1
|
Pei X, Lei Y, Zhang H. Transcriptional regulators of secondary metabolite biosynthesis in Streptomyces. World J Microbiol Biotechnol 2024; 40:156. [PMID: 38587708 DOI: 10.1007/s11274-024-03968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
In the post-genome era, great progress has been made in metabolic engineering using recombinant DNA technology to enhance the production of high-value products by Streptomyces. With the development of microbial genome sequencing techniques and bioinformatic tools, a growing number of secondary metabolite (SM) biosynthetic gene clusters in Streptomyces and their biosynthetic logics have been uncovered and elucidated. In order to increase our knowledge about transcriptional regulators in SM of Streptomyces, this review firstly makes a comprehensive summary of the characterized factors involved in enhancing SM production and awakening SM biosynthesis. Future perspectives on transcriptional regulator engineering for new SM biosynthesis by Streptomyces are also provided.
Collapse
Affiliation(s)
- Xinwei Pei
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yunyun Lei
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
2
|
Yang H, Zhang K, Shen W, Chen L, Xia Y, Zou W, Cao Y, Chen X. Efficient production of cembratriene-ol in Escherichia coli via systematic optimization. Microb Cell Fact 2023; 22:17. [PMID: 36694175 PMCID: PMC9872381 DOI: 10.1186/s12934-023-02022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The tobacco leaf-derived cembratriene-ol exhibits anti-insect effects, but its content in plants is scarce. Cembratriene-ol is difficult and inefficiently chemically synthesised due to its complex structure. Moreover, the titer of reported recombinant hosts producing cembratriene-ol was low and cannot be applied to industrial production. RESULTS In this study, Pantoea ananatis geranylgeranyl diphosphate synthase (CrtE) and Nicotiana tabacum cembratriene-ol synthase (CBTS) were heterologously expressed to synthsize the cembratriene-ol in Escherichia coli. Overexpression of cbts*, the 1-deoxy-D-xylulose 5-phosphate synthase gene dxs, and isopentenyl diphosphate isomerase gene idi promoted the production of cembratriene-ol. The cembratriene-ol titer was 1.53-folds higher than that of E. coli Z17 due to the systematic regulation of ggpps, cbts*, dxs, and idi expression. The production of cembratriene-ol was boosted via the overexpression of genes ispA, ispD, and ispF. The production level of cembratriene-ol in the optimal medium at 72 h was 8.55-folds higher than that before fermentation optimisation. The cembratriene-ol titer in the 15-L fermenter reached 371.2 mg L- 1, which was the highest titer reported. CONCLUSION In this study, the production of cembratriene-ol in E. coli was significantly enhanced via systematic optimization. It was suggested that the recombinant E. coli producing cembratriene-ol constructed in this study has potential for industrial production and applications.
Collapse
Affiliation(s)
- Haiquan Yang
- grid.258151.a0000 0001 0708 1323The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - Kunjie Zhang
- grid.258151.a0000 0001 0708 1323The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - Wei Shen
- grid.258151.a0000 0001 0708 1323The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - Lei Chen
- grid.258151.a0000 0001 0708 1323The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - Yuanyuan Xia
- grid.258151.a0000 0001 0708 1323The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - Wei Zou
- grid.412605.40000 0004 1798 1351College of Bioengineering, Sichuan University of Science & Engineering, 644000 Yibin, Sichuan China
| | - Yu Cao
- grid.258151.a0000 0001 0708 1323The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - Xianzhong Chen
- grid.258151.a0000 0001 0708 1323The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| |
Collapse
|
3
|
Advances in Biosynthesis of Natural Products from Marine Microorganisms. Microorganisms 2021; 9:microorganisms9122551. [PMID: 34946152 PMCID: PMC8706298 DOI: 10.3390/microorganisms9122551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/27/2021] [Accepted: 12/07/2021] [Indexed: 01/01/2023] Open
Abstract
Natural products play an important role in drug development, among which marine natural products are an underexplored resource. This review summarizes recent developments in marine natural product research, with an emphasis on compound discovery and production methods. Traditionally, novel compounds with useful biological activities have been identified through the chromatographic separation of crude extracts. New genome sequencing and bioinformatics technologies have enabled the identification of natural product biosynthetic gene clusters in marine microbes that are difficult to culture. Subsequently, heterologous expression and combinatorial biosynthesis have been used to produce natural products and their analogs. This review examines recent examples of such new strategies and technologies for the development of marine natural products.
Collapse
|
4
|
Panter F, Bader CD, Müller R. Synergizing the potential of bacterial genomics and metabolomics to find novel antibiotics. Chem Sci 2021; 12:5994-6010. [PMID: 33995996 PMCID: PMC8098685 DOI: 10.1039/d0sc06919a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Antibiotic development based on natural products has faced a long lasting decline since the 1970s, while both the speed and the extent of antimicrobial resistance (AMR) development have been severely underestimated. The discovery of antimicrobial natural products of bacterial and fungal origin featuring new chemistry and previously unknown mode of actions is increasingly challenged by rediscovery issues. Natural products that are abundantly produced by the corresponding wild type organisms often featuring strong UV signals have been extensively characterized, especially the ones produced by extensively screened microbial genera such as streptomycetes. Purely synthetic chemistry approaches aiming to replace the declining supply from natural products as starting materials to develop novel antibiotics largely failed to provide significant numbers of antibiotic drug leads. To cope with this fundamental issue, microbial natural products science is being transformed from a 'grind-and-find' study to an integrated approach based on bacterial genomics and metabolomics. Novel technologies in instrumental analytics are increasingly employed to lower detection limits and expand the space of detectable substance classes, while broadening the scope of accessible and potentially bioactive natural products. Furthermore, the almost exponential increase in publicly available bacterial genome data has shown that the biosynthetic potential of the investigated strains by far exceeds the amount of detected metabolites. This can be judged by the discrepancy between the number of biosynthetic gene clusters (BGC) encoded in the genome of each microbial strain and the number of secondary metabolites actually detected, even when considering the increased sensitivity provided by novel analytical instrumentation. In silico annotation tools for biosynthetic gene cluster classification and analysis allow fast prioritization in BGC-to-compound workflows, which is highly important to be able to process the enormous underlying data volumes. BGC prioritization is currently accompanied by novel molecular biology-based approaches to access the so-called orphan BGCs not yet correlated with a secondary metabolite. Integration of metabolomics, in silico genomics and molecular biology approaches into the mainstream of natural product research will critically influence future success and impact the natural product field in pharmaceutical, nutritional and agrochemical applications and especially in anti-infective research.
Collapse
Affiliation(s)
- Fabian Panter
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Pharmacy, Saarland University Campus E8 1 66123 Saarbrücken Germany
- German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig Germany
- Helmholtz International Lab for Anti-infectives Campus E8 1 66123 Saarbrücken Germany
| | - Chantal D Bader
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Pharmacy, Saarland University Campus E8 1 66123 Saarbrücken Germany
- German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Pharmacy, Saarland University Campus E8 1 66123 Saarbrücken Germany
- German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig Germany
- Helmholtz International Lab for Anti-infectives Campus E8 1 66123 Saarbrücken Germany
| |
Collapse
|
5
|
Cao M, Zheng C, Yang D, Kalkreuter E, Adhikari A, Liu YC, Rateb ME, Shen B. Cryptic Sulfur Incorporation in Thioangucycline Biosynthesis. Angew Chem Int Ed Engl 2021; 60:7140-7147. [PMID: 33465268 PMCID: PMC7969429 DOI: 10.1002/anie.202015570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/30/2020] [Indexed: 12/16/2022]
Abstract
Sulfur incorporation into natural products is a critical area of biosynthetic studies. Recently, a subset of sulfur-containing angucyclines has been discovered, and yet, the sulfur incorporation step is poorly understood. In this work, a series of thioether-bridged angucyclines were discovered, and a cryptic epoxide Michael acceptor intermediate was revealed en route to thioangucyclines (TACs) A and B. However, systematic gene deletion of the biosynthetic gene cluster (BGC) by CRISPR/Cas9 could not identify any gene responsible for the conversion of the epoxide intermediate to TACs. Instead, a series of in vitro and in vivo experiments conclusively showed that the conversion is the result of two non-enzymatic steps, possibly mediated by endogenous hydrogen sulfide. Therefore, the TACs are proposed to derive from a detoxification process. These results are expected to contribute to the study of both angucyclines and the utilization of inorganic sulfur in natural product biosynthesis.
