1
|
Decomposition of the interaction energy of several flavonoids with Escherichia coli DNA Gyr using the SAPT (DFT) method: The relation between the interaction energy components, ligand structure, and biological activity. Biochim Biophys Acta Gen Subj 2022; 1866:130111. [DOI: 10.1016/j.bbagen.2022.130111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 12/28/2022]
|
2
|
Barbosa ED, Neto JXL, Teixeira DG, Bezerra KS, do Amaral VS, Oliveira JIN, Lima JPMS, Machado LD, Fulco UL. Exploring human porphobilinogen synthase metalloprotein by quantum biochemistry and evolutionary methods. Metallomics 2021; 13:6206860. [PMID: 33791795 DOI: 10.1093/mtomcs/mfab017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/16/2021] [Accepted: 03/21/2021] [Indexed: 12/16/2022]
Abstract
Previous studies have shown the porphobilinogen synthase (PBGS) zinc-binding mechanism and its conservation among the living cells. However, the precise molecular interaction of zinc with the active center of the enzyme is unknown. In particular, quantum chemistry techniques within the density functional theory (DFT) framework have been the key methodology to describe metalloproteins, when one is looking for a compromise between accuracy and computational feasibility. Considering this, we used DFT-based models within the molecular fractionation with conjugate caps scheme to evaluate the binding energy features of zinc interacting with the human PBGS. Besides, phylogenetic and clustering analyses were successfully employed in extracting useful information from protein sequences to identify groups of conserved residues that build the ions-binding site. Our results also report a conservative assessment of the relevant amino acids, as well as the benchmark analysis of the calculation models used. The most relevant intermolecular interactions in Zn2+-PBGS are due to the amino acids CYS0122, CYS0124, CYS0132, ASP0169, SER0168, ARG0221, HIS0131, ASP0120, GLY0133, VAL0121, ARG0209, and ARG0174. Among these residues, we highlighted ASP0120, GLY0133, HIS0131, SER0168, and ARG0209 by co-occurring in all clusters generated by unsupervised clustering analysis. On the other hand, the triple cysteines at 2.5 Å from zinc (CYS0122, CYS0124, and CYS0132) have the highest energy attraction and are absent in the taxa Viridiplantae, Sar, Rhodophyta, and some Bacteria. Additionally, the performance of the DFT-based models shows that the processing time-dependence is more associated with the choice of the basis set than the exchange-correlation functional.
Collapse
Affiliation(s)
- E D Barbosa
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - J X Lima Neto
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - D G Teixeira
- Institute of Tropical Medicine, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - K S Bezerra
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - V S do Amaral
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - J I N Oliveira
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - J P M Santos Lima
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - L D Machado
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - U L Fulco
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| |
Collapse
|
3
|
Pereira ACL, Bezerra KS, Santos JLS, I N Oliveira J, Freire VN, Fulco UL. In silico approach of modified melanoma peptides and their immunotherapeutic potential. Phys Chem Chem Phys 2021; 23:2836-2845. [PMID: 33470998 DOI: 10.1039/d0cp05322h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Melanoma is a type of skin cancer with increasing incidence worldwide and high lethality. Conventional forms of treatment are not effective in advanced cancer stages. Hence, immunotherapeutic approaches have been tested to modulate immune response against tumor cells. Some vaccine models using tumor-associated antigens (TAAs) such as glycoprotein 100 (gp100) have been studied, but their expected effectiveness has not been shown until now. Antigen immunogenicity is a crucial point to improve the immune response, and therefore mutations are inserted in peptide sequences. It is possible to understand the interactions which occur between peptides and immune system molecules through computer simulation, and this is essential in order to guide efficient vaccine models. In this work, we have calculated the interaction binding energies of crystallographic data based on modified gp100 peptides and HLA-A*0201 using density functional theory (DFT) and the molecular fractionation with conjugated caps (MFCC) approach. Our results show the most relevant residue-residue interactions, the impact of three mutations in their binding sites, and the main HLA-A*0201 amino acids for peptide-HLA binding.
