario Rodriguez Burbano
- Núcleo de Pesquisas Em Oncologia, Universidade Federal Do Pará, Belém, Pará, Brazil.,Hospital Ophir Loyola, Belém, Pará, Brazil
| | | | | |
Collapse
|
13
|
Klimko A, Tieranu CG, Olteanu AO, Preda CM, Ionescu EM. Capecitabine-Induced Terminal Ileitis: Case Report and Literature Review. Cureus 2021; 13:e14621. [PMID: 34055501 PMCID: PMC8144076 DOI: 10.7759/cureus.14621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Capecitabine is a well-established agent for adjuvant chemotherapy in breast and colorectal cancers. However, one of the limiting adverse events of this therapy is severe diarrhea, which is reported with increasing frequency as of late. Capecitabine-induced ileitis should be suspected in cases with severe, treatment-refractory diarrhea. We present a case of capecitabine-induced terminal ileitis in a patient who received the medication as adjuvant therapy for previously resected colon adenocarcinoma. Capecitabine-induced diarrhea secondary to ileitis is a severe adverse drug event, which occurs during adjuvant chemotherapy and does not respond to conservative treatment with antidiarrheals, often necessitating permanent drug withdrawal. A high index of suspicion is critical as the complications, such as dehydration and the associated electrolyte derangements, may be life-threatening if diagnosis and cause-specific treatment are delayed.
Collapse
Affiliation(s)
- Artsiom Klimko
- Division of Physiology and Neuroscience, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
| | - Cristian G Tieranu
- Gastroenterology, "Elias" Emergency University Hospital, Bucharest, ROU.,Gastroenterology, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
| | - Andrei O Olteanu
- Gastroenterology, "Elias" Emergency University Hospital, Bucharest, ROU
| | - Carmen M Preda
- Gastroenterology, Fundeni Clinical Institute, Bucharest, ROU.,Gastroenterology, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
| | - Elena M Ionescu
- Gastroenterology, "Elias" Emergency University Hospital, Bucharest, ROU.,Gastroenterology, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
| |
Collapse
|
14
|
Florczak A, Grzechowiak I, Deptuch T, Kucharczyk K, Kaminska A, Dams-Kozlowska H. Silk Particles as Carriers of Therapeutic Molecules for Cancer Treatment. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4946. [PMID: 33158060 PMCID: PMC7663281 DOI: 10.3390/ma13214946] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
Although progress is observed in cancer treatment, this disease continues to be the second leading cause of death worldwide. The current understanding of cancer indicates that treating cancer should not be limited to killing cancer cells alone, but that the target is the complex tumor microenvironment (TME). The application of nanoparticle-based drug delivery systems (DDS) can not only target cancer cells and TME, but also simultaneously resolve the severe side effects of various cancer treatment approaches, leading to more effective, precise, and less invasive therapy. Nanoparticles based on proteins derived from silkworms' cocoons (like silk fibroin and sericins) and silk proteins from spiders (spidroins) are intensively explored not only in the oncology field. This natural-derived material offer biocompatibility, biodegradability, and simplicity of preparation methods. The protein-based material can be tailored for size, stability, drug loading/release kinetics, and functionalized with targeting ligands. This review summarizes the current status of drug delivery systems' development based on proteins derived from silk fibroin, sericins, and spidroins, which application is focused on systemic cancer treatment. The nanoparticles that deliver chemotherapeutics, nucleic acid-based therapeutics, natural-derived agents, therapeutic proteins or peptides, inorganic compounds, as well as photosensitive molecules, are introduced.
Collapse
Affiliation(s)
- Anna Florczak
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (I.G.); (T.D.); (K.K.); (A.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Inga Grzechowiak
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (I.G.); (T.D.); (K.K.); (A.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Tomasz Deptuch
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (I.G.); (T.D.); (K.K.); (A.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Kamil Kucharczyk
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (I.G.); (T.D.); (K.K.); (A.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Alicja Kaminska
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (I.G.); (T.D.); (K.K.); (A.K.)
| | - Hanna Dams-Kozlowska
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (I.G.); (T.D.); (K.K.); (A.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
15
|
Qingwei Z, Dongsheng H, Duo L, Youlei W, Songxia Y, Ziqi Y, Lanjuan L. Fluorouracil Supplemented With Oxaliplatin or Irinotecan for Solid Tumors: Indications From Clinical Characteristics and Health Outcomes of Patients. Front Oncol 2020; 10:1542. [PMID: 32984012 PMCID: PMC7492525 DOI: 10.3389/fonc.2020.01542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Fluorouracil combined with oxaliplatin (FOLFOX) and fluorouracil combined with irinotecan (FOLFIRI) are both first-line clinical chemotherapy regimens. However, clinicians' selection of FOLFIRI or FOLFOX medication regimens and their effects on patients' health outcomes are not clear. The aim of this study was to evaluate the impacts on patient characteristics of FOLFIRI or FOLFOX medication regimen selection and the effects of each regimen on patients' health outcomes in a real-world setting. Three thousand seven hundred and twenty-five patients were retrieved and 610 of them were eventually included in this study based on the inclusion and exclusion criteria. The percentages of the TNM stage, cetuximab, bevacizumab, and tumor metastases between the FOLFIRI and FOLFOX groups were different (P < 0.001). In the multivariate Cox proportional hazards model, a significantly higher non-convalescent incidence of the FOLFOX group was found as compared with the FOLFIRI group (HR = 2.211, 95% CI = 1.257–3.888, P = 0.006). In conclusion, the TNM stage, whether combined with cetuximab or bevacizumab, and whether there was tumor metastasis presented as the key factors affecting medication selection between the FOLFIRI and FOLFOX regimens. The FOLFIRI regimen exhibited better effects on patients' long-term health outcomes than did the FOLFOX regimen. This study was registered on the World Health Organization International Clinical Trials Registry Platform (ChiCTR2000029201). Trial registration: ChiCTR2000029201.
Collapse
Affiliation(s)
- Zhao Qingwei
- Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hong Dongsheng
- Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lv Duo
- Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Wang Youlei
- Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Songxia
- Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye Ziqi
- Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Lanjuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Desai A, Mohammed T, Patel KN, Almnajam M, Kim AS. 5-Fluorouracil Rechallenge After Cardiotoxicity. AMERICAN JOURNAL OF CASE REPORTS 2020; 21:e924446. [PMID: 32860674 PMCID: PMC7483515 DOI: 10.12659/ajcr.924446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Patient: Male, 66-year-old Final Diagnosis: Colon adenocarcinoma • ventricular arrhythmia Symptoms: Cardiac arrest • syncope Medication: — Clinical Procedure: Cardiac catheterization • Cardiac Electronic Implantable Device (CEID) Specialty: Cardiology • General and Internal Medicine • Oncology
Collapse
Affiliation(s)
- Aakash Desai
- Department of Medicine, University of Connecticut Health, Farmington, CT, USA
| | - Turab Mohammed
- Department of Medicine, University of Connecticut Health, Farmington, CT, USA
| | - Kunal N Patel
- Department of Epidemiology and Biostatistics, School of Public Health, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Mansour Almnajam
- Division of Cardiology, Department of Medicine, University of Connecticut Health, Farmington, CT, USA
| | - Agnes S Kim
- Division of Cardiology, Department of Medicine, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
17
|
In Vitro Assessment of Fluoropyrimidine-Metabolizing Enzymes: Dihydropyrimidine Dehydrogenase, Dihydropyrimidinase, and β-Ureidopropionase. J Clin Med 2020; 9:jcm9082342. [PMID: 32707991 PMCID: PMC7464968 DOI: 10.3390/jcm9082342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 01/22/2023] Open
Abstract
Fluoropyrimidine drugs (FPs), including 5-fluorouracil, tegafur, capecitabine, and doxifluridine, are among the most widely used anticancer agents in the treatment of solid tumors. However, severe toxicity occurs in approximately 30% of patients following FP administration, emphasizing the importance of predicting the risk of acute toxicity before treatment. Three metabolic enzymes, dihydropyrimidine dehydrogenase (DPD), dihydropyrimidinase (DHP), and β-ureidopropionase (β-UP), degrade FPs; hence, deficiencies in these enzymes, arising from genetic polymorphisms, are involved in severe FP-related toxicity, although the effect of these polymorphisms on in vivo enzymatic activity has not been clarified. Furthermore, the clinical usefulness of current methods for predicting in vivo activity, such as pyrimidine concentrations in blood or urine, is unknown. In vitro tests have been established as advantageous for predicting the in vivo activity of enzyme variants. This is due to several studies that evaluated FP activities after enzyme metabolism using transient expression systems in Escherichia coli or mammalian cells; however, there are no comparative reports of these results. Thus, in this review, we summarized the results of in vitro analyses involving DPD, DHP, and β-UP in an attempt to encourage further comparative studies using these drug types and to aid in the elucidation of their underlying mechanisms.