Collapse
Affiliation(s)
| | | | - Dong Yang
- Department of Chemistry, Department of Molecular Medicine, Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Edward Kalkreuter
- Department of Chemistry, Department of Molecular Medicine, Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Ajeeth Adhikari
- Department of Chemistry, Department of Molecular Medicine, Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Yu-Chen Liu
- Department of Chemistry, Department of Molecular Medicine, Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Mostafa E. Rateb
- Department of Chemistry, Department of Molecular Medicine, Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Ben Shen
- Department of Chemistry, Department of Molecular Medicine, Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, Florida 33458, United States
| |
Collapse
|
6
|
Cao M, Zheng C, Yang D, Kalkreuter E, Adhikari A, Liu Y, Rateb ME, Shen B. Cryptic Sulfur Incorporation in Thioangucycline Biosynthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingming Cao
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Chengjian Zheng
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Dong Yang
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Edward Kalkreuter
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Ajeeth Adhikari
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Yu‐Chen Liu
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Mostafa E. Rateb
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Ben Shen
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| |
Collapse
|
7
|
Engineering Heterologous Hosts for the Enhanced Production of Non-ribosomal Peptides. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0080-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Heinsch SC, Hsu SY, Otto-Hanson L, Kinkel L, Smanski MJ. Complete genome sequences of Streptomyces spp. isolated from disease-suppressive soils. BMC Genomics 2019; 20:994. [PMID: 31856709 PMCID: PMC6923854 DOI: 10.1186/s12864-019-6279-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Background Bacteria within the genus Streptomyces remain a major source of new natural product discovery and as soil inoculants in agriculture where they promote plant growth and protect from disease. Recently, Streptomyces spp. have been implicated as important members of naturally disease-suppressive soils. To shine more light on the ecology and evolution of disease-suppressive microbial communities, we have sequenced the genome of three Streptomyces strains isolated from disease-suppressive soils and compared them to previously sequenced isolates. Strains selected for sequencing had previously showed strong phenotypes in competition or signaling assays. Results Here we present the de novo sequencing of three strains of the genus Streptomyces isolated from disease-suppressive soils to produce high-quality complete genomes. Streptomyces sp. GS93–23, Streptomyces sp. 3211–3, and Streptomyces sp. S3–4 were found to have linear chromosomes of 8.24 Mb, 8.23 Mb, and greater than 7.5 Mb, respectively. In addition, two of the strains were found to have large, linear plasmids. Each strain harbors between 26 and 38 natural product biosynthetic gene clusters, on par with previously sequenced Streptomyces spp. We compared these newly sequenced genomes with those of previously sequenced organisms. We see substantial natural product biosynthetic diversity between closely related strains, with the gain/loss of episomal DNA elements being a primary driver of genome evolution. Conclusions Long read sequencing data facilitates large contig assembly for high-GC Streptomyces genomes. While the sample number is too small for a definitive conclusion, we do not see evidence that disease suppressive soil isolates are particularly privileged in terms of numbers of biosynthetic gene clusters. The strong sequence similarity between GS93–23 and previously isolated Streptomyces lydicus suggests that species recruitment may contribute to the evolution of disease-suppressive microbial communities.
Collapse
Affiliation(s)
- Stephen C Heinsch
- Bioinformatics and Computational Biology, University of Minnesota, Twin-Cities, Saint Paul, MN, 55108, USA.,BioTechnology Institute, University of Minnesota, Twin-Cities, Saint Paul, MN, 55108, USA
| | - Szu-Yi Hsu
- BioTechnology Institute, University of Minnesota, Twin-Cities, Saint Paul, MN, 55108, USA.,Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin-Cities, Saint Paul, MN, 55108, USA
| | - Lindsey Otto-Hanson
- BioTechnology Institute, University of Minnesota, Twin-Cities, Saint Paul, MN, 55108, USA.,Department of Plant Pathology, University of Minnesota, Twin-Cities, Saint Paul, MN, 55108, USA
| | - Linda Kinkel
- BioTechnology Institute, University of Minnesota, Twin-Cities, Saint Paul, MN, 55108, USA.,Department of Plant Pathology, University of Minnesota, Twin-Cities, Saint Paul, MN, 55108, USA
| | - Michael J Smanski
- Bioinformatics and Computational Biology, University of Minnesota, Twin-Cities, Saint Paul, MN, 55108, USA. .,BioTechnology Institute, University of Minnesota, Twin-Cities, Saint Paul, MN, 55108, USA. .,Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin-Cities, Saint Paul, MN, 55108, USA.
| |
Collapse
|
9
|
Xu W, Klumbys E, Ang EL, Zhao H. Emerging molecular biology tools and strategies for engineering natural product biosynthesis. Metab Eng Commun 2019; 10:e00108. [PMID: 32547925 PMCID: PMC7283510 DOI: 10.1016/j.mec.2019.e00108] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 02/08/2023] Open
Abstract
Natural products and their related derivatives play a significant role in drug discovery and have been the inspiration for the design of numerous synthetic bioactive compounds. With recent advances in molecular biology, numerous engineering tools and strategies were established to accelerate natural product synthesis in both academic and industrial settings. However, many obstacles in natural product biosynthesis still exist. For example, the native pathways are not appropriate for research or production; the key enzymes do not have enough activity; the native hosts are not suitable for high-level production. Emerging molecular biology tools and strategies have been developed to not only improve natural product titers but also generate novel bioactive compounds. In this review, we will discuss these emerging molecular biology tools and strategies at three main levels: enzyme level, pathway level, and genome level, and highlight their applications in natural product discovery and development.
Collapse
Affiliation(s)
- Wei Xu
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology, and Research, Singapore
| | - Evaldas Klumbys
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology, and Research, Singapore
| | - Ee Lui Ang
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology, and Research, Singapore
| | - Huimin Zhao
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology, and Research, Singapore.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
10
|
An anaerobic bacterium host system for heterologous expression of natural product biosynthetic gene clusters. Nat Commun 2019; 10:3665. [PMID: 31413323 PMCID: PMC6694145 DOI: 10.1038/s41467-019-11673-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
Anaerobic bacteria represent an overlooked rich source of biological and chemical diversity. Due to the challenge of cultivation and genetic intractability, assessing the capability of their biosynthetic gene clusters (BGCs) for secondary metabolite production requires an efficient heterologous expression system. However, this kind of host system is still unavailable. Here, we use the facultative anaerobe Streptococcus mutans UA159 as a heterologous host for the expression of BGCs from anaerobic bacteria. A natural competence based large DNA fragment cloning (NabLC) technique was developed, which can move DNA fragments up to 40-kb directly and integrate a 73.7-kb BGC to the genome of S. mutans UA159 via three rounds of NabLC cloning. Using this system, we identify an anti-infiltration compound, mutanocyclin, from undefined BGCs from human oral bacteria. We anticipate this host system will be useful for heterologous expression of BGCs from anaerobic bacteria. Anaerobic bacteria represent a rich source of biological and chemical diversity but are difficult to cultivate and there is a lack of heterologous expression systems. Here the authors develop an expression system based on S. mutans UA159 for biosynthetic gene clusters from anaerobic bacteria.
Collapse
|
11
|
Wang J, Lu A, Liu J, Huang W, Wang J, Cai Z, Zhao G. iCatch: a new strategy for capturing large DNA fragments using homing endonucleases. Acta Biochim Biophys Sin (Shanghai) 2019; 51:97-103. [PMID: 30452545 DOI: 10.1093/abbs/gmy139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/21/2018] [Indexed: 11/15/2022] Open
Abstract
Natural genetic materials contain many biosynthetic gene clusters encoding potentially valuable natural products, many of which can be used directly without codon optimization or other manipulations. With the development of synthetic biology, several DNA assembly standards have been proposed, conveniently facilitating the reuse of natural materials. Among these standards, the iBrick assembly standard was developed by our laboratory to manipulate large DNA fragments, employing two homing endonucleases. Considering the difficulty of cloning large iBrick parts using conventional endonuclease-mediated restriction and ligation methods, we herein present a new method, known as iCatch, which readily captures biosynthetic gene clusters. As the clusters cloned by iCatch have the prefix and suffix of the iBrick standard, they serve as new iBrick parts and are therefore conducive to further editing and assembly with the iBrick standard. iCatch employs the natural homologous recombination system to flank the region of interest with I-SceI and PI-PspI recognition sites, after which the genome is digested with I-SceI or PI-PspI and the fragments are then self-ligated to clone the target DNA fragments. We used this method to successfully capture the actinorhodin biosynthetic cluster from Streptomyces coelicolor and then heterologously expressed this cluster in a thermophilic Streptomyces strain. We propose that iCatch can be used for the cloning of DNA sequences that are dozens of kilobases in length, facilitating the heterologous expression of microbial natural products. Moreover, this cloning methodology can be a complementary tool for the iBrick standard, especially in applications requiring the manipulation of large DNA fragments.
