1
|
Yan YC, Wu W, Huang GY, Yang WC, Chen Q, Qu RY, Lin HY, Yang GF. Pharmacophore-Oriented Discovery of Novel 1,2,3-Benzotriazine-4-one Derivatives as Potent 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6644-6657. [PMID: 35618678 DOI: 10.1021/acs.jafc.2c01507] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a functional protein existing in almost all aerobic organisms. In the field of agricultural chemicals, HPPD is acknowledged to be one of the crucial targets for herbicides at present due to its unique bio-function in plants. In the Auto Core Fragment in silico Screening (ACFIS) web server, a potential HPPD inhibitor featuring 1,2,3-benzotriazine-4-one was screened out via a pharmacophore-linked fragment virtual screening (PFVS) method. Molecular simulation studies drove the process of "hit-to-lead" optimization, and a family of 1,2,3-benzotriazine-4-one derivatives was synthesized. Consequently, 6-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-5-methyl-3-(2-methylbenzyl)benzo[d][1,2,3]triazin-4(3H)-one (15bu) was identified to be the best HPPD inhibitor (IC50 = 36 nM) among the 1,2,3-benzotriazine-4-one derivatives, which had over 8-fold improvement of enzyme inhibition compared with the positive control mesotrione (IC50 = 289 nM). Crystallography information for the AtHPPD-15bu complex revealed several important interactions of the ligand bound upon the target protein, i.e., the bidentate chelating interaction of the triketone motif with the metal ion of AtHPPD, a tight π-π stacking interaction consisting of the1,2,3-benzotriazine-4-one moiety and two benzene rings of Phe-424 and Phe-381, and the polydirectional hydrophobic contacts consisting of the ortho-CH3-benzyl group of the core scaffold and some hydrophobic residues. Furthermore, compound 15bu displayed 100% inhibition against the five species of target weeds at the tested dosage, which was comparable to the weed control of mesotrione. Collectively, the fused 1,2,3-benzotriazine-4-one-triketone hybrid is a promising chemical tool for the development of more potent HPPD inhibitors and provides a valuable lead compound 15bu for herbicide innovation.
Collapse
Affiliation(s)
- Yao-Chao Yan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wei Wu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Yi Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Qiong Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hong-Yan Lin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
2
|
Qu RY, Yang JF, Chen Q, Niu CW, Xi Z, Yang WC, Yang GF. Fragment-based discovery of flexible inhibitor targeting wild-type acetohydroxyacid synthase and P197L mutant. PEST MANAGEMENT SCIENCE 2020; 76:3403-3412. [PMID: 31943722 DOI: 10.1002/ps.5739] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/03/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Intensifying weed resistance has challenged the use of existing acetohydroxyacid synthase (AHAS)-inhibiting herbicides. Hence, there is currently an urgent requirement for the discovery of a new AHAS inhibitor to effectively control AHAS herbicide-resistant weed species produced by target mutation. RESULTS To combat weed resistance caused by AHAS with P197L mutation, we built a structure library consisting of pyrimidinyl-salicylic acid derivatives. Using the pharmacophore-linked fragment virtual screening (PFVS) approach, hit compound 8 bearing 6-phenoxymethyl substituent was identified as a potential AHAS inhibitor with antiresistance effect. Subsequently, derivatives of compound 8 were synthesized and evaluated for their inhibitory activities. The study of the enzyme-based structure-activity relationship and structure-resistance relationship studies led to the discovery of a qualified candidate, 28. This compound not only significantly inhibited the activity of wild-type Arabidopsis thaliana (At) AHAS and P197L mutant, but also exhibited good antiresistance properties (RF = 0.79). Notably, compared with bispyribac at 37.5-150 g of active ingredient per hectare (g a.i. ha-1 ), compound 27 exhibited higher growth inhibition against both sensitive and resistant Descurainia sophia, CONCLUSION: The title compounds have great potential to be developed as new leads to effectively control herbicide-resistant weeds comprising AHAS with P197L mutation. Also, our study provided a positive case for discovering novel, potent and antiresistance inhibitors using a fragment-based drug design approach.