Collapse
|
18
|
Duran G, Cruz R, Simoes AR, Barros F, Giráldez JM, Bernárdez B, Anido U, Candamio S, López-López R, Carracedo Á, Lamas MJ. Efficacy and toxicity of adjuvant chemotherapy on colorectal cancer patients: how much influence from the genetics? J Chemother 2020; 32:310-322. [PMID: 32441565 DOI: 10.1080/1120009x.2020.1764281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We studied the predictive value for response and toxicity of functional polymorphisms in genes involved in the oxaliplatin/fluorouracil pathway in colorectal cancer patients. One hundred and twenty-seven (127) patients were treated with curative intended surgery followed by adjuvant chemotherapy with FOLFOX (fluorouracil, leucovorin and oxaliplatin) regimen. The median age was 65.53 (27-80) years (66.9% male, 59.1% rectum). The median follow-up was 8.5 years (IQR, 4.1-9.4). At the end of follow-up, 59 patients (46.5%) had relapsed or died in the whole study population. We did find that XRCC1GG genotype is associated with a higher risk of developing haematologic toxicity. Furthermore, we report a significant association of the TS 3'UTR 6 bp/6 bp polymorphism and the XRCC1 rs25487 with a higher risk of developing anaemia and diarrhoea, respectively. On the other hand, none of the studied polymorphisms showed clinically relevant association with disease-free survival and overall survival or early failure to adjuvant FOLFOX therapy.
Collapse
Affiliation(s)
- Goretti Duran
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Pharmacy Department, University Hospital of Santiago (SERGAS), Santiago de Compostela, Spain
| | - Raquel Cruz
- Center for Biomedical Research on Rare Diseases (CIBERER), Genomics Medicine Group, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Rita Simoes
- Fundación Instituto de Investigación Sanitaria de Santiago (FIDIS), Santiago de Compostela, Spain.,Departamento de Ciencias Forenses, Anatomía Patolóxica, Xinecoloxía, Obstetricia e Pediatría, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain.,Genomics Medicine Group, Galician Public Foundation of Genomic Medicine (FPGMX), Santiago de Compostela, Spain
| | - Francisco Barros
- Genomics Medicine Group, Galician Public Foundation of Genomic Medicine (FPGMX), Santiago de Compostela, Spain
| | - José María Giráldez
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Pharmacy Department, University Hospital of Santiago (SERGAS), Santiago de Compostela, Spain
| | - Beatriz Bernárdez
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Pharmacy Department, University Hospital of Santiago (SERGAS), Santiago de Compostela, Spain
| | - Urbano Anido
- Translational Medical Oncology, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain.,Medical Oncology Department, University Hospital of Santiago (SERGAS), Santiago de Compostela, Spain
| | - Sonia Candamio
- Translational Medical Oncology, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain.,Medical Oncology Department, University Hospital of Santiago (SERGAS), Santiago de Compostela, Spain
| | - Rafael López-López
- Translational Medical Oncology, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain.,Medical Oncology Department, University Hospital of Santiago (SERGAS), Santiago de Compostela, Spain.,Liquid Biopsy Analysis Unit, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Ángel Carracedo
- Genomics Medicine Group, CIBERER, Galician Public Foundation of Genomic Medicine (FPGMX), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Jesús Lamas
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Pharmacy Department, University Hospital of Santiago (SERGAS), Santiago de Compostela, Spain
| |
Collapse
|
19
|
Pleasance E, Titmuss E, Williamson L, Kwan H, Culibrk L, Zhao EY, Dixon K, Fan K, Bowlby R, Jones MR, Shen Y, Grewal JK, Ashkani J, Wee K, Grisdale CJ, Thibodeau ML, Bozoky Z, Pearson H, Majounie E, Vira T, Shenwai R, Mungall KL, Chuah E, Davies A, Warren M, Reisle C, Bonakdar M, Taylor GA, Csizmok V, Chan SK, Zong Z, Bilobram S, Muhammadzadeh A, D’Souza D, Corbett RD, MacMillan D, Carreira M, Choo C, Bleile D, Sadeghi S, Zhang W, Wong T, Cheng D, Brown SD, Holt RA, Moore RA, Mungall AJ, Zhao Y, Nelson J, Fok A, Ma Y, Lee MKC, Lavoie JM, Mendis S, Karasinska JM, Deol B, Fisic A, Schaeffer DF, Yip S, Schrader K, Regier DA, Weymann D, Chia S, Gelmon K, Tinker A, Sun S, Lim H, Renouf DJ, Laskin J, Jones SJM, Marra MA. Pan-cancer analysis of advanced patient tumors reveals interactions between therapy and genomic landscapes. ACTA ACUST UNITED AC 2020; 1:452-468. [DOI: 10.1038/s43018-020-0050-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/05/2020] [Indexed: 02/08/2023]
|
20
|
Abstract
OPINION STATEMENT Fluoropyrimidine (FP) is used to treat a wide range of cancers; however, it is associated with drug-induced vascular toxicity, as well as angina pectoris and coronary spasm. FP has been administered for many years, although the incidence, mechanisms, and appropriate methods for managing its associated cardiovascular toxicities have not been clarified, and the management of these complications has not been standardized. This lack of evidence is not limited to FP. Many trials of anticancer agents have been conducted, excluding patients with heart diseases. Hence, there is a paucity of epidemiological data on cardiovascular adverse events caused by anticancer agents. There have been remarkable improvements in cancer treatment in recent years, with consequent improvements in prognosis. In this context, new cardiovascular toxicities related to new drugs have emerged. We are now compelled to respond to cardiovascular adverse events despite the lack of evidence regarding optimal management. The result has been establishment and rapid maturation of the new academic field of cardio-oncology. Despite the relative lack of evidence, we must review small pieces of evidence that have accumulated to date and make the utmost efforts to provide patients with effective evidence-based medical care. Simultaneously, we urgently need randomized clinical trials to build strong evidence.