Collapse
Affiliation(s)
- Jingman Wang
- Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Anrui Lu
- Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiakun Liu
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weiren Huang
- Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology, Urogenital Tumors, Shenzhen, China
| | - Jin Wang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Zhiming Cai
- Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology, Urogenital Tumors, Shenzhen, China
| | - Guoping Zhao
- Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| |
Collapse
|
12
|
Tocchetti A, Donadio S, Sosio M. Large inserts for big data: artificial chromosomes in the genomic era. FEMS Microbiol Lett 2018; 365:4935161. [DOI: 10.1093/femsle/fny064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
| | - Stefano Donadio
- Naicons Srl, 20139 Milano, Italy
- Ktedogen Srl, Via Ortles 22/4, 20139 Milano, Italy
| | - Margherita Sosio
- Naicons Srl, 20139 Milano, Italy
- Ktedogen Srl, Via Ortles 22/4, 20139 Milano, Italy
| |
Collapse
|
13
|
Heinsch SC, Das SR, Smanski MJ. Simulation Modeling to Compare High-Throughput, Low-Iteration Optimization Strategies for Metabolic Engineering. Front Microbiol 2018. [PMID: 29535690 PMCID: PMC5835107 DOI: 10.3389/fmicb.2018.00313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Increasing the final titer of a multi-gene metabolic pathway can be viewed as a multivariate optimization problem. While numerous multivariate optimization algorithms exist, few are specifically designed to accommodate the constraints posed by genetic engineering workflows. We present a strategy for optimizing expression levels across an arbitrary number of genes that requires few design-build-test iterations. We compare the performance of several optimization algorithms on a series of simulated expression landscapes. We show that optimal experimental design parameters depend on the degree of landscape ruggedness. This work provides a theoretical framework for designing and executing numerical optimization on multi-gene systems.
Collapse
Affiliation(s)
- Stephen C. Heinsch
- BioTechnology Institute, University of Minnesota, Twin-Cities, Saint Paul, MN, United States
- Bioinformatics and Computational Biology Program, University of Minnesota, Twin-Cities, Saint Paul, MN, United States
| | - Siba R. Das
- BioTechnology Institute, University of Minnesota, Twin-Cities, Saint Paul, MN, United States
| | - Michael J. Smanski
- BioTechnology Institute, University of Minnesota, Twin-Cities, Saint Paul, MN, United States
- Bioinformatics and Computational Biology Program, University of Minnesota, Twin-Cities, Saint Paul, MN, United States
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin-Cities, Saint Paul, MN, United States
- *Correspondence: Michael J. Smanski,
| |
Collapse
|
14
|
Abstract
One of the greatest sources of metabolic and enzymatic diversity are microorganisms. In recent years, emerging recombinant DNA and genomic techniques have facilitated the development of new efficient expression systems, modification of biosynthetic pathways leading to new metabolites by metabolic engineering, and enhancement of catalytic properties of enzymes by directed evolution. Complete sequencing of industrially important microbial genomes is taking place very rapidly, and there are already hundreds of genomes sequenced. Functional genomics and proteomics are major tools used in the search for new molecules and development of higher-producing strains.
Collapse
Affiliation(s)
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| |
Collapse
|
15
|
Park SY, Yang D, Ha SH, Lee SY. Metabolic Engineering of Microorganisms for the Production of Natural Compounds. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201700190] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seon Young Park
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| | - Dongsoo Yang
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| | - Shin Hee Ha
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
- BioProcess Engineering Research Center; KAIST; Daejeon 34141 Republic of Korea
- BioInformatics Research Center; KAIST; Daejeon 34141 Republic of Korea
| |
Collapse
|
16
|
Tan GY, Deng K, Liu X, Tao H, Chang Y, Chen J, Chen K, Sheng Z, Deng Z, Liu T. Heterologous Biosynthesis of Spinosad: An Omics-Guided Large Polyketide Synthase Gene Cluster Reconstitution in Streptomyces. ACS Synth Biol 2017; 6:995-1005. [PMID: 28264562 DOI: 10.1021/acssynbio.6b00330] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the advent of the genomics era, heterologous gene expression has been used extensively as a means of accessing natural products (NPs) from environmental DNA samples. However, the heterologous production of NPs often has very low efficiency or is unable to produce targeted NPs. Moreover, due to the complicated transcriptional and metabolic regulation of NP biosynthesis in native producers, especially in the cases of genome mining, it is also difficult to rationally and systematically engineer synthetic pathways to improved NPs biosynthetic efficiency. In this study, various strategies ranging from heterologous production of a NP to subsequent application of omics-guided synthetic modules optimization for efficient biosynthesis of NPs with complex structure have been developed. Heterologous production of spinosyn in Streptomyces spp. has been demonstrated as an example of the application of these approaches. Combined with the targeted omics approach, several rate-limiting steps of spinosyn heterologous production in Streptomyces spp. have been revealed. Subsequent engineering work overcame three of selected rate-limiting steps, and the production of spinosad was increased step by step and finally reached 1460 μg/L, which is about 1000-fold higher than the original strain S. albus J1074 (C4I6-M). These results indicated that the omics platform developed in this work was a powerful tool for guiding the rational refactoring of heterologous biosynthetic pathway in Streptomyces host. Additionally, this work lays the foundation for further studies aimed at the more efficient production of spinosyn in a heterologous host. And the strategy developed in this study is expected to become readily adaptable to highly efficient heterologous production of other NPs with complex structure.
Collapse
Affiliation(s)
- Gao-Yi Tan
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- State
Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Kunhua Deng
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Xinhua Liu
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Hui Tao
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Yingying Chang
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Jia Chen
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Kai Chen
- Shenyang Research Institute of Chemical Industry Ltd., Co., SINOCHEM Group, Shengyang 110021, China
| | - Zhi Sheng
- Shenyang Research Institute of Chemical Industry Ltd., Co., SINOCHEM Group, Shengyang 110021, China
| | - Zixin Deng
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tiangang Liu
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| |
Collapse
|
17
|
Pyeon HR, Nah HJ, Kang SH, Choi SS, Kim ES. Heterologous expression of pikromycin biosynthetic gene cluster using Streptomyces artificial chromosome system. Microb Cell Fact 2017; 16:96. [PMID: 28569150 PMCID: PMC5452415 DOI: 10.1186/s12934-017-0708-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/18/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Heterologous expression of biosynthetic gene clusters of natural microbial products has become an essential strategy for titer improvement and pathway engineering of various potentially-valuable natural products. A Streptomyces artificial chromosomal conjugation vector, pSBAC, was previously successfully applied for precise cloning and tandem integration of a large polyketide tautomycetin (TMC) biosynthetic gene cluster (Nah et al. in Microb Cell Fact 14(1):1, 2015), implying that this strategy could be employed to develop a custom overexpression scheme of natural product pathway clusters present in actinomycetes. RESULTS To validate the pSBAC system as a generally-applicable heterologous overexpression system for a large-sized polyketide biosynthetic gene cluster in Streptomyces, another model polyketide compound, the pikromycin biosynthetic gene cluster, was preciously cloned and heterologously expressed using the pSBAC system. A unique HindIII restriction site was precisely inserted at one of the border regions of the pikromycin biosynthetic gene cluster within the chromosome of Streptomyces venezuelae, followed by site-specific recombination of pSBAC into the flanking region of the pikromycin gene cluster. Unlike the previous cloning process, one HindIII site integration step was skipped through pSBAC modification. pPik001, a pSBAC containing the pikromycin biosynthetic gene cluster, was directly introduced into two heterologous hosts, Streptomyces lividans and Streptomyces coelicolor, resulting in the production of 10-deoxymethynolide, a major pikromycin derivative. When two entire pikromycin biosynthetic gene clusters were tandemly introduced into the S. lividans chromosome, overproduction of 10-deoxymethynolide and the presence of pikromycin, which was previously not detected, were both confirmed. Moreover, comparative qRT-PCR results confirmed that the transcription of pikromycin biosynthetic genes was significantly upregulated in S. lividans containing tandem clusters of pikromycin biosynthetic gene clusters. CONCLUSIONS The 60 kb pikromycin biosynthetic gene cluster was isolated in a single integration pSBAC vector. Introduction of the pikromycin biosynthetic gene cluster into the pikromycin non-producing strains resulted in higher pikromycin production. The utility of the pSBAC system as a precise cloning tool for large-sized biosynthetic gene clusters was verified through heterologous expression of the pikromycin biosynthetic gene cluster. Moreover, this pSBAC-driven heterologous expression strategy was confirmed to be an ideal approach for production of low and inconsistent natural products such as pikromycin in S. venezuelae, implying that this strategy could be employed for development of a custom overexpression scheme of natural product biosynthetic gene clusters in actinomycetes.
