1
|
Anselmi G, Helft J, Guermonprez P. Development and function of human dendritic cells in humanized mice models. Mol Immunol 2020; 125:151-161. [PMID: 32688117 DOI: 10.1016/j.molimm.2020.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/06/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) are sentinel cells of the immune system arising from hematopoietic stem cells. DCs play a key role in the regulation of both adaptive and innate lymphocyte responses. As such, experimental models enabling a thorough analysis of human DCs development and function are needed. Humanized mice models (termed collectively as HIS mice, or human immune system mice models) provide unique opportunities to model human hematopoiesis and tackle the function of human immune cell types in vivo. Here, we review experimental approaches enabling to recapitulate the ontogeny of DC subsets in HIS mice and discuss studies addressing the biology of human DC subsets implementing HIS mice models.
Collapse
Affiliation(s)
- Giorgio Anselmi
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, United Kingdom
| | - Julie Helft
- PSL Research University, Institut Curie Research Center, Immunity and Cancer department, INSERM U932, Paris, France
| | - Pierre Guermonprez
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, United Kingdom; Université de Paris, Centre for Inflammation Research, CNRS ERL8252, INSERM 1149, Hopital Bichat Claude Bernard, France.
| |
Collapse
|
2
|
Aspord C, Tramcourt L, Leloup C, Molens JP, Leccia MT, Charles J, Plumas J. Imiquimod inhibits melanoma development by promoting pDC cytotoxic functions and impeding tumor vascularization. J Invest Dermatol 2014; 134:2551-2561. [PMID: 24751730 DOI: 10.1038/jid.2014.194] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 03/06/2014] [Accepted: 04/08/2014] [Indexed: 11/09/2022]
Abstract
Imiquimod (IMQ) is a synthetic Toll-like receptor (TLR7/8) ligand that can trigger antiviral and antitumor activities. Despite evidence of potent therapeutic effects, the clinical use of IMQ in melanoma is impeded by incomplete understanding of its mechanisms of action. Mice and humans differ in many aspects of immunity, including TLR7 expression patterns, thus impeding the use of mouse models in translating discoveries into clinical applications. In this article, we investigated the mechanisms behind IMQ effects in vivo in a human context of melanoma and immunity using an innovative melanoma-bearing humanized mouse model. In this model, IMQ strongly inhibited melanoma tumor development through prompt mobilization of plasmacytoid dendritic cells and by triggering their cytotoxic functions, and through upregulation of expression of type 1 IFN response genes. IMQ also drastically impeded tumor vascularization by inducing the downregulation of angiogenic factors vascular endothelial growth factor, angiogenin, IL-8, and fibroblast growth factor. Our results revealed the short- and long-term multifactorial effects of IMQ converging toward inhibition of melanoma development. By providing a better understanding of the mechanisms of action of IMQ in melanoma, our study opens the way for its further clinical use in the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Caroline Aspord
- R&D Laboratory, Etablissement Français du Sang Rhône-Alpes, La Tronche, France; University Joseph Fourier, Grenoble, France; Immunobiology & Immunotherapy of Cancers, U823, INSERM, La Tronche, France.