Collapse
Affiliation(s)
- Taro Shiga
- Department of Onco-Cardiology/Cardiovascular Medicine, The Cancer Institute Hospital Of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| | - Makoto Hiraide
- Department of Pharmacy, The Cancer Institute Hospital Of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| |
Collapse
|
21
|
Hamzic S, Kummer D, Froehlich TK, Joerger M, Aebi S, Palles C, Thomlinson I, Meulendijks D, Schellens JH, García-González X, López-Fernández LA, Amstutz U, Largiadèr CR. Evaluating the role of ENOSF1 and TYMS variants as predictors in fluoropyrimidine-related toxicities: An IPD meta-analysis. Pharmacol Res 2020; 152:104594. [DOI: 10.1016/j.phrs.2019.104594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/11/2019] [Accepted: 12/11/2019] [Indexed: 01/30/2023]
|
22
|
Lampropoulou DI, Laschos K, Amylidi AL, Angelaki A, Soupos N, Boumpoucheropoulos S, Papadopoulou E, Nanou E, Zidianakis V, Nasioulas G, Fildissis G, Aravantinos G. Fluoropyrimidine-induced toxicity and DPD deficiency.. A case report of early onset, lethal capecitabine-induced toxicity and mini review of the literature. Uridine triacetate: Efficacy and safety as an antidote. Is it accessible outside USA? J Oncol Pharm Pract 2019; 26:747-753. [PMID: 31382864 DOI: 10.1177/1078155219865597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Fluoropyrimidine-based regimens are among the most commonly used chemotherapy combinations for the treatment of solid tumors. Several genetic polymorphisms that are implicated with fluoropyrimidine anabolism and catabolism have been associated with the development of life-threatening toxicities. Uridine triacetate is an FDA-approved antidote for 5-fluorouracil or capecitabine overdose and early-onset, life-threatening toxicity within 96 h of last chemotherapy dose. To date, it is not accessible for Greek patients as per the current summary of product characteristic's time restrictions. We report and discuss the course and outcome of capecitabine toxicity in a 66-year-old female colorectal cancer patient with heterozygous dihydropyrimidine dehydrogenase deficiency. This paper highlights the difficulty in timely access of this lifesaving medication for Greek and possibly other European patients.
Collapse
Affiliation(s)
- Dimitra Ioanna Lampropoulou
- Second Department of Medical Oncology, General Oncology Hospital of Kifissia "Agioi Anargiroi", Athens, Greece
| | - Konstantinos Laschos
- Second Department of Medical Oncology, General Oncology Hospital of Kifissia "Agioi Anargiroi", Athens, Greece
| | - Anna-Lea Amylidi
- Second Department of Medical Oncology, General Oncology Hospital of Kifissia "Agioi Anargiroi", Athens, Greece
| | - Ariadni Angelaki
- Second Department of Medical Oncology, General Oncology Hospital of Kifissia "Agioi Anargiroi", Athens, Greece
| | - Nikolaos Soupos
- Second Department of Medical Oncology, General Oncology Hospital of Kifissia "Agioi Anargiroi", Athens, Greece
| | - Sotirios Boumpoucheropoulos
- Second Department of Medical Oncology, General Oncology Hospital of Kifissia "Agioi Anargiroi", Athens, Greece
| | | | - Evgenia Nanou
- Faculty of Nursing, Kapodistrian University of Athens, Athens, Greece.,Intensive Care Unit, General Oncology Hospital of Kifissia "Agioi Anargiroi", Athens, Greece
| | - Vasilios Zidianakis
- Faculty of Nursing, Kapodistrian University of Athens, Athens, Greece.,Intensive Care Unit, General Oncology Hospital of Kifissia "Agioi Anargiroi", Athens, Greece
| | | | - George Fildissis
- Faculty of Nursing, Kapodistrian University of Athens, Athens, Greece.,Intensive Care Unit, General Oncology Hospital of Kifissia "Agioi Anargiroi", Athens, Greece
| | - Gerasimos Aravantinos
- Second Department of Medical Oncology, General Oncology Hospital of Kifissia "Agioi Anargiroi", Athens, Greece
| |
Collapse
|
23
|
Duan T, Xu Z, Sun F, Wang Y, Zhang J, Luo C, Wang M. HPA aptamer functionalized paclitaxel-loaded PLGA nanoparticles for enhanced anticancer therapy through targeted effects and microenvironment modulation. Biomed Pharmacother 2019; 117:109121. [PMID: 31252265 DOI: 10.1016/j.biopha.2019.109121] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/01/2019] [Accepted: 06/12/2019] [Indexed: 01/09/2023] Open
Abstract
Breast cancer is a fairly common cancer with high mortality in women worldwide. Targeted nano-drug delivery system for breast cancer treatment has achieved encouraging results, because of increased drug concentration at the tumor site, thereby improving biocompatibility and blood half-life while reducing chemoresistance. However, the absence of available target on cancer cells is one of the major obstacles for triple-negative breast cancer (TNBC). Increasing studies have shown that heparanase (HPA) is highly expressed in many cancers, including TNBC. Thus paclitaxel(PTX) -encapsulated PEGylated PLGA nanoparticles were developed and further surface-functionalized with the HPA aptamers (Apt(S1.5)-PTX-NP). Moreover, targeting and cytotoxicity of Apt(S1.5)-PTX-NP to TNBC cells were evaluated with MDA-MB-231 as a model. These nanoparticles bonded to the HPA overexpressed on the surface of TNBC cells and were taken up by these cells, resulting in remarkably enhanced cellular toxicity compared with non-targeted PTX-NP that lack the HPA aptamer (P < 0.01). Furthermore, Apt(S1.5)-PTX-NP significantly exhibited enhanced anti-invasive and superior anti-angiogenesis activity compared with those of other experiment groups at low administration dosage. The Apt(S1.5)-PTX-NP demonstrated the most dramatic efficacy with the final mean tumor sizes of 157.30 ± 41.09 mm3 (mean ± SD; n = 10) in vivo treatment. Thus, the present study indicated that HPA is a promising target for drug delivery to TNBC cells, and nanoparticle-HPA-aptamer bioconjugates can provide new insights for TNBC treatment.
Collapse
Affiliation(s)
- Tao Duan
- State Key Laboratory of Natural Medicines, School of Life Science & Technology, China Pharmaceutical University, Nanjing, 24 Tongjia Road, 210009, PR China
| | - Zhuobin Xu
- State Key Laboratory of Natural Medicines, School of Life Science & Technology, China Pharmaceutical University, Nanjing, 24 Tongjia Road, 210009, PR China
| | - Fumou Sun
- State Key Laboratory of Natural Medicines, School of Life Science & Technology, China Pharmaceutical University, Nanjing, 24 Tongjia Road, 210009, PR China
| | - Yang Wang
- State Key Laboratory of Natural Medicines, School of Life Science & Technology, China Pharmaceutical University, Nanjing, 24 Tongjia Road, 210009, PR China
| | - Juan Zhang
- State Key Laboratory of Natural Medicines, School of Life Science & Technology, China Pharmaceutical University, Nanjing, 24 Tongjia Road, 210009, PR China
| | - Chen Luo
- State Key Laboratory of Natural Medicines, School of Life Science & Technology, China Pharmaceutical University, Nanjing, 24 Tongjia Road, 210009, PR China
| | - Min Wang
- State Key Laboratory of Natural Medicines, School of Life Science & Technology, China Pharmaceutical University, Nanjing, 24 Tongjia Road, 210009, PR China.