Collapse
Affiliation(s)
- Hye-Rim Pyeon
- Department of Biological Engineering, Inha University, Incheon, 402-751, South Korea
| | - Hee-Ju Nah
- Department of Biological Engineering, Inha University, Incheon, 402-751, South Korea
| | - Seung-Hoon Kang
- Department of Biological Engineering, Inha University, Incheon, 402-751, South Korea
| | - Si-Sun Choi
- Department of Biological Engineering, Inha University, Incheon, 402-751, South Korea
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon, 402-751, South Korea.
| |
Collapse
|
18
|
Nah HJ, Pyeon HR, Kang SH, Choi SS, Kim ES. Cloning and Heterologous Expression of a Large-sized Natural Product Biosynthetic Gene Cluster in Streptomyces Species. Front Microbiol 2017; 8:394. [PMID: 28360891 PMCID: PMC5350119 DOI: 10.3389/fmicb.2017.00394] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/24/2017] [Indexed: 12/14/2022] Open
Abstract
Actinomycetes family including Streptomyces species have been a major source for the discovery of novel natural products (NPs) in the last several decades thanks to their structural novelty, diversity and complexity. Moreover, recent genome mining approach has provided an attractive tool to screen potentially valuable NP biosynthetic gene clusters (BGCs) present in the actinomycetes genomes. Since many of these NP BGCs are silent or cryptic in the original actinomycetes, various techniques have been employed to activate these NP BGCs. Heterologous expression of BGCs has become a useful strategy to produce, reactivate, improve, and modify the pathways of NPs present at minute quantities in the original actinomycetes isolates. However, cloning and efficient overexpression of an entire NP BGC, often as large as over 100 kb, remain challenging due to the ineffectiveness of current genetic systems in manipulating large NP BGCs. This mini review describes examples of actinomycetes NP production through BGC heterologous expression systems as well as recent strategies specialized for the large-sized NP BGCs in Streptomyces heterologous hosts.
Collapse
Affiliation(s)
- Hee-Ju Nah
- Department of Biological Engineering, Inha University Incheon, South Korea
| | - Hye-Rim Pyeon
- Department of Biological Engineering, Inha University Incheon, South Korea
| | - Seung-Hoon Kang
- Department of Biological Engineering, Inha University Incheon, South Korea
| | - Si-Sun Choi
- Department of Biological Engineering, Inha University Incheon, South Korea
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University Incheon, South Korea
| |
Collapse
|
19
|
Yin S, Li Z, Wang X, Wang H, Jia X, Ai G, Bai Z, Shi M, Yuan F, Liu T, Wang W, Yang K. Heterologous expression of oxytetracycline biosynthetic gene cluster in Streptomyces venezuelae WVR2006 to improve production level and to alter fermentation process. Appl Microbiol Biotechnol 2016; 100:10563-10572. [PMID: 27709288 DOI: 10.1007/s00253-016-7873-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/28/2016] [Accepted: 09/16/2016] [Indexed: 02/06/2023]
Abstract
Heterologous expression is an important strategy to activate biosynthetic gene clusters of secondary metabolites. Here, it is employed to activate and manipulate the oxytetracycline (OTC) gene cluster and to alter OTC fermentation process. To achieve these goals, a fast-growing heterologous host Streptomyces venezuelae WVR2006 was rationally selected among several potential hosts. It shows rapid and dispersed growth and intrinsic high resistance to OTC. By manipulating the expression of two cluster-situated regulators (CSR) OtcR and OtrR and precursor supply, the OTC production level was significantly increased in this heterologous host from 75 to 431 mg/l only in 48 h, a level comparable to the native producer Streptomyces rimosus M4018 in 8 days. This work shows that S. venezuelae WVR2006 is a promising chassis for the production of secondary metabolites, and the engineered heterologous OTC producer has the potential to completely alter the fermentation process of OTC production.
Collapse
Affiliation(s)
- Shouliang Yin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Xuefeng Wang
- Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Huizhuan Wang
- Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Xiaole Jia
- Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Guomin Ai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Zishang Bai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Mingxin Shi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Fang Yuan
- Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Tiejun Liu
- Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China.
| | - Keqian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China.
| |
Collapse
|
20
|
Abstract
Bacterial genomes encode the biosynthetic potential to produce hundreds of thousands of complex molecules with diverse applications, from medicine to agriculture and materials. Accessing these natural products promises to reinvigorate drug discovery pipelines and provide novel routes to synthesize complex chemicals. The pathways leading to the production of these molecules often comprise dozens of genes spanning large areas of the genome and are controlled by complex regulatory networks with some of the most interesting molecules being produced by non-model organisms. In this Review, we discuss how advances in synthetic biology--including novel DNA construction technologies, the use of genetic parts for the precise control of expression and for synthetic regulatory circuits--and multiplexed genome engineering can be used to optimize the design and synthesis of pathways that produce natural products.
Collapse
|
21
|
Bekiesch P, Basitta P, Apel AK. Challenges in the Heterologous Production of Antibiotics inStreptomyces. Arch Pharm (Weinheim) 2016; 349:594-601. [DOI: 10.1002/ardp.201600058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/27/2016] [Accepted: 05/06/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Paulina Bekiesch
- Pharmaceutical Biology; Pharmaceutical Institute; Eberhard-Karls-Universität Tübingen; Tübingen Germany
- German Centre for Infection Research (DZIF); Partner Site Tübingen; Tübingen Germany
| | - Patrick Basitta
- Pharmaceutical Biology; Pharmaceutical Institute; Eberhard-Karls-Universität Tübingen; Tübingen Germany
- German Centre for Infection Research (DZIF); Partner Site Tübingen; Tübingen Germany
| | - Alexander K. Apel
- Pharmaceutical Biology; Pharmaceutical Institute; Eberhard-Karls-Universität Tübingen; Tübingen Germany
- German Centre for Infection Research (DZIF); Partner Site Tübingen; Tübingen Germany
| |
Collapse
|
22
|
Metabolic Engineering for Production of Small Molecule Drugs: Challenges and Solutions. FERMENTATION-BASEL 2016. [DOI: 10.3390/fermentation2010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Nah HJ, Woo MW, Choi SS, Kim ES. Precise cloning and tandem integration of large polyketide biosynthetic gene cluster using Streptomyces artificial chromosome system. Microb Cell Fact 2015; 14:140. [PMID: 26377404 PMCID: PMC4573296 DOI: 10.1186/s12934-015-0325-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/27/2015] [Indexed: 11/29/2022] Open
Abstract
Background Direct cloning combined with heterologous expression of a secondary metabolite biosynthetic gene cluster has become a useful strategy for production improvement and pathway modification of potentially valuable natural products present at minute quantities in original isolates of actinomycetes. However, precise cloning and efficient overexpression of an entire biosynthetic gene cluster remains challenging due to the ineffectiveness of current genetic systems in manipulating large-sized gene clusters for heterologous as well as homologous expression. Results A versatile Escherichia coli-Streptomyces shuttle bacterial artificial chromosomal (BAC) conjugation vector, pSBAC, was used along with a cluster tandem integration approach to carry out homologous and heterologous overexpression of a large 80-kb polyketide biosynthetic pathway gene cluster of tautomycetin (TMC), which is a protein phosphatase PP1/PP2A inhibitor and T cell-specific immunosuppressant. Unique XbaI restriction sites were precisely inserted at both border regions of the TMC biosynthetic gene cluster within the chromosome of TMC-producing Streptomyces sp. CK4412, followed by site-specific recombination of pSBAC into the flanking region of the TMC gene cluster. The entire TMC gene cluster was then rescued as a single giant recombinant pSBAC by XbaI digestion of the chromosomal DNA as well as subsequent self-ligation. Next, the recombinant pSBAC construct containing the entire TMC cluster in E. coli was directly conjugated into model Streptomyces strains, resulting in rapid and enhanced TMC production. Moreover, introduction of the TMC cluster-containing pSBAC into wild-type Streptomyces sp. CK4412 as well as a recombinant S. coelicolor strain resulted in a chromosomal tandem repeat of the entire TMC cluster with 14-fold and 5.4-fold enhanced TMC productivities, respectively. Conclusions The 80-kb TMC biosynthetic gene cluster was isolated in a single integration vector, pSBAC. Introduction of TMC biosynthetic gene cluster in TMC non-producing strains has resulted in similar amount of TMC production yield. Moreover, over-expression of TMC biosynthetic gene cluster in original producing strain and recombinant S. coelicolor dramatically increased TMC production. Thus, this strategy can be employed to develop a custom overexpression scheme of entire metabolite pathway clusters present in actinomycetes. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0325-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hee-Ju Nah
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea.
| | - Min-Woo Woo
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea.
| | - Si-Sun Choi
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea.