Collapse
Affiliation(s)
- Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, P. R. China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, P. R. China
| | - Qiong Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, P. R. China
| | - Cong-Wei Niu
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, P. R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, P. R. China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P. R. China
| |
Collapse
|
3
|
Mello JDFRE, Gomes RA, Vital-Fujii DG, Ferreira GM, Trossini GHG. Fragment-based drug discovery as alternative strategy to the drug development for neglected diseases. Chem Biol Drug Des 2017; 90:1067-1078. [PMID: 28547936 DOI: 10.1111/cbdd.13030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/12/2017] [Accepted: 05/08/2017] [Indexed: 12/24/2022]
Abstract
Neglected diseases (NDs) affect large populations and almost whole continents, representing 12% of the global health burden. In contrast, the treatment available today is limited and sometimes ineffective. Under this scenery, the Fragment-Based Drug Discovery emerged as one of the most promising alternatives to the traditional methods of drug development. This method allows achieving new lead compounds with smaller size of fragment libraries. Even with the wide Fragment-Based Drug Discovery success resulting in new effective therapeutic agents against different diseases, until this moment few studies have been applied this approach for NDs area. In this article, we discuss the basic Fragment-Based Drug Discovery process, brief successful ideas of general applications and show a landscape of its use in NDs, encouraging the implementation of this strategy as an interesting way to optimize the development of new drugs to NDs.
Collapse
Affiliation(s)
- Juliana da Fonseca Rezende E Mello
- Litec, Laboratório de Integração Entre Técnicas Computacionais e Experimentais no Planejamento de Fármacos, Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Renan Augusto Gomes
- Litec, Laboratório de Integração Entre Técnicas Computacionais e Experimentais no Planejamento de Fármacos, Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Drielli Gomes Vital-Fujii
- Litec, Laboratório de Integração Entre Técnicas Computacionais e Experimentais no Planejamento de Fármacos, Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Glaucio Monteiro Ferreira
- Litec, Laboratório de Integração Entre Técnicas Computacionais e Experimentais no Planejamento de Fármacos, Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil.,Programa de Pós-graduação em Toxicologia e Análises Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Gustavo Henrique Goulart Trossini
- Litec, Laboratório de Integração Entre Técnicas Computacionais e Experimentais no Planejamento de Fármacos, Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil.,Programa de Pós-graduação em Toxicologia e Análises Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Ma R, Wang P, Wu J, Ruan K. Process of Fragment-Based Lead Discovery-A Perspective from NMR. Molecules 2016; 21:molecules21070854. [PMID: 27438813 PMCID: PMC6273320 DOI: 10.3390/molecules21070854] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/22/2016] [Accepted: 05/24/2016] [Indexed: 11/23/2022] Open
Abstract
Fragment-based lead discovery (FBLD) has proven fruitful during the past two decades for a variety of targets, even challenging protein–protein interaction (PPI) systems. Nuclear magnetic resonance (NMR) spectroscopy plays a vital role, from initial fragment-based screening to lead generation, because of its power to probe the intrinsically weak interactions between targets and low-molecular-weight fragments. Here, we review the NMR FBLD process from initial library construction to lead generation. We describe technical aspects regarding fragment library design, ligand- and protein-observed screening, and protein–ligand structure model generation. For weak binders, the initial hit-to-lead evolution can be guided by structural information retrieved from NMR spectroscopy, including chemical shift perturbation, transferred pseudocontact shifts, and paramagnetic relaxation enhancement. This perspective examines structure-guided optimization from weak fragment screening hits to potent leads for challenging PPI targets.
Collapse
Affiliation(s)
- Rongsheng Ma
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China.
| | - Pengchao Wang
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China.
| | - Jihui Wu
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China.
| | - Ke Ruan
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China.
| |
Collapse
|
5
|
Woods LA, Dolezal O, Ren B, Ryan JH, Peat TS, Poulsen SA. Native State Mass Spectrometry, Surface Plasmon Resonance, and X-ray Crystallography Correlate Strongly as a Fragment Screening Combination. J Med Chem 2016; 59:2192-204. [PMID: 26882437 DOI: 10.1021/acs.jmedchem.5b01940] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fragment-based drug discovery (FBDD) is contingent on the development of analytical methods to identify weak protein-fragment noncovalent interactions. Herein we have combined an underutilized fragment screening method, native state mass spectrometry, together with two proven and popular fragment screening methods, surface plasmon resonance and X-ray crystallography, in a fragment screening campaign against human carbonic anhydrase II (CA II). In an initial fragment screen against a 720-member fragment library (the "CSIRO Fragment Library") seven CA II binding fragments, including a selection of nonclassical CA II binding chemotypes, were identified. A further 70 compounds that comprised the initial hit chemotypes were subsequently sourced from the full CSIRO compound collection and screened. The fragment results were extremely well correlated across the three methods. Our findings demonstrate that there is a tremendous opportunity to apply native state mass spectrometry as a complementary fragment screening method to accelerate drug discovery.