Collapse
Affiliation(s)
- A C L Pereira
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN, Brazil.
| | - K S Bezerra
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN, Brazil.
| | - J L S Santos
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN, Brazil.
| | - J I N Oliveira
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN, Brazil.
| | - V N Freire
- Departamento de Física, Universidade Federal do Ceará, 60455-760, Fortaleza-CE, Brazil
| | - U L Fulco
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN, Brazil.
| |
Collapse
|
4
|
Pecina A, Eyrilmez SM, Köprülüoğlu C, Miriyala VM, Lepšík M, Fanfrlík J, Řezáč J, Hobza P. SQM/COSMO Scoring Function: Reliable Quantum-Mechanical Tool for Sampling and Ranking in Structure-Based Drug Design. Chempluschem 2020; 85:2362-2371. [PMID: 32609421 DOI: 10.1002/cplu.202000120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/27/2020] [Indexed: 12/17/2022]
Abstract
Quantum mechanical (QM) methods have been gaining importance in structure-based drug design where a reliable description of protein-ligand interactions is of utmost significance. However, strategies i. e. QM/MM, fragmentation or semiempirical (SQM) methods had to be pursued to overcome the unfavorable scaling of QM methods. Various SQM-based approaches have significantly contributed to the accuracy of docking and improvement of lead compounds. Parametrizations of SQM and implicit solvent methods in our laboratory have been instrumental to obtain a reliable SQM-based scoring function. The experience gained in its application for activity ranking of ligands binding to tens of protein targets resulted in setting up a faster SQM/COSMO scoring approach, which outperforms standard scoring methods in native pose identification for two dozen protein targets with ten thousand poses. Recently, SQM/COSMO was effectively applied in a proof-of-concept study of enrichment in virtual screening. Due to its superior performance, feasibility and chemical generality, we propose the SQM/COSMO approach as an efficient tool in structure-based drug design.
Collapse
Affiliation(s)
- Adam Pecina
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Saltuk M Eyrilmez
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 771 46, Olomouc, Czech Republic
| | - Cemal Köprülüoğlu
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 771 46, Olomouc, Czech Republic
| | - Vijay Madhav Miriyala
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Jan Řezáč
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 771 46, Olomouc, Czech Republic
| |
Collapse
|
5
|
Insights into the EGFR SAR of N-phenylquinazolin-4-amine-derivatives using quantum mechanical pairwise-interaction energies. J Comput Aided Mol Des 2019; 33:745-757. [PMID: 31494804 DOI: 10.1007/s10822-019-00221-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
Abstract
Protein kinases are an important class of enzymes that play an essential role in virtually all major disease areas. In addition, they account for approximately 50% of the current targets pursued in drug discovery research. In this work, we explore the generation of structure-based quantum mechanical (QM) quantitative structure-activity relationship models (QSAR) as a means to facilitate structure-guided optimization of protein kinase inhibitors. We explore whether more accurate, interpretable QSAR models can be generated for a series of 76 N-phenylquinazolin-4-amine inhibitors of epidermal growth factor receptor (EGFR) kinase by comparing and contrasting them to other standard QSAR methodologies. The QM-based method involved molecular docking of inhibitors followed by their QM optimization within a ~ 300 atom cluster model of the EGFR active site at the M062X/6-31G(d,p) level. Pairwise computations of the interaction energies with each active site residue were performed. QSAR models were generated by splitting the datasets 75:25 into a training and test set followed by modelling using partial least squares (PLS). Additional QSAR models were generated using alignment dependent CoMFA and CoMSIA methods as well as alignment independent physicochemical, e-state indices and fingerprint descriptors. The structure-based QM-QSAR model displayed good performance on the training and test sets (r2 ~ 0.7) and was demonstrably more predictive than the QSAR models built using other methods. The descriptor coefficients from the QM-QSAR models allowed for a detailed rationalization of the active site SAR, which has implications for subsequent design iterations.