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea.
| |
Collapse
|
24
|
Shen B, Hindra, Yan X, Huang T, Ge H, Yang D, Teng Q, Rudolf JD, Lohman JR. Enediynes: Exploration of microbial genomics to discover new anticancer drug leads. Bioorg Med Chem Lett 2015; 25:9-15. [PMID: 25434000 PMCID: PMC4480864 DOI: 10.1016/j.bmcl.2014.11.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 11/19/2022]
Abstract
The enediyne natural products have been explored for their phenomenal cytotoxicity. The development of enediynes into anticancer drugs has been successfully achieved through the utilization of polymer- and antibody-drug conjugates (ADCs) as drug delivery systems. An increasing inventory of enediynes would benefit current application of ADCs in many oncology programs. Innovations in expanding the enediyne inventory should take advantage of the current knowledge of enediyne biosynthesis and post-genomics technologies. Bioinformatics analysis of microbial genomes reveals that enediynes are underexplored, in particular from Actinomycetales. This digest highlights the emerging opportunities to explore microbial genomics for the discovery of novel enediyne natural products.
Collapse
Affiliation(s)
- Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA; Natural Products Library Initiative, The Scripps Research Institute, Jupiter, FL 33458, USA.
| | - Hindra
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Xiaohui Yan
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Tingting Huang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Huiming Ge
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Dong Yang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Qihui Teng
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jeremy R Lohman
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
25
|
Li J, Neubauer P. Escherichia coli as a cell factory for heterologous production of nonribosomal peptides and polyketides. N Biotechnol 2014; 31:579-85. [PMID: 24704144 DOI: 10.1016/j.nbt.2014.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 12/18/2022]
Abstract
Nonribosomal peptides (NRPs) and polyketides (PKs) are two classes of natural products with numerous bioactivities such as antiviral, antimicrobial and anticancer activity. However, pharmaceutical applications of these products are often impeded because many native producers are difficult to cultivate or show a low productivity. Over the last decade, with the development of synthetic biology and metabolic engineering, more and more bioactive natural products including NRPs and PKs have been heterologously produced using easy-to-handle surrogate microbes. In this process, the full biosynthetic pathway for the production of a target compound is first identified and isolated from the native producer, and then reconstituted in a well-characterized and easily culturable heterologous producer like Escherichia coli. Thereafter, the productivity could be rationally improved through multiple strategies from strain to bioprocess optimization. This review summarizes the endeavors and progresses made in the heterologous production of NRPs, PKs and NRP/PK hybrids using E. coli as a robust whole-cell factory in recent years.
Collapse
Affiliation(s)
- Jian Li
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße76, ACK24, D-13355 Berlin, Germany.
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße76, ACK24, D-13355 Berlin, Germany
| |
Collapse
|
26
|
Xie P, Ma M, Rateb ME, Shaaban K, Yu Z, Huang SX, Zhao LX, Zhu X, Yan Y, Peterson R, Lohman JR, Yang D, Yin M, Rudolf JD, Jiang Y, Duan Y, Shen B. Biosynthetic potential-based strain prioritization for natural product discovery: a showcase for diterpenoid-producing actinomycetes. JOURNAL OF NATURAL PRODUCTS 2014; 77:377-87. [PMID: 24484381 PMCID: PMC3963700 DOI: 10.1021/np401063s] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Indexed: 05/09/2023]
Abstract
Natural products remain the best sources of drugs and drug leads and serve as outstanding small-molecule probes to dissect fundamental biological processes. A great challenge for the natural product community is to discover novel natural products efficiently and cost effectively. Here we report the development of a practical method to survey biosynthetic potential in microorganisms, thereby identifying the most promising strains and prioritizing them for natural product discovery. Central to our approach is the innovative preparation, by a two-tiered PCR method, of a pool of pathway-specific probes, thereby allowing the survey of all variants of the biosynthetic machineries for the targeted class of natural products. The utility of the method was demonstrated by surveying 100 strains, randomly selected from our actinomycete collection, for their biosynthetic potential of four classes of natural products, aromatic polyketides, reduced polyketides, nonribosomal peptides, and diterpenoids, identifying 16 talented strains. One of the talented strains, Streptomyces griseus CB00830, was finally chosen to showcase the discovery of the targeted classes of natural products, resulting in the isolation of three diterpenoids, six nonribosomal peptides and related metabolites, and three polyketides. Variations of this method should be applicable to the discovery of other classes of natural products.
Collapse
Affiliation(s)
- Pengfei Xie
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Ming Ma
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Mostafa E. Rateb
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Khaled
A. Shaaban
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Zhiguo Yu
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Sheng-Xiong Huang
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Li-Xing Zhao
- Yunnan
Institute of Microbiology, Yunnan University, Kunming, Yunnan 650091, People’s Republic
of China
| | - Xiangcheng Zhu
- Hunan
Engineering Research Center of Combinatorial Biosynthesis and Natural
Product Drug Discovery, Changsha, Hunan 410329, People’s Republic of China
- Xiangya
International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People’s Republic of China
| | - Yijun Yan
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Ryan
M. Peterson
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
- Division
of Pharmaceutical Sciences, University of
Wisconsin−Madison, Madison, Wisconsin 53705, United States
| | - Jeremy R. Lohman
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Dong Yang
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Min Yin
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Jeffrey D. Rudolf
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Yi Jiang
- Yunnan
Institute of Microbiology, Yunnan University, Kunming, Yunnan 650091, People’s Republic
of China
| | - Yanwen Duan
- Hunan
Engineering Research Center of Combinatorial Biosynthesis and Natural
Product Drug Discovery, Changsha, Hunan 410329, People’s Republic of China
- Xiangya
International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People’s Republic of China
| | - Ben Shen
- Hunan
Engineering Research Center of Combinatorial Biosynthesis and Natural
Product Drug Discovery, Changsha, Hunan 410329, People’s Republic of China
- Division
of Pharmaceutical Sciences, University of
Wisconsin−Madison, Madison, Wisconsin 53705, United States
- Department
of Molecular Therapeutics, The Scripps Research
Institute, Jupiter, Florida 33458, United
States
- Natural Products
Library Initiative, The Scripps Research
Institute, Jupiter, Florida 33458, United
States
| |
Collapse
|
27
|
Chen BS, Li CW. Analysing microarray data in drug discovery using systems biology. Expert Opin Drug Discov 2013; 2:755-68. [PMID: 23488963 DOI: 10.1517/17460441.2.5.755] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The innovation of present drug design focuses on new targets. However, compound efficacy and safety in human metabolism, including toxicity and pharmacokinetic profiles, but not target selection, are the criteria that determine which drug candidates enter the clinic. Systems biology approaches to disease are developed from the idea that disease-perturbed regulatory networks differ from their normal counterparts. Microarray data analyses reveal global changes in gene or protein expression in response to genetic and environmental changes and, accordingly, are well suited to construct the normal, disease-perturbed and drug-affected networks, which are useful for drug discovery in the pharmaceutical industry. The integration of modelling, microarray data and systems biology approaches will allow for a true breakthrough in in silico absorption, distribution, metabolism, excretion and toxicity assessment in drug design. Therefore, drug discovery through systems biology by means of microarray analyses could significantly reduce the time and cost of new drug development.
Collapse
Affiliation(s)
- Bor-Sen Chen
- National Tsing Hua University, Laboratory of Control and Systems Biology, 101, Sec 2, Kuang Fu Road, Hsinchu, 300, Taiwan
| | | |
Collapse
|
28
|
Smanski MJ, Casper J, Peterson RM, Yu Z, Rajski SR, Shen B. Expression of the platencin biosynthetic gene cluster in heterologous hosts yielding new platencin congeners. JOURNAL OF NATURAL PRODUCTS 2012; 75:2158-2167. [PMID: 23157615 PMCID: PMC3532557 DOI: 10.1021/np3005985] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Platensimycin (PTM) and platencin (PTN) are potent and selective inhibitors of bacterial and mammalian fatty acid synthases and have emerged as promising drug leads for both antibacterial and antidiabetic therapies. We have previously cloned and sequenced the PTM-PTN dual biosynthetic gene cluster from Streptomyces platensis MA7327 and the PTN biosynthetic gene cluster from S. platensis MA7339, the latter of which is composed of 31 genes encoding PTN biosynthesis, regulation, and resistance. We have also demonstrated that PTM or PTN production can be significantly improved upon inactivation of the pathway-specific regulator ptmR1 or ptnR1 in S. platensis MA7327 or MA7339, respectively. We now report engineered production of PTN and congeners in a heterologous Streptomyces host. Expression constructs containing the ptn biosynthetic gene cluster were engineered from SuperCos 1 library clones and introduced into five model Streptomyces hosts, and PTN production was achieved in Streptomyces lividans K4-114. Inactivation of ptnR1 was crucial for expression of the ptn biosynthetic gene cluster, thereby PTN production, in S. lividans K4-114. Six PTN congeners, five of which were new, were also isolated from the recombinant strain S. lividans SB12606, revealing new insights into PTN biosynthesis. Production of PTN in a model Streptomyces host provides new opportunities to apply combinatorial biosynthetic strategies to the PTN biosynthetic machinery for structural diversity.