Collapse
Affiliation(s)
- Lucy A Woods
- Griffith University , Eskitis Institute for Drug Discovery, Brisbane, Queensland Australia
| | - Olan Dolezal
- CSIRO Biomedical Manufacturing Program, Melbourne, Victoria Australia
| | - Bin Ren
- CSIRO Biomedical Manufacturing Program, Melbourne, Victoria Australia
| | - John H Ryan
- CSIRO Biomedical Manufacturing Program, Melbourne, Victoria Australia
| | - Thomas S Peat
- CSIRO Biomedical Manufacturing Program, Melbourne, Victoria Australia
| | - Sally-Ann Poulsen
- Griffith University , Eskitis Institute for Drug Discovery, Brisbane, Queensland Australia
| |
Collapse
|
6
|
Site Identification by Ligand Competitive Saturation (SILCS) simulations for fragment-based drug design. Methods Mol Biol 2015; 1289:75-87. [PMID: 25709034 DOI: 10.1007/978-1-4939-2486-8_7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fragment-based drug design (FBDD) involves screening low molecular weight molecules ("fragments") that correspond to functional groups found in larger drug-like molecules to determine their binding to target proteins or nucleic acids. Based on the principle of thermodynamic additivity, two fragments that bind nonoverlapping nearby sites on the target can be combined to yield a new molecule whose binding free energy is the sum of those of the fragments. Experimental FBDD approaches, like NMR and X-ray crystallography, have proven very useful but can be expensive in terms of time, materials, and labor. Accordingly, a variety of computational FBDD approaches have been developed that provide different levels of detail and accuracy.The Site Identification by Ligand Competitive Saturation (SILCS) method of computational FBDD uses all-atom explicit-solvent molecular dynamics (MD) simulations to identify fragment binding. The target is "soaked" in an aqueous solution with multiple fragments having different identities. The resulting computational competition assay reveals what small molecule types are most likely to bind which regions of the target. From SILCS simulations, 3D probability maps of fragment binding called "FragMaps" can be produced. Based on the probabilities relative to bulk, SILCS FragMaps can be used to determine "Grid Free Energies (GFEs)," which provide per-atom contributions to fragment binding affinities. For essentially no additional computational overhead relative to the production of the FragMaps, GFEs can be used to compute Ligand Grid Free Energies (LGFEs) for arbitrarily complex molecules, and these LGFEs can be used to rank-order the molecules in accordance with binding affinities.
Collapse
|
7
|
|
8
|
Ligand efficiency as a guide in fragment hit selection and optimization. DRUG DISCOVERY TODAY. TECHNOLOGIES 2013; 7:e147-202. [PMID: 24103767 DOI: 10.1016/j.ddtec.2010.11.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Hoffer L, Renaud JP, Horvath D. In Silico Fragment-Based Drug Discovery: Setup and Validation of a Fragment-to-Lead Computational Protocol Using S4MPLE. J Chem Inf Model 2013; 53:836-51. [DOI: 10.1021/ci4000163] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Laurent Hoffer
- Université de Strasbourg,
1 rue B. Pascal, Strasbourg 67000, France
- NovAliX, BioParc, bld Sébastien
Brant, BP 30170, Illkirch 67405 Cedex, France
| | - Jean-Paul Renaud
- NovAliX, BioParc, bld Sébastien
Brant, BP 30170, Illkirch 67405 Cedex, France
| | - Dragos Horvath
- Université de Strasbourg,
1 rue B. Pascal, Strasbourg 67000, France
| |
Collapse
|
10
|
Hiroaki H. Recent applications of isotopic labeling for protein NMR in drug discovery. Expert Opin Drug Discov 2013; 8:523-36. [PMID: 23480844 DOI: 10.1517/17460441.2013.779665] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Nuclear magnetic resonance (NMR) applications in drug discovery are classified into two categories: ligand-based methods and protein-based methods. The latter is based on the observation of the (1)H-(15)N HSQC spectra of a protein with and without lead compounds. However, in order to take this strategy, isotopic labeling is an absolute necessity. Given that each (1)H-(15)N HSQC signal corresponds to a residue of the target protein, signal changes provide specific information on whether a compound will fit into a pocket. Thus, this protein-based method is particularly suitable for fragment-based approaches, such as "SAR-by-NMR" and "fragment-growing." Alternatively, the information from a protein interface may be used to develop inhibitors for protein-protein interactions. AREAS COVERED This review discusses at the experimental procedures for preparing isotopically labeled protein and introduces selected topics on atom-specific and residue-selective isotope labeling, which may facilitate the development of PPI/PA inhibitors. Furthermore, the author reviews the recent applications of "in-cell" NMR spectroscopy, which is now considered as an important tool in drug delivery research. EXPERT OPINION Many recent advances in labeling methods have succeeded in expanding NMR's potential for drug discovery. In addition to those methods, another new technique called "in-cell NMR" allows the observation of protein-ligand interactions inside living cells. In other words, "in-cell NMR" may become a pharmaceutical NMR technique for drug delivery.