Collapse
|
6
|
Interaction energy profile for diphenyl diselenide in complex with δ-aminolevulinic acid dehydratase enzyme using quantum calculations and a molecular fragmentation method. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.comtox.2018.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
A new approach for the acceleration of large-scale serial quantum chemical calculations of docking complexes. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2186-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Ryde U, Söderhjelm P. Ligand-Binding Affinity Estimates Supported by Quantum-Mechanical Methods. Chem Rev 2016; 116:5520-66. [DOI: 10.1021/acs.chemrev.5b00630] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ulf Ryde
- Department of Theoretical
Chemistry and ‡Department of Biophysical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Pär Söderhjelm
- Department of Theoretical
Chemistry and ‡Department of Biophysical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
9
|
Roos K, Hogner A, Ogg D, Packer MJ, Hansson E, Granberg KL, Evertsson E, Nordqvist A. Predicting the relative binding affinity of mineralocorticoid receptor antagonists by density functional methods. J Comput Aided Mol Des 2015; 29:1109-22. [PMID: 26572910 DOI: 10.1007/s10822-015-9880-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/05/2015] [Indexed: 11/28/2022]
Abstract
In drug discovery, prediction of binding affinity ahead of synthesis to aid compound prioritization is still hampered by the low throughput of the more accurate methods and the lack of general pertinence of one method that fits all systems. Here we show the applicability of a method based on density functional theory using core fragments and a protein model with only the first shell residues surrounding the core, to predict relative binding affinity of a matched series of mineralocorticoid receptor (MR) antagonists. Antagonists of MR are used for treatment of chronic heart failure and hypertension. Marketed MR antagonists, spironolactone and eplerenone, are also believed to be highly efficacious in treatment of chronic kidney disease in diabetes patients, but is contra-indicated due to the increased risk for hyperkalemia. These findings and a significant unmet medical need among patients with chronic kidney disease continues to stimulate efforts in the discovery of new MR antagonist with maintained efficacy but low or no risk for hyperkalemia. Applied on a matched series of MR antagonists the quantum mechanical based method gave an R(2) = 0.76 for the experimental lipophilic ligand efficiency versus relative predicted binding affinity calculated with the M06-2X functional in gas phase and an R(2) = 0.64 for experimental binding affinity versus relative predicted binding affinity calculated with the M06-2X functional including an implicit solvation model. The quantum mechanical approach using core fragments was compared to free energy perturbation calculations using the full sized compound structures.
Collapse
Affiliation(s)
- Katarina Roos
- RIA Medicinal Chemistry, AstraZeneca, Pepparedsleden 1, 431 83, Mölndal, Sweden.
| | - Anders Hogner
- CVMD Medicinal Chemistry, AstraZeneca, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Derek Ogg
- Discovery Sciences, AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TF, UK
| | - Martin J Packer
- Oncology Medicinal Chemistry, AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TF, UK
| | - Eva Hansson
- Discovery Sciences, AstraZeneca, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Kenneth L Granberg
- CVMD Medicinal Chemistry, AstraZeneca, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Emma Evertsson
- RIA Medicinal Chemistry, AstraZeneca, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Anneli Nordqvist
- CVMD Medicinal Chemistry, AstraZeneca, Pepparedsleden 1, 431 83, Mölndal, Sweden.
| |
Collapse
|
10
|
Pang XQ, Liu JY. GPCR A2AAR Agonist Binding and Induced Conformation Changes of Functional Switches. CHINESE J CHEM PHYS 2014. [DOI: 10.1063/1674-0068/27/01/29-38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Honarparvar B, Govender T, Maguire GEM, Soliman MES, Kruger HG. Integrated Approach to Structure-Based Enzymatic Drug Design: Molecular Modeling, Spectroscopy, and Experimental Bioactivity. Chem Rev 2013; 114:493-537. [DOI: 10.1021/cr300314q] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Bahareh Honarparvar
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Thavendran Govender
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Glenn E. M. Maguire
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Mahmoud E. S. Soliman
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Hendrik G. Kruger
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| |
Collapse
|
12
|
Ramalho TC, Santos LA, da Cunha EF. Thermodynamic framework of hydrophobic/electrostatic interactions. J Biomol Struct Dyn 2013; 31:995-1000. [DOI: 10.1080/07391102.2012.748539] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Olivares-Quiroz L. Thermodynamics of ideal proteinogenic homopolymer chains as a function of the energy spectrum E, helical propensity ω and enthalpic energy barrier. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:155103. [PMID: 23515207 DOI: 10.1088/0953-8984/25/15/155103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A reformulation and generalization of the Zwanzig model (ZW model) for ideal homopolymer chains poly-X, where X represents any of the twenty naturally occurring proteinogenic amino acid residues is presented. This reformulation and generalization provides a direct connection between coarse-grained parameters originally proposed in the ZW model with variables from the Lifson-Roig (LR) theory, such as the helical propensity per residue ω, and new variables introduced here, such as the energy gap Δ between unfolded and folded structures, as well as the ratio f of the energy scales involved. This enables us to discover the relevance of the energy spectrum E to the onset of configurational phase transitions. From the configurational partition function Q, thermodynamic properties such as the configurational entropy S, specific heat v and average energy <E> are calculated in terms of the number of residues K, temperature T, helical propensity ω and energy barrier ΔH for different poly-X chains in vacuo. Results obtained here provide substantial evidence that configurational phase transitions for ideal poly-X chains correspond to first-order phase transitions. An anomalous behavior of the thermodynamic functions <E>, Cv, S with respect to the number K of residues is also highlighted. On-going methods of solution are outlined.