Collapse
Affiliation(s)
- Michael J. Smanski
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jeffrey Casper
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Ryan M. Peterson
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, The Scripps Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Zhiguo Yu
- Department of Chemistry, The Scripps Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Scott R. Rajski
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Ben Shen
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, The Scripps Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, USA
- Department of Molecular Therapeutics, The Scripps Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, USA
- Natural Products Library Initiative, The Scripps Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
29
|
Abstract
Microorganisms are one of the greatest sources of metabolic and enzymatic diversity. In recent years, emerging recombinant DNA and genomic techniques have facilitated the development of new efficient expression systems, modification of biosynthetic pathways leading to new metabolites by metabolic engineering, and enhancement of catalytic properties of enzymes by directed evolution. Complete sequencing of industrially important microbial genomes is taking place very rapidly and there are already hundreds of genomes sequenced. Functional genomics and proteomics are major tools used in the search for new molecules and development of higher-producing strains.
Collapse
|
30
|
Huang SX, Feng Z, Wang L, Galm U, Wendt-Pienkowski E, Yang D, Tao M, Coughlin JM, Duan Y, Shen B. A designer bleomycin with significantly improved DNA cleavage activity. J Am Chem Soc 2012; 134:13501-9. [PMID: 22831455 DOI: 10.1021/ja3056535] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bleomycins (BLMs) are used clinically in combination with a number of other agents for the treatment of several types of tumors, and the BLM, etoposide, and cisplatin treatment regimen cures 90-95% of metastatic testicular cancer patients. BLM-induced pneumonitis is the most feared, dose-limiting side effect of BLM in chemotherapy, which can progress into lung fibrosis and affect up to 46% of the total patient population. There have been continued efforts to develop new BLM analogues in the search for anticancer drugs with better clinical efficacy and lower lung toxicity. We have previously cloned and characterized the biosynthetic gene clusters for BLMs from Streptomyces verticillus ATCC15003, tallysomycins from Streptoalloteichus hindustanus E465-94 ATCC31158, and zorbamycin (ZBM) from Streptomyces flavoviridis SB9001. Comparative analysis of the three biosynthetic machineries provided the molecular basis for the formulation of hypotheses to engineer novel analogues. We now report engineered production of three new analogues, 6'-hydroxy-ZBM, BLM Z, and 6'-deoxy-BLM Z and the evaluation of their DNA cleavage activities as a measurement for their potential anticancer activity. Our findings unveiled: (i) the disaccharide moiety plays an important role in the DNA cleavage activity of BLMs and ZBMs, (ii) the ZBM disaccharide significantly enhances the potency of BLM, and (iii) 6'-deoxy-BLM Z represents the most potent BLM analogue known to date. The fact that 6'-deoxy-BLM Z can be produced in reasonable quantities by microbial fermentation should greatly facilitate follow-up mechanistic and preclinical studies to potentially advance this analogue into a clinical drug.
Collapse
Affiliation(s)
- Sheng-Xiong Huang
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Li S, Anand K, Tran H, Yu F, Finefield JM, Sunderhaus JD, McAfoos TJ, Tsukamoto S, Williams RM, Sherman DH. Comparative analysis of the biosynthetic systems for fungal bicyclo[2.2.2]diazaoctane indole alkaloids: the (+)/(-)-notoamide, paraherquamide and malbrancheamide pathways. MEDCHEMCOMM 2012; 3:987-996. [PMID: 23213353 PMCID: PMC3511817 DOI: 10.1039/c2md20029e] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The biosynthesis of fungal bicyclo[2.2.2]diazaoctane indole alkaloids with a wide spectrum of biological activities have attracted increasing interest. Their intriguing mode of assembly has long been proposed to feature a non-ribosomal peptide synthetase, a presumed intramolecular Diels-Alderase, a variant number of prenyltransferases, and a series of oxidases responsible for the diverse tailoring modifications of their cyclodipeptide-based structural core. Until recently, the details of these biosynthetic pathways have remained largely unknown due to lack of information on the fungal derived biosynthetic gene clusters. Herein, we report a comparative analysis of four natural product metabolic systems of a select group of bicyclo[2.2.2]diazaoctane indole alkaloids including (+)/(-)-notoamide, paraherquamide and malbrancheamide, in which we propose an enzyme for each step in the biosynthetic pathway based on deep annotation and on-going biochemical studies.
Collapse
Affiliation(s)
- Shengying Li
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Krithika Anand
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Hong Tran
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Fengan Yu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - James D. Sunderhaus
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Timothy J. McAfoos
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Sachiko Tsukamoto
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Robert M. Williams
- University of Colorado Cancer Center, Aurora, Colorado 80045, USA
- Departments of Medicinal Chemistry, Microbiology & Immunology, and Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
- Departments of Medicinal Chemistry, Microbiology & Immunology, and Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
32
|
Liu X, Bolla K, Ashforth EJ, Zhuo Y, Gao H, Huang P, Stanley SA, Hung DT, Zhang L. Systematics-guided bioprospecting for bioactive microbial natural products. Antonie van Leeuwenhoek 2011; 101:55-66. [PMID: 22086462 DOI: 10.1007/s10482-011-9671-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 10/27/2011] [Indexed: 01/26/2023]
Abstract
Advances in the taxonomic characterization of microorganisms have accelerated the rate at which new producers of natural products can be understood in relation to known organisms. Yet for many reasons, chemical efforts to characterize new compounds from new microbes have not kept pace with taxonomic advances. That there exists an ever-widening gap between the biological versus chemical characterization of new microorganisms creates tremendous opportunity for the discovery of novel natural products through the calculated selection and study of organisms from unique, untapped, ecological niches. A systematics-guided bioprospecting, including the construction of high quality libraries of marine microbes and their crude extracts, investigation of bioactive compounds, and increasing the active compounds by precision engineering, has become an efficient approach to drive drug leads discovery. This review outlines the recent advances in these issues and shares our experiences on anti-infectious drug discovery and improvement of avermectins production as well.
Collapse
Affiliation(s)
- Xueting Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Titer improvement of iso-migrastatin in selected heterologous Streptomyces hosts and related analysis of mRNA expression by quantitative RT-PCR. Appl Microbiol Biotechnol 2010; 89:1709-19. [PMID: 21132287 DOI: 10.1007/s00253-010-3025-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 11/11/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022]
Abstract
iso-Migrastatin (iso-MGS) has been actively pursued recently as an outstanding candidate of antimetastasis agents. Having characterized the iso-MGS biosynthetic gene cluster from its native producer Streptomyces platensis NRRL 18993, we have recently succeeded in producing iso-MGS in five selected heterologous Streptomyces hosts, albeit the low titers failed to meet expectations and cast doubt on the utility of this novel technique for large-scale production. To further explore and capitalize on the production capacity of these hosts, a thorough investigation of these five engineered strains with three fermentation media for iso-MGS production was undertaken. Streptomyces albus J1074 and Streptomyces lividans K4-114 were found to be preferred heterologous hosts, and subsequent analysis of carbon and nitrogen sources revealed that sucrose and yeast extract were ideal for iso-MGS production. After the initial optimization, the titers of iso-MGS in all five hosts were considerably improved by 3-18-fold in the optimized R2YE medium. Furthermore, the iso-MGS titer of S. albus J1074 (pBS11001) was significantly improved to 186.7 mg/L by a hybrid medium strategy. Addition of NaHCO(3) to the latter finally afforded an optimized iso-MGS titer of 213.8 mg/L, about 5-fold higher than the originally reported system. With S. albus J1074 (pBS11001) as a model host, the expression of iso-MGS gene cluster in four different media was systematically studied via the quantitative RT-PCR technology. The resultant comparison revealed the correlation of gene expression and iso-MGS production for the first time; synchronous expression of the whole gene cluster was crucial for optimal iso-MGS production. These results reveal new insights into the iso-MGS biosynthetic machinery in heterologous hosts and provide the primary data to realize large-scale production of iso-MGS for further preclinical studies.
Collapse
|
34
|
Ashforth EJ, Fu C, Liu X, Dai H, Song F, Guo H, Zhang L. Bioprospecting for antituberculosis leads from microbial metabolites. Nat Prod Rep 2010; 27:1709-19. [PMID: 20922218 DOI: 10.1039/c0np00008f] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Elizabeth Jane Ashforth
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
35
|
Iso-migrastatin Titer Improvement in the Engineered Streptomyces lividans SB11002 Strain by Optimization of Fermentation Conditions. BIOTECHNOL BIOPROC E 2010; 15:664-669. [PMID: 21625393 DOI: 10.1007/s12257-009-3129-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The heterologous production of iso-migrastatin (iso-MGS) was successfully demonstrated in an engineered S. lividans SB11002 strain, which was derived from S. lividans K4-114, following introduction of pBS11001, which harbored the entire mgs biosynthetic gene cluster. However, under similar fermentation conditions, the iso-MGS titer in the engineered strain was significantly lower than that in the native producer - Streptomyces platensis NRRL 18993. To circumvent the problem of low iso-MGS titers and to expand the utility of this heterologous system for iso-MGS biosynthesis and engineering, systematic optimization of the fermentation medium was carried out. The effects of major components in the cultivation medium, including carbon, organic and inorganic nitrogen sources, were investigated using a single factor optimization method. As a result, sucrose and yeast extract were determined to be the best carbon and organic nitrogen sources, resulting in optimized iso-MGS production. Conversely, all other inorganic nitrogen sources evaluated produced various levels of inhibition of iso-MGS production. The final optimized R2YE production medium produced iso-MGS with a titer of 86.5 mg/L, about 3.6-fold higher than that in the original R2YE medium, and 1.5 fold higher than that found within the native S. platensis NRRL 18993 producer.