Collapse
Affiliation(s)
- Hidekazu Hiroaki
- Nagoya University, Graduate School of Pharmaceutical Sciences, Furocho, Chikusa-kum, Koto-kenkyu-kan, Nagoya, 464-8601, Japan.
| |
Collapse
|
11
|
Abstract
Native state mass spectrometry (MS) has been recognised as a rapid, sensitive, and high throughput method to directly investigate protein-ligand interactions for some time, however there are few examples reporting this approach as a screening method to identify relevant protein–fragment interactions in fragment-based drug discovery (FBDD). In this paper an overview of native state MS will be presented, highlighting the attractive properties of this method within the context of fragment screening applications. A summary of published examples using MS for fragment screening will be described and reflection on the outlook for the future adoption and implementation of native state MS as a complementary fragment screening method will be presented.
Collapse
|
12
|
Hao GF, Wang F, Li H, Zhu XL, Yang WC, Huang LS, Wu JW, Berry EA, Yang GF. Computational discovery of picomolar Q(o) site inhibitors of cytochrome bc1 complex. J Am Chem Soc 2012; 134:11168-76. [PMID: 22690928 DOI: 10.1021/ja3001908] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A critical challenge to the fragment-based drug discovery (FBDD) is its low-throughput nature due to the necessity of biophysical method-based fragment screening. Herein, a method of pharmacophore-linked fragment virtual screening (PFVS) was successfully developed. Its application yielded the first picomolar-range Q(o) site inhibitors of the cytochrome bc(1) complex, an important membrane protein for drug and fungicide discovery. Compared with the original hit compound 4 (K(i) = 881.80 nM, porcine bc(1)), the most potent compound 4f displayed 20 507-fold improved binding affinity (K(i) = 43.00 pM). Compound 4f was proved to be a noncompetitive inhibitor with respect to the substrate cytochrome c, but a competitive inhibitor with respect to the substrate ubiquinol. Additionally, we determined the crystal structure of compound 4e (K(i) = 83.00 pM) bound to the chicken bc(1) at 2.70 Å resolution, providing a molecular basis for understanding its ultrapotency. To our knowledge, this study is the first application of the FBDD method in the discovery of picomolar inhibitors of a membrane protein. This work demonstrates that the novel PFVS approach is a high-throughput drug discovery method, independent of biophysical screening techniques.
Collapse
Affiliation(s)
- Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang X, Song F, Kuo GH, Xiang A, Gibbs AC, Abad MC, Sun W, Kuo LC, Sui Z. Optimization of a pyrazole hit from FBDD into a novel series of indazoles as ketohexokinase inhibitors. Bioorg Med Chem Lett 2011; 21:4762-7. [PMID: 21767952 DOI: 10.1016/j.bmcl.2011.06.067] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 01/16/2023]
Abstract
A series of indazoles have been discovered as KHK inhibitors from a pyrazole hit identified through fragment-based drug discovery (FBDD). The optimization process guided by both X-ray crystallography and solution activity resulted in lead-like compounds with good pharmaceutical properties.