| | - Laetitia Tramcourt
- R&D Laboratory, Etablissement Français du Sang Rhône-Alpes, La Tronche, France; University Joseph Fourier, Grenoble, France; Immunobiology & Immunotherapy of Cancers, U823, INSERM, La Tronche, France
| | - Claire Leloup
- R&D Laboratory, Etablissement Français du Sang Rhône-Alpes, La Tronche, France; University Joseph Fourier, Grenoble, France; Immunobiology & Immunotherapy of Cancers, U823, INSERM, La Tronche, France
| | - Jean-Paul Molens
- R&D Laboratory, Etablissement Français du Sang Rhône-Alpes, La Tronche, France; University Joseph Fourier, Grenoble, France; Immunobiology & Immunotherapy of Cancers, U823, INSERM, La Tronche, France
| | - Marie-Therese Leccia
- University Joseph Fourier, Grenoble, France; Immunobiology & Immunotherapy of Cancers, U823, INSERM, La Tronche, France; Department of Dermatology, Grenoble University Hospital, Grenoble, France
| | - Julie Charles
- University Joseph Fourier, Grenoble, France; Immunobiology & Immunotherapy of Cancers, U823, INSERM, La Tronche, France; Department of Dermatology, Grenoble University Hospital, Grenoble, France
| | - Joel Plumas
- R&D Laboratory, Etablissement Français du Sang Rhône-Alpes, La Tronche, France; University Joseph Fourier, Grenoble, France; Immunobiology & Immunotherapy of Cancers, U823, INSERM, La Tronche, France
| |
Collapse
|
3
|
Aspord C, Laurin D, Richard MJ, Vie H, Chaperot L, Plumas J. Induction of antiviral cytotoxic T cells by plasmacytoid dendritic cells for adoptive immunotherapy of posttransplant diseases. Am J Transplant 2011; 11:2613-26. [PMID: 21883919 DOI: 10.1111/j.1600-6143.2011.03722.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Virus-associated hematologic malignancies (EBV lymphoproliferative disease) and opportunistic infections (CMV) represent a major cause of hematopoietic stem cell and solid organ transplantation failure. Adoptive transfer of antigen-specific T lymphocytes appears to be a major and successful immunotherapeutic strategy, but improvements are needed to reliably produce high numbers of virus-specific T cells with appropriate requirements for adoptive immunotherapy that would allow extensive clinical use. Since plasmacytoid dendritic cells (pDCs) are crucial in launching antiviral responses, we investigated their capacity to elicit functional antiviral T-cell responses for adoptive cellular immunotherapy using a unique pDC line and antigens derived from Influenza, CMV and EBV viruses. Stimulation of peripheral blood mononuclear cells from HLA-A*0201(+) donors by HLA-A0201 matched pDCs pulsed with viral-derived peptides triggered high levels of multi-specific and functional cytotoxic T-cell responses (up to 99% tetramer(+) CD8 T cells) in vitro. Furthermore, the central/effector memory cytotoxic T cells elicited by the pDCs strongly display antiviral activity upon adoptive transfer into a humanized mouse model that mimics a virus-induced malignancy. We provide a simple and potent method to generate virus-specific CTL with the required properties for adoptive cellular immunotherapy of post-transplant diseases.
Collapse
Affiliation(s)
- C Aspord
- EFS Rhone-Alpes, R&D Laboratory, La Tronche F-38701, France.
| | | | | | | | | | | |
Collapse
|
4
|
Aspord C, Charles J, Leccia MT, Laurin D, Richard MJ, Chaperot L, Plumas J. A novel cancer vaccine strategy based on HLA-A*0201 matched allogeneic plasmacytoid dendritic cells. PLoS One 2010; 5:e10458. [PMID: 20454561 PMCID: PMC2864288 DOI: 10.1371/journal.pone.0010458] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 04/07/2010] [Indexed: 11/26/2022] Open
Abstract
Background The development of effective cancer vaccines still remains a challenge. Despite the crucial role of plasmacytoid dendritic cells (pDCs) in anti-tumor responses, their therapeutic potential has not yet been worked out. We explored the relevance of HLA-A*0201 matched allogeneic pDCs as vectors for immunotherapy. Methods and Findings Stimulation of PBMC from HLA-A*0201+ donors by HLA-A*0201 matched allogeneic pDCs pulsed with tumor-derived peptides triggered high levels of antigen-specific and functional cytotoxic T cell responses (up to 98% tetramer+ CD8 T cells). The pDC vaccine demonstrated strong anti-tumor therapeutic in vivo efficacy as shown by the inhibition of tumor growth in a humanized mouse model. It also elicited highly functional tumor-specific T cells ex-vivo from PBMC and TIL of stage I-IV melanoma patients. Responses against MelA, GP100, tyrosinase and MAGE-3 antigens reached tetramer levels up to 62%, 24%, 85% and 4.3% respectively. pDC vaccine-primed T cells specifically killed patients' own autologous melanoma tumor cells. This semi-allogeneic pDC vaccine was more effective than conventional myeloid DC-based vaccines. Furthermore, the pDC vaccine design endows it with a strong potential for clinical application in cancer treatment. Conclusions These findings highlight HLA-A*0201 matched allogeneic pDCs as potent inducers of tumor immunity and provide a promising immunotherapeutic strategy to fight cancer.