Collapse
|
36
|
Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters. J Ind Microbiol Biotechnol 2010; 37:759-72. [DOI: 10.1007/s10295-010-0730-9] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 04/22/2010] [Indexed: 10/19/2022]
|
37
|
Chen Y, Smanski MJ, Shen B. Improvement of secondary metabolite production in Streptomyces by manipulating pathway regulation. Appl Microbiol Biotechnol 2010; 86:19-25. [PMID: 20091304 DOI: 10.1007/s00253-009-2428-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Revised: 12/22/2009] [Accepted: 12/24/2009] [Indexed: 12/21/2022]
Abstract
Titer improvement is a constant requirement in the fermentation industry. The traditional method of "random mutation and screening" has been very effective despite the considerable amount of time and resources it demands. Rational metabolic engineering, with the use of recombinant DNA technology, provides a novel, alternative strategy for titer improvement that complements the empirical method used in industry. Manipulation of the specific regulatory systems that govern secondary metabolite production is an important aspect of metabolic engineering that can efficiently improve fermentation titers. In this review, we use examples from Streptomyces secondary metabolism, the most prolific source of clinically used drugs, to demonstrate the power and utility of exploiting natural regulatory networks, in particular pathway-specific regulators, for titer improvement. Efforts to improve the titers of fredericamycin, C-1027, platensimycin, and platencin in our lab are highlighted.
Collapse
Affiliation(s)
- Yihua Chen
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | | | | |
Collapse
|
38
|
Improved production of the tallysomycin H-1 in Streptoalloteichus hindustanus SB8005 strain by fermentation optimization. Appl Microbiol Biotechnol 2010; 86:1345-53. [DOI: 10.1007/s00253-009-2406-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 11/24/2009] [Accepted: 12/11/2009] [Indexed: 10/20/2022]
|
39
|
Jones AC, Gerwick L, Gonzalez D, Dorrestein PC, Gerwick WH. Transcriptional analysis of the jamaicamide gene cluster from the marine cyanobacterium Lyngbya majuscula and identification of possible regulatory proteins. BMC Microbiol 2009; 9:247. [PMID: 19951434 PMCID: PMC2799420 DOI: 10.1186/1471-2180-9-247] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 12/01/2009] [Indexed: 12/02/2022] Open
Abstract
Background The marine cyanobacterium Lyngbya majuscula is a prolific producer of bioactive secondary metabolites. Although biosynthetic gene clusters encoding several of these compounds have been identified, little is known about how these clusters of genes are transcribed or regulated, and techniques targeting genetic manipulation in Lyngbya strains have not yet been developed. We conducted transcriptional analyses of the jamaicamide gene cluster from a Jamaican strain of Lyngbya majuscula, and isolated proteins that could be involved in jamaicamide regulation. Results An unusually long untranslated leader region of approximately 840 bp is located between the jamaicamide transcription start site (TSS) and gene cluster start codon. All of the intergenic regions between the pathway ORFs were transcribed into RNA in RT-PCR experiments; however, a promoter prediction program indicated the possible presence of promoters in multiple intergenic regions. Because the functionality of these promoters could not be verified in vivo, we used a reporter gene assay in E. coli to show that several of these intergenic regions, as well as the primary promoter preceding the TSS, are capable of driving β-galactosidase production. A protein pulldown assay was also used to isolate proteins that may regulate the jamaicamide pathway. Pulldown experiments using the intergenic region upstream of jamA as a DNA probe isolated two proteins that were identified by LC-MS/MS. By BLAST analysis, one of these had close sequence identity to a regulatory protein in another cyanobacterial species. Protein comparisons suggest a possible correlation between secondary metabolism regulation and light dependent complementary chromatic adaptation. Electromobility shift assays were used to evaluate binding of the recombinant proteins to the jamaicamide promoter region. Conclusion Insights into natural product regulation in cyanobacteria are of significant value to drug discovery and biotechnology. To our knowledge, this is the first attempt to characterize the transcription and regulation of secondary metabolism in a marine cyanobacterium. If jamaicamide is light regulated, this mechanism would be similar to other cyanobacterial natural product gene clusters such as microcystin LR. These findings could aid in understanding and potentially assisting the management of toxin production by Lyngbya in the environment.
Collapse
Affiliation(s)
- Adam C Jones
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | | | | | | | |
Collapse
|
40
|
Adrio JL, Demain AL. Recombinant organisms for production of industrial products. Bioeng Bugs 2009; 1:116-31. [PMID: 21326937 DOI: 10.4161/bbug.1.2.10484] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/30/2009] [Accepted: 11/02/2009] [Indexed: 11/19/2022] Open
Abstract
A revolution in industrial microbiology was sparked by the discoveries of ther double-stranded structure of DNA and the development of recombinant DNA technology. Traditional industrial microbiology was merged with molecular biology to yield improved recombinant processes for the industrial production of primary and secondary metabolites, protein biopharmaceuticals and industrial enzymes. Novel genetic techniques such as metabolic engineering, combinatorial biosynthesis and molecular breeding techniques and their modifications are contributing greatly to the development of improved industrial processes. In addition, functional genomics, proteomics and metabolomics are being exploited for the discovery of novel valuable small molecules for medicine as well as enzymes for catalysis. The sequencing of industrial microbal genomes is being carried out which bodes well for future process improvement and discovery of new industrial products.
Collapse
Affiliation(s)
- Jose-Luis Adrio
- NeuronBioPharma, S.A., Parque Tecnologico de Ciencias de la Salud, Edificio BIC, Armilla, Granada, Spain
| | | |
Collapse
|
41
|
Naesby M, Nielsen SV, Nielsen CA, Green T, Tange TO, Simón E, Knechtle P, Hansson A, Schwab MS, Titiz O, Folly C, Archila RE, Maver M, van Sint Fiet S, Boussemghoune T, Janes M, Kumar ASS, Sonkar SP, Mitra PP, Benjamin VAK, Korrapati N, Suman I, Hansen EH, Thybo T, Goldsmith N, Sorensen AS. Yeast artificial chromosomes employed for random assembly of biosynthetic pathways and production of diverse compounds in Saccharomyces cerevisiae. Microb Cell Fact 2009; 8:45. [PMID: 19678954 PMCID: PMC2732597 DOI: 10.1186/1475-2859-8-45] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 08/13/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Natural products are an important source of drugs and other commercially interesting compounds, however their isolation and production is often difficult. Metabolic engineering, mainly in bacteria and yeast, has sought to circumvent some of the associated problems but also this approach is impeded by technical limitations. Here we describe a novel strategy for production of diverse natural products, comprising the expression of an unprecedented large number of biosynthetic genes in a heterologous host. RESULTS As an example, genes from different sources, representing enzymes of a seven step flavonoid pathway, were individually cloned into yeast expression cassettes, which were then randomly combined on Yeast Artificial Chromosomes and used, in a single transformation of yeast, to create a variety of flavonoid producing pathways. Randomly picked clones were analysed, and approximately half of them showed production of the flavanone naringenin, and a third of them produced the flavonol kaempferol in various amounts. This reflected the assembly of 5-7 step multi-species pathways converting the yeast metabolites phenylalanine and/or tyrosine into flavonoids, normally only produced by plants. Other flavonoids were also produced that were either direct intermediates or derivatives thereof. Feeding natural and unnatural, halogenated precursors to these recombinant clones demonstrated the potential to further diversify the type of molecules that can be produced with this technology. CONCLUSION The technology has many potential uses but is particularly suited for generating high numbers of structurally diverse compounds, some of which may not be amenable to chemical synthesis, thus greatly facilitating access to a huge chemical space in the search for new commercially interesting compounds.