| |
Collapse
|
24
|
Ratti M, Hahne JC, Toppo L, Castelli E, Petrelli F, Passalacqua R, Barni S, Tomasello G, Ghidini M. Major innovations and clinical applications of disodium-levofolinate: a review of available preclinical and clinical data. Ther Adv Med Oncol 2019; 11:1758835919853954. [PMID: 31210799 PMCID: PMC6552345 DOI: 10.1177/1758835919853954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/07/2019] [Indexed: 12/15/2022] Open
Abstract
The association of folinate salts with 5-fluorouracil (5-FU) represents a gold standard in the treatment of many cancers. In several clinical trials, the simultaneous administration of calcium–folinic acid (Ca-FA) and the prolonged infusion of 5-FU resulted in a better clinical response compared with fluoropyrimidine alone and 5-FU bolus. However, the simultaneous infusion of 5-FU and Ca-FA mixed in the same infusion pump is hindered by the crystallization of calcium salts, which eventually leads to catheter obstruction and damage. The sodium salt of leucovorin-disodium levofolinate (Na-Lv) is a novel molecule with a pharmacological profile similar to Ca-FA. Owing to its higher solubility, it can be safely mixed with 5-FU in a single pump without the risk of precipitation and catheter occlusion. The efficacy and safety of Na-Lv have been widely examined in preclinical and clinical phase II studies in combination with various schedules of 5-FU and in several cancer types. PubMed, EMBASE, SCOPUS and Web of Science databases were searched from inception to November 2018 to retrieve available published phase I and II series, including Western patients. Compared with Ca-FA, Na-Lv shows a more favourable efficacy and toxicity profile in terms of overall response rate, progression-free survival, time to progression and occurrence of severe adverse events. Moreover, it allows treatment time to be shortened, decreasing the number of required human resources for drug administration and limiting the occurrence of catheter damage.
Collapse
Affiliation(s)
- Margherita Ratti
- Oncology Unit, Oncology Department, ASST of Cremona, Hospital of Cremona, Italy
| | - Jens Claus Hahne
- Division of Molecular Pathology, The Institute for Cancer Research, Sutton, UK
| | - Laura Toppo
- Oncology Unit, Dept Medicine, Hospital of Voghera, Italy
| | | | - Fausto Petrelli
- Oncology Unit, Oncology Department, ASST of Bergamo Ovest, Treviglio, Italy
| | - Rodolfo Passalacqua
- Oncology Unit, Oncology Department, ASST of Cremona, Hospital of Cremona, Italy
| | - Sandro Barni
- Oncology Unit, Oncology Department, ASST of Bergamo Ovest, Treviglio, Italy
| | - Gianluca Tomasello
- Oncology Unit, Oncology Department, ASST of Cremona, Hospital of Cremona, Italy
| | - Michele Ghidini
- Oncology Unit, Oncology Department, ASST of Cremona, Hospital of Cremona, Viale Concordia, 1, Cremona CR, 26100, Italy
| |
Collapse
|
25
|
Chong JH, Ghosh AK. Coronary Artery Vasospasm Induced by 5-fluorouracil: Proposed Mechanisms, Existing Management Options and Future Directions. ACTA ACUST UNITED AC 2019; 14:89-94. [PMID: 31178935 PMCID: PMC6545978 DOI: 10.15420/icr.2019.12] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease and cancer are leading contributors to the global disease burden. As a result of cancer therapy-related cardiotoxicities, cardiovascular disease results in significant morbidity and mortality in cancer survivors and patients with active cancer. There is an unmet need for management of cardio-oncology conditions, which is predicted to reach epidemic proportions, and better understanding of their pathophysiology and treatment is urgently required. The proposed mechanisms underlying cardiotoxicity induced by 5-fluorouracil (5-FU) are vascular endothelial damage followed by thrombus formation, ischaemia secondary to coronary artery vasospasm, direct toxicity on myocardium and thrombogenicity. In patients with angina and electrocardiographic evidence of myocardial ischaemia due to chemotherapy-related coronary artery vasospasm, termination of chemotherapy and administration of calcium channel blockers or nitrates can improve ischaemic symptoms. However, coronary artery vasospasm can reoccur with 5-FU re-administration with limited effectiveness of vasodilator prophylaxis observed. While pre-existing coronary artery disease may increase the ischaemic potential of 5-FU, cardiovascular risk factors do not appear to completely predict the development of cardiac complications. Pharmacogenomic studies and genetic profiling may help predict the occurrence and streamline the treatment of 5-FU-induced coronary artery vasospasm. Echocardiographic measures such as the Tei index may help detect subclinical 5-FU cardiotoxicity. Further research is required to explore the cardioprotective effect of agents such as coenzyme complex, GLP-1 analogues and degradation inhibitors on 5-FU-induced coronary artery vasospasm.
Collapse
Affiliation(s)
- Jun Hua Chong
- Cardio-Oncology Service, Barts Heart Centre, St Bartholomew's Hospital London, UK
| | - Arjun K Ghosh
- Cardio-Oncology Service, Barts Heart Centre, St Bartholomew's Hospital London, UK.,Cardio-Oncology Service, University College London Hospital, Hatter Cardiovascular Institute London, UK
| |
Collapse
|
26
|
Macaire P, Morawska K, Vincent J, Quipourt V, Marilier S, Ghiringhelli F, Bengrine-Lefevre L, Schmitt A. Therapeutic drug monitoring as a tool to optimize 5-FU-based chemotherapy in gastrointestinal cancer patients older than 75 years. Eur J Cancer 2019; 111:116-125. [PMID: 30849685 DOI: 10.1016/j.ejca.2019.01.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/21/2019] [Accepted: 01/27/2019] [Indexed: 10/27/2022]
Abstract
AIMS Most clinical trials exclude elderly people, leading to a limited understanding of the benefit-to-risk ratio in this population. Despite existing data regarding the oncological management of elderly receiving fluorouracil (5-FU)-based regimen, our objective was to investigate 5-FU exposure/toxicity relationship in patients ≥75 years and compare the effectiveness of 5-FU therapeutic drug monitoring between elderly and younger patients. METHODS Hundred fifty-four patients (31 of whom are older than 75 years) with gastrointestinal cancers, who were to receive 5-FU-based regimens, were included in our study. At cycle 1 (C1), the 5-FU dose was calculated using patient's body surface area, then a blood sample was drawn to measure 5-FU concentration and 5-FU dose was adjusted at the subsequent cycles based on C1 concentration. Assessments of toxicity were performed at the beginning of every cycle. RESULTS Seventy-one percent of elderly patients required dose adjustments after C1, compared with 50% for younger patients. Percentages of patients within 5-FU area under the curve range at cycle 2 were 64% and 68%, respectively, for elderly and younger patients. The proportion of elderly patients experiencing severe toxicities fell from 15% at C1 to only 5% at cycle 3. CONCLUSION Pharmacokinetic-guided 5-FU-dosing algorithm, leading to an improved tolerability while remaining within therapeutic concentration range, is even more valuable for patients older than 75 years than in younger patients.