Collapse
Affiliation(s)
- L Olivares-Quiroz
- Universidad Autónoma de la Ciudad de México, Campus Cuautepec, Av La Corona 320, Col Loma Alta CP 07160 DF, Mexico.
| |
Collapse
|
14
|
Effects of water content on the tetrahedral intermediate of chymotrypsin - trifluoromethylketone in polar and non-polar media: observations from molecular dynamics simulation. J Mol Model 2013; 19:2525-38. [PMID: 23455930 DOI: 10.1007/s00894-013-1807-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
Abstract
The work uses MD simulation to study effects of five water contents (3 %, 10 %, 20 %, 50 %, 100 % v/v) on the tetrahedral intermediate of chymotrypsin - trifluoromethyl ketone in polar acetonitrile and non-polar hexane media. The water content induced changes in the structure of the intermediate, solvent distribution and H-bonding are analyzed in the two organic media. Our results show that the changes in overall structure of the protein almost display a clear correlation with the water content in hexane media while to some extent U-shaped/bell-shaped dependence on the water content is observed in acetonitrile media with a minimum/maximum at 10-20 % water content. In contrast, the water content change in the two organic solvents does not play an observable role in the stability of catalytic hydrogen-bond network, which still exhibits high stability in all hydration levels, different from observations on the free enzyme system [Zhu L, Yang W, Meng YY, Xiao X, Guo Y, Pu X, Li M (2012) J Phys Chem B 116(10):3292-3304]. In low hydration levels, most water molecules mainly distribute near the protein surface and an increase in the water content could not fully exclude the organic solvent from the protein surface. However, the acetonitrile solvent displays a stronger ability to strip off water molecules from the protein than the hexane. In a summary, the difference in the calculated properties between the two organic solvents is almost significant in low water content (<10 %) and become to be small with increasing water content. In addition, some structural properties at 10 ~ 20 % v/v hydration zone, to large extent, approach to those in aqueous solution.
Collapse
|
15
|
Wu VWK, KureKo F. Preparation for Optimal Conformation of Lysozyme with Nanodiamond and Nanosilica as Carriers. CHINESE J CHEM 2011. [DOI: 10.1002/cjoc.201190032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Yang MJ, Pang XQ, Zhang X, Han KL. Molecular dynamics simulation reveals preorganization of the chloroplast FtsY towards complex formation induced by GTP binding. J Struct Biol 2011; 173:57-66. [DOI: 10.1016/j.jsb.2010.07.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 07/19/2010] [Accepted: 07/27/2010] [Indexed: 10/19/2022]
|
17
|
Abstract
The nonadiabatic quantum dynamics and Coriolis coupling effect in chemical reaction have been reviewed, with emphasis on recent progress in using the time-dependent wave packet approach to study the Coriolis coupling and nonadiabatic effects, which was done by K. L. Han and his group. Several typical chemical reactions, for example, H+D(2), F+H(2)/D(2)/HD, D(+)+H(2), O+H(2), and He+H(2)(+), have been discussed. One can find that there is a significant role of Coriolis coupling in reaction dynamics for the ion-molecule collisions of D(+)+H(2), Ne+H(2)(+), and He+H(2)(+) in both adiabatic and nonadiabatic context.
Collapse
Affiliation(s)
- Emilia L Wu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. S.E., Minneapolis, MN 55455-0132, USA.
| |
Collapse
|