Collapse
Affiliation(s)
- Michael Naesby
- Evolva A/S, Bülowsvej 25, 1870 Frederiksberg C, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Feng Z, Wang L, Rajski SR, Xu Z, Coeffet-LeGal MF, Shen B. Engineered production of iso-migrastatin in heterologous Streptomyces hosts. Bioorg Med Chem 2009; 17:2147-53. [PMID: 19010685 PMCID: PMC3075207 DOI: 10.1016/j.bmc.2008.10.074] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/03/2008] [Accepted: 10/31/2008] [Indexed: 10/21/2022]
Abstract
Glutarimide-containing polyketides such as migrastatin (MGS) are well known for their ability to inhibit tumor cell migration. We have previously shown that MGS is derived from iso-migrastatin (iso-MGS) via a H(2)O-mediated ring-expansion rearrangement. A bacterial artificial chromosome (BAC) library of Streptomyces platensis NRRL18993, an iso-MGS producer, was constructed. From this library, pBS11001, a BAC clone harboring the intact iso-MGS biosynthetic gene cluster, was identified. Mobilization of pBS11001 into five heterologous Streptomyces hosts afforded recombinant strains, SB11001, SB11002, SB11003, SB11004, and SB11005, respectively. Under a standard set of media and fermentation conditions, the recombinant strains all produced the same profile of iso-MGS as that of S. platensis NRRL18993. These findings highlight the strength and flexibility of the BAC-based technology for natural product production and engineering in heterologous Streptomyces model hosts.
Collapse
Affiliation(s)
- Zhiyang Feng
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Liyan Wang
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Scott R. Rajski
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Zhinan Xu
- Department of Chemical Engineering and Bioengineering, Institute of Bioengineering, Zhejiang University, Hangzhou 310027 China
| | | | - Ben Shen
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- University of Wisconsin National Cooperative Drug Discovery Group, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
43
|
Galm U, Wang L, Wendt-Pienkowski E, Yang R, Liu W, Tao M, Coughlin JM, Shen B. In vivo manipulation of the bleomycin biosynthetic gene cluster in Streptomyces verticillus ATCC15003 revealing new insights into its biosynthetic pathway. J Biol Chem 2008; 283:28236-45. [PMID: 18697737 DOI: 10.1074/jbc.m804971200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bleomycin (BLM), an important clinically used antitumor compound, and its analogs are challenging to prepare by chemical synthesis. Genetic engineering of the biosynthetic pathway in the producer strain would provide an efficient and convenient method of generating new derivatives of this complex molecule in vivo. However, the BLM producing Streptomyces verticillus ATCC15003 has been refractory to all means of introducing plasmid DNA into its cells for nearly two decades. Several years after cloning and identification of the bleomycin biosynthetic gene cluster, this study demonstrates, for the first time, genetic accessibility of this pharmaceutically relevant producer strain by intergeneric Escherichia coli-Streptomyces conjugation. Gene replacement and in-frame deletion mutants were created by lambdaRED-mediated PCR targeting mutagenesis, and the secondary metabolite profile of the resultant mutants confirmed the identity of the BLM biosynthetic gene cluster and established its boundaries. Ultimately, the in-frame blmD deletion mutant strain S. verticillus SB5 resulted in the production of a bleomycin intermediate. The structure of this compound, decarbamoyl-BLM, was elucidated, and its DNA cleavage activity was compared with the parent compounds.
Collapse
Affiliation(s)
- Ute Galm
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Identification and utility of FdmR1 as a Streptomyces antibiotic regulatory protein activator for fredericamycin production in Streptomyces griseus ATCC 49344 and heterologous hosts. J Bacteriol 2008; 190:5587-96. [PMID: 18556785 DOI: 10.1128/jb.00592-08] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fredericamycin (FDM) A biosynthetic gene cluster, cloned previously from Streptomyces griseus ATCC 49344, contains three putative regulatory genes, fdmR, fdmR1, and fdmR2. Their deduced gene products show high similarity to members of the Streptomyces antibiotic regulatory protein (SARP) family (FdmR1) or to MarR-like regulators (FdmR and FdmR2). Here we provide experimental data supporting FdmR1 as a SARP-type activator. Inactivation of fdmR1 abolished FDM biosynthesis, and FDM production could be restored to the fdmR1::aac(3)IV mutant by expressing fdmR1 in trans. Reverse transcription-PCR transcriptional analyses revealed that up to 26 of the 28 genes within the fdm gene cluster, with the exception of fdmR and fdmT2, were under the positive control of FdmR1, directly or indirectly. Overexpression of fdmR1 in S. griseus improved the FDM titer 5.6-fold (to about 1.36 g/liter) relative to that of wild-type S. griseus. Cloning of the complete fdm cluster into an integrative plasmid and subsequent expression in heterologous hosts revealed that considerable amounts of FDMs could be produced in Streptomyces albus but not in Streptomyces lividans. However, the S. lividans host could be engineered to produce FDMs via constitutive expression of fdmR1; FDM production in S. lividans could be enhanced further by overexpressing fdmC, encoding a putative ketoreductase, concomitantly with fdmR1. Taken together, these studies demonstrate the viability of engineering FDM biosynthesis and improving FDM titers in both the native producer S. griseus and heterologous hosts, such as S. albus and S. lividans. The approach taken capitalizes on FdmR1, a key activator of the FDM biosynthetic machinery.
Collapse
|
45
|
|
46
|
Characterization of the saframycin A gene cluster from Streptomyces lavendulae NRRL 11002 revealing a nonribosomal peptide synthetase system for assembling the unusual tetrapeptidyl skeleton in an iterative manner. J Bacteriol 2007; 190:251-63. [PMID: 17981978 DOI: 10.1128/jb.00826-07] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saframycin A (SFM-A), produced by Streptomyces lavendulae NRRL 11002, belongs to the tetrahydroisoquinoline family of antibiotics, and its core is structurally similar to the core of ecteinascidin 743, which is a highly potent antitumor drug isolated from a marine tunicate. In this study, the biosynthetic gene cluster for SFM-A was cloned and localized to a 62-kb contiguous DNA region. Sequence analysis revealed 30 genes that constitute the SFM-A gene cluster, encoding an unusual nonribosomal peptide synthetase (NRPS) system and tailoring enzymes and regulatory and resistance proteins. The results of substrate prediction and in vitro characterization of the adenylation specificities of this NRPS system support the hypothesis that the last module acts in an iterative manner to form a tetrapeptidyl intermediate and that the colinearity rule does not apply. Although this mechanism is different from those proposed for the SFM-A analogs SFM-Mx1 and safracin B (SAC-B), based on the high similarity of these systems, it is likely they share a common mechanism of biosynthesis as we describe here. Construction of the biosynthetic pathway of SFM-Y3, an aminated SFM-A, was achieved in the SAC-B producer (Pseudomonas fluorescens). These findings not only shed new insight on tetrahydroisoquinoline biosynthesis but also demonstrate the feasibility of engineering microorganisms to generate structurally more complex and biologically more active analogs by combinatorial biosynthesis.
Collapse
|
47
|
Bowling JJ, Kochanowska AJ, Kasanah N, Hamann MT. Nature's bounty - drug discovery from the sea. Expert Opin Drug Discov 2007; 2:1505-22. [PMID: 23484601 PMCID: PMC4928193 DOI: 10.1517/17460441.2.11.1505] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
With ∼ 40 years of research completed after the development of self-contained underwater breathing apparatus, drug discovery opportunities in the sea are still too numerous to count. Since the FDA approval of the direct-from-the-sea calcium channel blocker ziconotide, marine natural products have been validated as a source for new medicines. However, the demand for natural products is extremely high due to the development of high-throughput assays and this bottleneck has created the need for an intense focus on increasing the rate of isolating and elucidating the structures of new bioactive secondary metabolites. In addition to highlighting the drug discovery potential of the marine environment, this review discusses several of the pressing needs to increase the rate of drug discovery in marine natural products, and describes some of the work and new technologies that are contributing in this regard.
Collapse
Affiliation(s)
- John J Bowling
- The University of Mississippi, Department of Pharmacognosy, School of Pharmacy, University, MS 38677, USA +1 662 915 5730 ; +1 662 915 6975 ;
| | | | | | | |
Collapse
|
48
|
Van Lanen SG, Shen B. Progress in combinatorial biosynthesis for drug discovery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2006; 3:285-292. [PMID: 24980530 DOI: 10.1016/j.ddtec.2006.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Combinatorial biosynthesis, the process of genetic manipulations of natural product biosynthetic machinery for structural diversity, depends on several factors, and discussed here are two critical factors: access to genetic information and biochemical characterization of enzymes. Examples of the former include using predictions for the biosynthesis of unusual chemical entities such as aminohydroxybenzoic acid starter units, methoxymalonylate extender units, the enediyne core and bacterial aromatic polyketides. The latter aspect includes the continued elucidation of domain functionalities of modular polyketide synthases and nonribosomal peptide synthases and novel biochemical pathways such as the biosynthesis of a cyclopropyl unit and a β-hydroxyl acid. Finally, examples of successful combinatorial biosynthesis for daptomycin and indolocarbozole compounds are discussed.:
Collapse
Affiliation(s)
- Steven G Van Lanen
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, WI 53705, USA
| | - Ben Shen
- Department of Chemistry, University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|