Collapse
Affiliation(s)
- Pauline Macaire
- Pharmacy Department, Centre Georges-François Leclerc, 1 rue Pr. Marion, 21000 Dijon, France; INSERM U1231, University of Burgundy Franche-Comté, 7 Bd Jeanne d'Arc, 21000 Dijon, France
| | - Katarzyna Morawska
- Pharmacy Department, Centre Georges-François Leclerc, 1 rue Pr. Marion, 21000 Dijon, France
| | - Julie Vincent
- Medical Oncology Deparment, Centre Georges-François Leclerc, 1 rue Pr. Marion, 21000 Dijon, France
| | - Valérie Quipourt
- Department of Geriatrics and Internal Medicine, Hospital of Champmaillot, University Hospital, 21079 Dijon, France; Geriatric Oncology Coordination Unit in Burgundy, University Hospital, 21079 Dijon, France
| | - Sophie Marilier
- Department of Geriatrics and Internal Medicine, Hospital of Champmaillot, University Hospital, 21079 Dijon, France; Geriatric Oncology Coordination Unit in Burgundy, University Hospital, 21079 Dijon, France
| | - François Ghiringhelli
- INSERM U1231, University of Burgundy Franche-Comté, 7 Bd Jeanne d'Arc, 21000 Dijon, France; Medical Oncology Deparment, Centre Georges-François Leclerc, 1 rue Pr. Marion, 21000 Dijon, France
| | - Leila Bengrine-Lefevre
- Medical Oncology Deparment, Centre Georges-François Leclerc, 1 rue Pr. Marion, 21000 Dijon, France
| | - Antonin Schmitt
- Pharmacy Department, Centre Georges-François Leclerc, 1 rue Pr. Marion, 21000 Dijon, France; INSERM U1231, University of Burgundy Franche-Comté, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| |
Collapse
|
27
|
Del Re M, Cinieri S, Michelucci A, Salvadori S, Loupakis F, Schirripa M, Cremolini C, Crucitta S, Barbara C, Di Leo A, Latiano TP, Pietrantonio F, Di Donato S, Simi P, Passardi A, De Braud F, Altavilla G, Zamagni C, Bordonaro R, Butera A, Maiello E, Pinto C, Falcone A, Mazzotti V, Morganti R, Danesi R. DPYD*6 plays an important role in fluoropyrimidine toxicity in addition to DPYD*2A and c.2846A>T: a comprehensive analysis in 1254 patients. THE PHARMACOGENOMICS JOURNAL 2019; 19:556-563. [PMID: 30723313 PMCID: PMC6867961 DOI: 10.1038/s41397-019-0077-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/30/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022]
Abstract
Dihydropyrimidine dehydrogenase (DPYD) is a highly polymorphic gene and classic deficient variants (i.e., c.1236G>A/HapB3, c.1679T>G, c.1905+1G>A and c.2846A>T) are characterized by impaired enzyme activity and risk of severe adverse drug reactions (ADRs) in patients treated with fluoropyrimidines. The identification of poor metabolizers by pre-emptive DPYD screening may reduce the rate of ADRs but many patients with wild-type genotype for classic variants may still display ADRs. Therefore, the search for additional DPYD polymorphisms associated with ADRs may improve the safety of treatment with fluoropyrimidines. This study included 1254 patients treated with fluoropyrimidine-containing regimens and divided into cohort 1, which included 982 subjects suffering from gastrointestinal G≥2 and/or hematological G≥3 ADRs, and cohort 2 (control group), which comprised 272 subjects not requiring dose reduction, delay or discontinuation of treatment. Both groups were screened for DPYD variants c.496A>G, c.1236G>A/HapB3, c.1601G>A (DPYD*4), c.1627A>G (DPYD*5), c.1679T>G (DPYD*13), c.1896T>C, c.1905 + 1G>A (DPYD*2A), c.2194G>A (DPYD*6), and c.2846A>T to assess their association with toxicity. Genetic analysis in the two cohorts were done by Real-Time PCR of DNA extracted from 3 ml of whole blood. DPYD c.496A>G, c.1601G>A, c.1627A>G, c.1896T>C, and c.2194G>A variants were found in both cohort 1 and 2, while c.1905+1G>A and c.2846A>T were present only in cohort 1. DPYD c.1679T>G and c.1236G>A/HapB3 were not found. Univariate analysis allowed the selection of c.1905+1G>A, c.2194G>A and c.2846A>T alleles as significantly associated with gastrointestinal and hematological ADRs (p < 0.05), while the c.496A>G variant showed a positive trend of association with neutropenia (p = 0.06). In conclusion, c.2194G>A is associated with clinically-relevant ADRs in addition to the already known c.1905+1G>A and c.2846A>T variants and should be evaluated pre-emptively to reduce the risk of fluoropyrimidine-associated ADRs.
Collapse
Affiliation(s)
- Marzia Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Saverio Cinieri
- Medical Oncology Division and Breast Unit, Civil Hospital, Brindisi, Italy
| | - Angela Michelucci
- Medical Genetics Unit, Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Stefano Salvadori
- Epidemiology and Health Services Research Department, Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Fotios Loupakis
- Medical Oncology Unit, Istituto Oncologico del Veneto IRCCS, Padova, Italy
| | - Marta Schirripa
- Medical Oncology Unit, Istituto Oncologico del Veneto IRCCS, Padova, Italy
| | - Chiara Cremolini
- Medical Oncology Unit, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Stefania Crucitta
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | - Tiziana Pia Latiano
- Medical Oncology Unit, Casa Sollievo della Sofferenza IRCCS, San Giovanni Rotondo, Italy
| | - Filippo Pietrantonio
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | - Paolo Simi
- Medical Genetics Unit, Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Alessandro Passardi
- Medical Oncology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori IRCCS, Meldola, Italy
| | - Filippo De Braud
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Giuseppe Altavilla
- Medical Oncology Unit, Department of Human Pathology, University of Messina, Messina, Italy
| | - Claudio Zamagni
- Medical Oncology Unit, Addarii Institute of Oncology, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Roberto Bordonaro
- Medical Oncology Unit, Department of Oncology, ARNAS Garibaldi, Catania, Italy
| | - Alfredo Butera
- Medical Oncology Unit, Department of Oncology, Civil Hospital, Agrigento, Italy
| | - Evaristo Maiello
- Medical Oncology Unit, Casa Sollievo della Sofferenza IRCCS, San Giovanni Rotondo, Italy
| | - Carmine Pinto
- Medical Oncology Unit, Arcispedale Santa Maria Nuova IRCCS, Reggio Emilia, Italy
| | - Alfredo Falcone
- Medical Oncology Unit, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Valentina Mazzotti
- Statistics Applied to Clinical Trials Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Riccardo Morganti
- Statistics Applied to Clinical Trials Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
28
|
Renal inhibition of miR-181a ameliorates 5-fluorouracil-induced mesangial cell apoptosis and nephrotoxicity. Cell Death Dis 2018; 9:610. [PMID: 29795190 PMCID: PMC5966400 DOI: 10.1038/s41419-018-0677-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/29/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
The development of nephrotoxicity largely limits the clinical use of chemotherapy. MiRNAs are able to target various genes and involved in the regulation of diverse cellular processes, including cell apoptosis and death. Our study showed that miR-181a expression was significantly increased after 5-fluorouracil (5-FU) treatment in renal mesangial cells and kidney tissue, which was associated with decreased baculoviral inhibition of apoptosis protein repeat-containing 6 (BIRC6) expression and increased apoptotic rate. Enforced miR-181a expression enhanced 5-FU-induced p53-dependent mitochondrial apoptosis, including declined Bcl-2/Bax ratio, loss of mitochondrial membrane potential, cytochrome c release, and caspase-9 and caspase-3 activation. However, inhibition of miR-181a was associated with reduced p53-mediated mitochondrial apoptosis induced by 5-FU. Moreover, miR-181a increased BIRC6 downstream gene p53 protein expression and transcriptional activity by reducing ubiquitin-mediated protein degradation. We found that miR-181a directly targeted 3'-UTR of BIRC6 mRNA and negatively regulated BIRC6 expression. In vivo study, knockdown of miR-181a with adeno-associated virus harboring miR-181a-tough decoy attenuated 5-FU-induced renal cell apoptosis, inflammation and kidney injury. In conclusion, these results demonstrate that miR-181a increases p53 protein expression and transcriptional activity by targeting BIRC6 and promotes 5-FU-induced apoptosis in mesangial cells. Inhibition of miR-181a ameliorates 5-FU-induced nephrotoxicity, suggesting that miR-181a may be a novel therapeutic target for nephrotoxicity treatment during chemotherapy.