Collapse
Affiliation(s)
- Xuqing Zhang
- Johnson & Johnson Pharmaceutical Research and Development, Welsh & McKean Roads, PO Box 776, Spring House, PA 19477, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
A well-chosen set of fragments is able to cover a large chemical space using a small number of compounds. The actual size and makeup of the fragment set is dependent on the screening method since each technique has its own practical limits in terms of the number of compounds that can be screened and requirements for compound solubility. In this chapter, an overview of the general requirements for a fragment library is presented for different screening platforms. In the case of the FBDD work at Johnson & Johnson Pharmaceutical Research and Development, L.L.C., our main screening technology is X-ray crystallography. Since every soaked protein crystal needs to be diffracted and a protein structure determined to delineate if a fragment binds, the size of our initial screening library cannot be a rate-limiting factor. For this reason, we have chosen 900 as the appropriate primary fragment library size. To choose the best set, we have developed our own mix of simple property ("Rule of 3") and "bad" substructure filtering. While this gets one a long way in terms of limiting the fragment pool, there are still tens of thousands of compounds to choose from after this initial step. Many of the choices left at this stage are not drug-like, so we have developed an FBDD Score to help select a 900-compound set. The details of this score and the filtering are presented.
Collapse
|
15
|
Ohno K, Mori K, Orita M, Takeuchi M. Computational insights into binding of bisphosphates to farnesyl pyrophosphate synthase. Curr Med Chem 2011; 18:220-33. [PMID: 21110804 PMCID: PMC3343387 DOI: 10.2174/092986711794088335] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 11/21/2010] [Indexed: 12/01/2022]
Abstract
Bisphosphonates (BPs) are the most widely used and effective treatment for osteoporosis and Paget's disease. Non-nitrogen containing BPs (non-N-BPs), namely etidronate, clodronate, tiludronate, as well as nitrogen-containing BPs (N-BPs), namely pamidronate, alendronate, ibandronate, risedronate, zoledronate and minodronate have been launched on the market to date. N-BPs act by inhibiting the enzyme farnesyl pyrophosphate synthase (FPPS), and several crystal structures of complexes between FPPS and N-BPs have been revealed. Understanding the physical basis of the binding between protein and small molecules is an important goal in both medicinal chemistry and structural biology. In this review, we analyze in detail the energetic basis of molecular recognition between FPPS and N-BPs. First, we summarize the interactions between ligands and proteins observed in N-BPs-FPPS complexes in the Protein Data Bank (PDB). Second, we present an interaction energy analysis on the basis of full quantum mechanical calculation of FPPS and N-BP complexes using the fragment molecular orbital (FMO) method. The FMO result revealed that not only hydrogen bond and electrostatic interaction but also CH-O and π-π interaction with FPPS are important for N-BP’s potency. Third, we describe a binding site analysis of FPPS on the basis of the inhomogeneous solvation theory which, by clustering the results from an explicit solvent molecular dynamics simulation (MD), is capable of describing the entropic and enthalpic contributions to the free energies of individual hydration sites. Finally, we also discuss the structure-activity relationship (SAR) of the series of minodronate derivatives.
Collapse
Affiliation(s)
- K Ohno
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | | | | | | |
Collapse
|
16
|
Abstract
Fragment-based design has significantly modified drug discovery strategies and paradigms in the last decade. Besides technological advances and novel therapeutic avenues, one of the most significant changes brought by this new discipline has occurred in the minds of drug designers. Fragment-based approaches have markedly impacted rational computer-aided design both in method development and in applications. The present review illustrates the importance of molecular fragments in many aspects of rational ligand design, and discusses how thinking in "fragment space" has boosted computational biology and chemistry.
Collapse
|
17
|
How to Avoid Rediscovering the Known. Methods Enzymol 2011. [DOI: 10.1016/b978-0-12-381274-2.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
|
19
|
Abstract
Lead generation can be a very challenging phase of the drug discovery process. The two principal methods for this stage of research are blind screening and rational design. Among the rational or semirational design approaches, fragment-based drug discovery (FBDD) has emerged as a useful tool for the generation of lead structures. It is particularly powerful as a complement to high-throughput screening approaches when the latter failed to yield viable hits for further development. Engagement of medicinal chemists early in the process can accelerate the progression of FBDD efforts by incorporating drug-friendly properties in the earliest stages of the design process. Medium-chain acyl-CoA synthetase 2b and ketohexokinase are chosen as examples to illustrate the importance of close collaboration of medicinal chemists, crystallography, and modeling.