Collapse
|
29
|
Elander NO, Aughton K, Ghaneh P, Neoptolemos JP, Palmer DH, Cox TF, Campbell F, Costello E, Halloran CM, Mackey JR, Scarfe AG, Valle JW, McDonald AC, Carter R, Tebbutt NC, Goldstein D, Shannon J, Dervenis C, Glimelius B, Deakin M, Charnley RM, Anthoney A, Lerch MM, Mayerle J, Oláh A, Büchler MW, Greenhalf W. Intratumoural expression of deoxycytidylate deaminase or ribonuceotide reductase subunit M1 expression are not related to survival in patients with resected pancreatic cancer given adjuvant chemotherapy. Br J Cancer 2018; 118:1084-1088. [PMID: 29523831 PMCID: PMC5931097 DOI: 10.1038/s41416-018-0005-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Deoxycytidylate deaminase (DCTD) and ribonucleotide reductase subunit M1 (RRM1) are potential prognostic and predictive biomarkers for pyrimidine-based chemotherapy in pancreatic adenocarcinoma. METHODS Immunohistochemical staining of DCTD and RRM1 was performed on tissue microarrays representing tumour samples from 303 patients in European Study Group for Pancreatic Cancer (ESPAC)-randomised adjuvant trials following pancreatic resection, 272 of whom had received gemcitabine or 5-fluorouracil with folinic acid in ESPAC-3(v2), and 31 patients from the combined ESPAC-3(v1) and ESPAC-1 post-operative pure observational groups. RESULTS Neither log-rank testing on dichotomised strata or Cox proportional hazard regression showed any relationship of DCTD or RRM1 expression levels to survival overall or by treatment group. CONCLUSIONS Expression of either DCTD or RRM1 was not prognostic or predictive in patients with pancreatic adenocarcinoma who had had post-operative chemotherapy with either gemcitabine or 5-fluorouracil with folinic acid.
Collapse
Affiliation(s)
- N O Elander
- Cancer Research U.K. Liverpool Cancer Trials Unit, University of Liverpool, Liverpool, UK
| | - K Aughton
- Cancer Research U.K. Liverpool Cancer Trials Unit, University of Liverpool, Liverpool, UK
| | - P Ghaneh
- Cancer Research U.K. Liverpool Cancer Trials Unit, University of Liverpool, Liverpool, UK
| | - J P Neoptolemos
- Cancer Research U.K. Liverpool Cancer Trials Unit, University of Liverpool, Liverpool, UK
| | - D H Palmer
- Cancer Research U.K. Liverpool Cancer Trials Unit, University of Liverpool, Liverpool, UK
| | - T F Cox
- Cancer Research U.K. Liverpool Cancer Trials Unit, University of Liverpool, Liverpool, UK
| | - F Campbell
- Cancer Research U.K. Liverpool Cancer Trials Unit, University of Liverpool, Liverpool, UK
| | - E Costello
- Cancer Research U.K. Liverpool Cancer Trials Unit, University of Liverpool, Liverpool, UK
| | - C M Halloran
- Cancer Research U.K. Liverpool Cancer Trials Unit, University of Liverpool, Liverpool, UK
| | - J R Mackey
- Cross Cancer Institute and University of Alberta, Edmonton, Canada
| | - A G Scarfe
- Cross Cancer Institute and University of Alberta, Edmonton, Canada
| | - J W Valle
- University of Manchester/The Christie NHS Foundation Trust, Manchester, UK
| | - A C McDonald
- The Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - R Carter
- Glasgow Royal Infirmary, Glasgow, UK
| | | | - D Goldstein
- Prince of Wales hospital and Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - J Shannon
- Nepean Cancer Centre and University of Sydney, Camperdown, NSW, Australia
| | | | - B Glimelius
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - M Deakin
- University Hospital, North Staffordshire, Staffordshire, UK
| | | | - A Anthoney
- St James's University Hospital, Leeds, UK
| | - M M Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - J Mayerle
- Department of Medicine II, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - A Oláh
- The Petz Aladar Hospital, Gyor, Hungary
| | - M W Büchler
- Department of Surgery, University of Heidelberg, Heidelberg, Germany
| | - W Greenhalf
- Cancer Research U.K. Liverpool Cancer Trials Unit, University of Liverpool, Liverpool, UK.
| |
Collapse
|
30
|
Zurayk M, Keung YK, Yu D, Hu EHL. Successful use of uridine triacetate (Vistogard) three weeks after capecitabine in a patient with homozygous dihydropyrimidine dehydrogenase mutation: A case report and review of the literature. J Oncol Pharm Pract 2017; 25:234-238. [DOI: 10.1177/1078155217732141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
5-fluorouracil and capecitabine are chemotherapeutic agents commonly used to treat solid malignancies. Increased susceptibility to 5-fluorouracil or capecitabine, caused by impaired clearance, dihydropyrimidine dehydrogenase deficiency, or other genetic mutations in the enzymes that metabolize 5-fluorouracil can lead to severe life-threatening toxicities and are typically manifested by an early onset of symptoms. We report and discuss the management and outcome of capecitabine toxicity with the recently FDA approved antidote, uridine triacetate (Vistogard), in a 57-year-old female breast cancer patient with homozygous dihydropyrimidine dehydrogenase deficiency who received treatment beyond the recommended 96 h window from the last dose of capecitabine.
Collapse
Affiliation(s)
- Mira Zurayk
- Department of Pharmacy, Huntington Memorial Hospital, Pasadena, USA
| | | | - David Yu
- Department of Pharmacy, Huntington Memorial Hospital, Pasadena, USA
| | - Eddie HL Hu
- UCLA Hematology-Oncology Clinic, Alhambra, CA, USA
| |
Collapse
|
31
|
TYMS Gene Polymorphisms in Breast Cancer Patients Receiving 5-Fluorouracil-Based Chemotherapy. Clin Breast Cancer 2017; 18:e301-e304. [PMID: 28899623 DOI: 10.1016/j.clbc.2017.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/17/2017] [Accepted: 08/10/2017] [Indexed: 12/19/2022]
|
32
|
Saba NF, Mody MD, Tan ES, Gill HS, Rinaldo A, Takes RP, Strojan P, Hartl DM, Vermorken JB, Haigentz M, Ferlito A. Toxicities of systemic agents in squamous cell carcinoma of the head and neck (SCCHN); A new perspective in the era of immunotherapy. Crit Rev Oncol Hematol 2017; 115:50-58. [PMID: 28602169 DOI: 10.1016/j.critrevonc.2017.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/16/2017] [Accepted: 04/26/2017] [Indexed: 02/08/2023] Open
Abstract
Squamous cell carcinoma of the head and neck (SCCHN) is a difficult to treat malignancy and represents the seventh most common cancer worldwide. Systemic therapy has a critical role in the treatment of locally advanced and recurrent/metastatic disease. Cytotoxic chemotherapy has been primarily used along with radiation and surgery, with cisplatin being the standard of care choice of therapy. When contraindications to cisplatin exist, other agents such as carboplatin, taxanes, 5-fluorouracil, and cetuximab are used. Similarly, in the advanced or metastatic setting, platinum agents, taxanes and cetuximab have been predominantly utilized. With the recent approval of novel agents such as pembrolizumab and nivolumab, and their distinct toxicity profiles, an understanding of the potential sequelae of the different systemic agents is essential to the careful selection of agents in the advanced disease setting. Going forward, choosing novel agents will be weighed against traditional chemotherapy, and understanding the toxicities at stake is critical in this process. In addition to providing an overview of the toxicity profile of the different systemic agents, we also provide a perspective into the future of SCCHN treatment.
Collapse
Affiliation(s)
- Nabil F Saba
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| | - Mayur D Mody
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Elaine S Tan
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Harpaul S Gill
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Robert P Takes
- Department of Otolaryngology-Head and Neck Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Primož Strojan
- Department of Radiation Oncology, Institute of Oncology, Ljubljana, Slovenia
| | - Dana M Hartl
- Department of Otolaryngology-Head and Neck Surgery, Institut Gustave Roussy, Villejuif Cedex, France; Laboratoire de Phonétique et de Phonologie, Sorbonne Nouvelle, Paris, France
| | - Jan B Vermorken
- Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Missak Haigentz
- Department of Medicine, Division of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | | |
Collapse
|
33
|
Sudha T, Bharali DJ, Yalcin M, Darwish NH, Debreli Coskun M, Keating KA, Lin HY, Davis PJ, Mousa SA. Targeted delivery of paclitaxel and doxorubicin to cancer xenografts via the nanoparticle of nano-diamino-tetrac. Int J Nanomedicine 2017; 12:1305-1315. [PMID: 28243091 PMCID: PMC5317264 DOI: 10.2147/ijn.s123742] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The tetraiodothyroacetic acid (tetrac) component of nano-diamino-tetrac (NDAT) is chemically bonded via a linker to a poly(lactic-co-glycolic acid) nanoparticle that can encapsulate anticancer drugs. Tetrac targets the plasma membrane of cancer cells at a receptor on the extracellular domain of integrin αvβ3. In this study, we evaluate the efficiency of NDAT delivery of paclitaxel and doxorubicin to, respectively, pancreatic and breast cancer orthotopic nude mouse xenografts. Intra-tumoral drug concentrations were 5-fold (paclitaxel; P<0.001) and 2.3-fold (doxorubicin; P<0.01) higher than with conventional systemic drug administration. Tumor volume reductions reflected enhanced xenograft drug uptake. Cell viability was estimated by bioluminescent signaling in pancreatic tumors and confirmed an increased paclitaxel effect with drug delivery by NDAT. NDAT delivery of chemotherapy increases drug delivery to cancers and increases drug efficacy.
Collapse
Affiliation(s)
- Thangirala Sudha
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Dhruba J Bharali
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Murat Yalcin
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA; Department of Physiology, Veterinary Medicine Faculty, Uludag University, Gorukle, Bursa, Turkey
| | - Noureldien He Darwish
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA; Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Melis Debreli Coskun
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA; Department of Biology, Faculty of Arts and Sciences, Uludag University, Gorukle, Bursa, Turkey
| | - Kelly A Keating
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Hung-Yun Lin
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Paul J Davis
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA; Department of Medicine, Albany Medical College, Albany, NY, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| |
Collapse
|
34
|
Sudha T, Bharali DJ, Yalcin M, Darwish NHE, Coskun MD, Keating KA, Lin HY, Davis PJ, Mousa SA. Targeted delivery of cisplatin to tumor xenografts via the nanoparticle component of nano-diamino-tetrac. Nanomedicine (Lond) 2017; 12:195-205. [DOI: 10.2217/nnm-2016-0315] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Nano-diamino-tetrac (NDAT) targets a receptor on integrin αvβ3; αvβ3 is generously expressed by cancer cells and dividing endothelial cells and to a small extent by nonmalignant cells. The tetrac (tetraiodothyroacetic acid) of NDAT is covalently bound to a poly(lactic-co-glycolic acid) nanoparticle that encapsulates anticancer drugs. We report NDAT delivery efficiency of cisplatin to agent-susceptible urinary bladder cancer xenografts. Materials & methods: Cisplatin-loaded NDAT (NDAT-cisplatin) was administered to xenograft-bearing nude mice. Tumor size response and drug content were measured. Results: Intratumoral drug concentration was up to fivefold higher (p < 0.001) in NDAT-cisplatin-exposed lesions than with conventional systemic administration. Tumor volume reduction achieved was NDAT-cisplatin > NDAT without cisplatin > cisplatin alone. Conclusion: NDAT markedly enhances cisplatin delivery to urinary bladder cancer xenografts and increases drug efficacy.
Collapse
Affiliation(s)
- Thangirala Sudha
- Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| | - Dhruba J Bharali
- Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| | - Murat Yalcin
- Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
- Department of Physiology, Faculty of Veterinary Medicine, Uludag University, Gorukle, 16059 Bursa, Turkey
| | - Noureldien HE Darwish
- Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
- Clinical Pathology Department, Hematology Unit, Faculty of Medicine, Mansoura University, Dakahliya 35516, Egypt
| | - Melis Debreli Coskun
- Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
- Department of Biology, Faculty of Arts & Sciences, Uludag University, Gorukle, 16059 Bursa, Turkey
| | - Kelly A Keating
- Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| | - Hung-Yun Lin
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science & Technology, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
- Department of Medicine, Albany Medical College, Albany, NY, 12208, USA
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| |
Collapse
|
35
|
Yu X, Hou J, Shi Y, Su C, Zhao L. Preparation and characterization of novel chitosan-protamine nanoparticles for nucleus-targeted anticancer drug delivery. Int J Nanomedicine 2016; 11:6035-6046. [PMID: 27881917 PMCID: PMC5115688 DOI: 10.2147/ijn.s117066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
It is well known that most anticancer drugs commonly show high toxicity to the DNA of tumor cells and exert effects by combining with the DNA or associated enzymes in the nucleus. Most developed drugs are first delivered into the cytoplasm and then transferred to the nucleus through the membrane pores. Sometimes, the transportation of drugs from cytoplasm to nucleus is not efficient and often results in poor therapeutic effects. In this study, we developed special and novel nanoparticles (NPs) made of chitosan and protamine for targeted nuclear capture of drugs to enhance anticancer effects. The anticancer effects of nuclear targeted-delivery of drugs in NPs were also evaluated by investigating cytotoxicity, cellular uptake mechanism, and cell apoptosis on cells. Chitosan–protamine NPs were characterized by good drug entrapment, sustained release, small average particle size, low polydispersity index, and high encapsulation efficiency; and accomplished the efficient nuclear delivery of fluorouracil (5-Fu). Compared with free 5-Fu and 5-Fu-loaded chitosan NPs, treatment of A549 cells and HeLa cells with 5-Fu-loaded chitosan–protamine NPs showed the highest cytotoxicity and further induced the significant apoptosis of cells. In addition, 5-Fu-loaded chitosan–protamine NPs exhibited the best efficiency in inhibiting tumor growth than the other three formulations. 5-Fu-loaded chitosan–protamine NPs enhanced antitumor efficacy through the targeted nuclear capture of drugs and showed promising potential as a nanodelivery system for quickly locating drugs in the nucleus of cells.