Collapse
Affiliation(s)
- James Lanter
- Medicinal Chemistry, Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Spring House, Pennsylvania, USA
| | | | | |
Collapse
|
20
|
Falconer RJ, Collins BM. Survey of the year 2009: applications of isothermal titration calorimetry. J Mol Recognit 2010; 24:1-16. [DOI: 10.1002/jmr.1073] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Fragment-based screening by X-ray crystallography, MS and isothermal titration calorimetry to identify PNMT (phenylethanolamine N-methyltransferase) inhibitors. Biochem J 2010; 431:51-61. [PMID: 20642456 DOI: 10.1042/bj20100651] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CNS (central nervous system) adrenaline (epinephrine) is implicated in a wide range of physiological and pathological conditions. PNMT (phenylethanolamine N-methyltransferase) catalyses the final step in the biosynthesis of adrenaline, the conversion of noradrenaline (norepinephrine) to adrenaline by methylation. To help elucidate the role of CNS adrenaline, and to develop potential drug leads, potent, selective and CNS-active inhibitors are required. The fragment screening approach has advantages over other lead discovery methods including high hit rates, more efficient hits and the ability to sample chemical diversity more easily. In the present study we applied fragment-based screening approaches to the enzyme PNMT. We used crystallography as the primary screen and identified 12 hits from a small commercial library of 384 drug-like fragments. The hits include nine chemicals with two fused rings and three single-ring chemical systems. Eight of the hits come from three chemical classes: benzimidazoles (a known class of PNMT inhibitor), purines and quinolines. Nine of the hits have measurable binding affinities (~5-700 μM) as determined by isothermal titration calorimetry and all nine have ligand efficiencies of 0.39 kcal/mol per heavy atom or better (1 kcal≈4.184 kJ). We synthesized five elaborated benzimidazole compounds and characterized their binding to PNMT, showing for the first time how this class of inhibitors interact with the noradrenaline-binding site. Finally, we performed a pilot study with PNMT for fragment-based screening by MS showing that this approach could be used as a fast and efficient first-pass screening method prior to characterization of binding mode and affinity of hits.
Collapse
|
22
|
Affiliation(s)
- Zenon D Konteatis
- Ansaris, Four Valley Square, 512 East Township Line Road, Blue Bell, PA 19422, USA ;
| |
Collapse
|
23
|
Zhao H, Akritopoulou-Zanze I. When analoging is not enough: scaffold discovery in medicinal chemistry. Expert Opin Drug Discov 2010; 5:123-34. [PMID: 22822912 DOI: 10.1517/17460440903584874] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD As an integral part of lead generation and optimization, scaffold discovery has broad implications in drug discovery. Currently available chemical scaffolds might be inadequate to provide drug-like ligands for new targets such as phosphatases and protein-protein interactions and therapeutically useful chemical space needs to be continuously explored. New scaffolds are often desired to overcome major hurdles (e.g., potency plateau, selectivity, pharmacokinetics, etc.) in lead generation and optimization. Timely discovery of proof-of-concept compounds facilitates target validation, diversifies clinical candidates and improves the overall success rate of drug discovery. AREAS COVERED IN THIS REVIEW This analysis discusses the strategies involved in finding new scaffolds (i.e., fragment-, ligand- and structure-based design) and their applications (e.g., improve potency/selectivity, multiple ligand design, protein-protein interactions, etc.) in drug discovery. WHAT THE READER WILL GAIN The readers will learn the strategies involved in scaffold design and the problems that they solve. They will also gain the understanding of the circumstances suitable for using scaffold design. TAKE HOME MESSAGE Scaffold is defined by the authors as a biological target dependent concept. Therapeutically useful scaffolds are limited and the identification of new scaffolds is sometimes required to overcome major optimization hurdles. However, depending on the promiscuity of the binding pocket of the target and the validity of the optimization protocol, finding better scaffolds can be a challenging task. Several strategies in scaffold discovery have emerged or matured owing to recent trends such as pursuit of targets from new proteomic families, lack of validated targets, advances in synthesis and biological assays and adoption of in vitro activity-driven screening paradigms.
Collapse
Affiliation(s)
- Hongyu Zhao
- Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA +1 847 935 4566 ; +1 847 935 0310 ;
| | | |
Collapse
|