Collapse
Affiliation(s)
| | | | | | - Chang Su
- School of Veterinary Medicine, Jinzhou Medical University, Jinzhou, People's Republic of China
| | | |
Collapse
|
36
|
Lou Y, Wang Q, Zheng J, Hu H, Liu L, Hong D, Zeng S. Possible Pathways of Capecitabine-Induced Hand–Foot Syndrome. Chem Res Toxicol 2016; 29:1591-1601. [PMID: 27631426 DOI: 10.1021/acs.chemrestox.6b00215] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yan Lou
- The
First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, People’s Republic of China
| | - Qian Wang
- The
First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, People’s Republic of China
| | - Jinqi Zheng
- Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310004, People’s Republic of China
| | - Haihong Hu
- Laboratory
of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province
Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People’s Republic of China
| | - Lin Liu
- The
First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, People’s Republic of China
| | - Dongsheng Hong
- The
First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, People’s Republic of China
| | - Su Zeng
- Laboratory
of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province
Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People’s Republic of China
| |
Collapse
|
37
|
Grobárová V, Vališ K, Talacko P, Pavlů B, Hernychová L, Nováková J, Stodůlková E, Flieger M, Novák P, Černý J. Quambalarine B, a Secondary Metabolite from Quambalaria cyanescens with Potential Anticancer Properties. JOURNAL OF NATURAL PRODUCTS 2016; 79:2304-2314. [PMID: 27571379 DOI: 10.1021/acs.jnatprod.6b00362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Quambalarine B (QB) is a secondary metabolite produced by the basidiomycete Quambalaria cyanescens with potential anticancer activity. Here we report that QB at low micromolar concentration inhibits proliferation of several model leukemic cell lines (Jurkat, NALM6, and REH), whereas higher concentrations induce cell death. By contrast, the effect of QB on primary leukocytes (peripheral blood mononuclear cells) is significantly milder with lower toxicity and cytostatic activity. Moreover, QB inhibited expression of the C-MYC oncoprotein and mRNA expression of its target genes, LDHA, PKM2, and GLS. Finally, QB blocked the phosphorylation of P70S6K, a downstream effector kinase in mTOR signaling that regulates translation of C-MYC. This observation could explain the molecular mechanism behind the antiproliferative and cytotoxic effects of QB on leukemic cells. Altogether, our results establish QB as a promising molecule in anticancer treatment.
Collapse
Affiliation(s)
- Valéria Grobárová
- Department of Cell Biology, Faculty of Science, Charles University , Viničná 7, 128 43 Prague 2, Czech Republic
| | - Karel Vališ
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences , Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University , Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Pavel Talacko
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences , Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University , Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Barbora Pavlů
- Department of Cell Biology, Faculty of Science, Charles University , Viničná 7, 128 43 Prague 2, Czech Republic
| | - Lucie Hernychová
- Department of Cell Biology, Faculty of Science, Charles University , Viničná 7, 128 43 Prague 2, Czech Republic
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences , Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Jana Nováková
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences , Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Eva Stodůlková
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences , Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Miroslav Flieger
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences , Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Petr Novák
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences , Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University , Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Jan Černý
- Department of Cell Biology, Faculty of Science, Charles University , Viničná 7, 128 43 Prague 2, Czech Republic
| |
Collapse
|
38
|
Campbell JM, Bateman E, Peters MDJ, Bowen JM, Keefe DM, Stephenson MD. Fluoropyrimidine and platinum toxicity pharmacogenetics: an umbrella review of systematic reviews and meta-analyses. Pharmacogenomics 2016; 17:435-51. [DOI: 10.2217/pgs.15.180] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fluoropyrimidine (FU) and platinum-based chemotherapies are greatly complicated by their associated toxicities. This umbrella systematic review synthesized all systematic reviews that investigated associations between germline variations and toxicity, with the aim of informing personalized medicine. Systematic reviews are important in pharmacogenetics where false positives are common. Four systematic reviews were identified for FU-induced toxicity and three for platinum. Polymorphisms of DPYD and TYMS, but not MTHFR, were statistically significantly associated with FU-induced toxicity (although only DPYD had clinical significance). For platinum, GSTP1 was found to not be associated with toxicity. This umbrella systematic review has synthesized the best available evidence on the pharmacogenetics of FU and platinum toxicity. It provides a useful reference for clinicians and identifies important research gaps.
Collapse
Affiliation(s)
- Jared M Campbell
- The Joanna Briggs Institute, Faculty of Health Science, University of Adelaide, Level 1, 115 Grenfell Street, SA 5005, Australia
| | - Emma Bateman
- School of Medicine, Faculty of Health Science, University of Adelaide, Frome Road, Adelaide, SA 5000, Australia
| | - Micah DJ Peters
- The Joanna Briggs Institute, Faculty of Health Science, University of Adelaide, Level 1, 115 Grenfell Street, SA 5005, Australia
| | - Joanne M Bowen
- School of Medicine, Faculty of Health Science, University of Adelaide, Frome Road, Adelaide, SA 5000, Australia
| | - Dorothy M Keefe
- School of Medicine, Faculty of Health Science, University of Adelaide, Frome Road, Adelaide, SA 5000, Australia
| | - Matthew D Stephenson
- The Joanna Briggs Institute, Faculty of Health Science, University of Adelaide, Level 1, 115 Grenfell Street, SA 5005, Australia
| |
Collapse
|
39
|
Peters GJ, Honeywell RJ. Drug transport and metabolism of novel anticancer drugs. Expert Opin Drug Metab Toxicol 2016; 11:661-3. [PMID: 25940025 DOI: 10.1517/17425255.2015.1041255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Godefridus J Peters
- VU University Medical Center, Department of Medical Oncology , PO Box 7057, 1007 MB Amsterdam , The Netherlands +31 20 4442633 ;
| | | |
Collapse
|
40
|
Syn NLX, Yong WP, Lee SC, Goh BC. Genetic factors affecting drug disposition in Asian cancer patients. Expert Opin Drug Metab Toxicol 2015; 11:1879-92. [PMID: 26548636 DOI: 10.1517/17425255.2015.1108964] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION In the era of genomic medicine, it is increasingly recognized that ethnogeographic differences in drug pharmacology exist between Asian and other populations. This is particularly pertinent to oncology, where drugs forming the backbone of chemotherapy often have narrow therapeutic windows and are frequently dosed close to maximally tolerable levels. AREAS COVERED At the population level, ancestry is important because historical-biogeographical confluences have shaped population genetics and pharmacoethnicity in the Asian race through allelic differentiation and interethnic differences in inheritance patterns of linkage disequilibrium. At the individual level, cis- and trans-acting germline polymorphisms and somatic mutations in genes encoding drug-metabolizing enzymes and transporters act in a multifactorial manner to determine drug disposition phenotype and clinical response in Asian cancer patients. A growing body of evidence also finds that complex genetic interactions and regulation, including a multiplicity of gene control mechanisms, are increasingly implicated in genotype-phenotype correlates than has hitherto been appreciated--potentially serving as the mechanistic links between hits in non-coding regions of genome-wide association studies and drug toxicity. Together, these genetic factors contribute to the clinical heterogeneity of drug disposition in Asian cancer patients. EXPERT OPINION This topic has broad relevance for the optimization and individualization of anticancer strategies in Asians.
Collapse
Affiliation(s)
- Nicholas Li-Xun Syn
- a Department of Haematology-Oncology , National University Cancer Institute , Singapore 119228
| | - Wei-Peng Yong
- a Department of Haematology-Oncology , National University Cancer Institute , Singapore 119228.,b Cancer Science Institute of Singapore , National University of Singapore, Centre for Translational Medicine , Singapore 117599
| | - Soo-Chin Lee
- a Department of Haematology-Oncology , National University Cancer Institute , Singapore 119228.,b Cancer Science Institute of Singapore , National University of Singapore, Centre for Translational Medicine , Singapore 117599
| | - Boon-Cher Goh
- a Department of Haematology-Oncology , National University Cancer Institute , Singapore 119228.,b Cancer Science Institute of Singapore , National University of Singapore, Centre for Translational Medicine , Singapore 117599.,c Department of Pharmacology, Yong Loo Lin School of Medicine , National University of Singapore , Singapore 119077
| |
Collapse
|