Collapse
Affiliation(s)
- Caroline Aspord
- Etablissement Français du Sang Rhone-Alpes, R&D Laboratory, La Tronche, France
- University Joseph Fourier, Grenoble, France
- INSERM, U823, Immunobiology & Immunotherapy of Cancers, La Tronche, France
- * E-mail: (CA); (JP)
| | - Julie Charles
- Etablissement Français du Sang Rhone-Alpes, R&D Laboratory, La Tronche, France
- University Joseph Fourier, Grenoble, France
- INSERM, U823, Immunobiology & Immunotherapy of Cancers, La Tronche, France
- Centre Hospitalier Universitaire Grenoble, Michallon Hospital, Dermatology, pole pluridisciplinaire de medecine, Grenoble, France
| | - Marie-Therese Leccia
- University Joseph Fourier, Grenoble, France
- INSERM, U823, Immunobiology & Immunotherapy of Cancers, La Tronche, France
- Centre Hospitalier Universitaire Grenoble, Michallon Hospital, Dermatology, pole pluridisciplinaire de medecine, Grenoble, France
| | - David Laurin
- Etablissement Français du Sang Rhone-Alpes, R&D Laboratory, La Tronche, France
- University Joseph Fourier, Grenoble, France
- INSERM, U823, Immunobiology & Immunotherapy of Cancers, La Tronche, France
| | - Marie-Jeanne Richard
- University Joseph Fourier, Grenoble, France
- INSERM, U823, Immunobiology & Immunotherapy of Cancers, La Tronche, France
- Centre Hospitalier Universitaire Grenoble, Michallon Hospital, Cancerology and Biotherapy, Grenoble, France
| | - Laurence Chaperot
- Etablissement Français du Sang Rhone-Alpes, R&D Laboratory, La Tronche, France
- University Joseph Fourier, Grenoble, France
- INSERM, U823, Immunobiology & Immunotherapy of Cancers, La Tronche, France
| | - Joel Plumas
- Etablissement Français du Sang Rhone-Alpes, R&D Laboratory, La Tronche, France
- University Joseph Fourier, Grenoble, France
- INSERM, U823, Immunobiology & Immunotherapy of Cancers, La Tronche, France
- * E-mail: (CA); (JP)
| |
Collapse
|
5
|
Morel CR, Horton JM, Peng H, Xu K, Batra SK, Miles JP, Kane RR. History of the biomedical studies PhD program: a joint graduate program of the Baylor Health Care system and Baylor University. Proc AMIA Symp 2008; 21:403-10. [PMID: 18982085 PMCID: PMC2566915 DOI: 10.1080/08998280.2008.11928438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
On a sweltering summer morning, throngs of people filed into Jones Theatre at Baylor University in Waco for the graduate student orientation. One could look around and notice the diversity of not only the student population, but also the disciplines being represented. Many students had stepped off planes only hours prior, but even those who had been traveling for days could not contain their excitement. As for me, I was nowhere near any of this. I was still 40 miles north of Waco in Waxahachie, having been pulled over for speeding. After 4 days of traveling with my life in my Volkswagon Jetta, all the way from San Francisco, on one of the most important days of my life, I was late. When I finally arrived at the Hooper Schafer Fine Arts Auditorium, out of breath from running all the way from the parking structure, all of the graduate students were quietly listening to the first introductory speech. I snuck into the back and sat down. My mind was racing, as I knew very little about Waco and Baylor University except for the growing accomplishments of the biomedical studies program. What little I did know about Baylor seemed so different from my very liberal upbringing in California. What would this experience be like for me? But, as I listened to the talks, met with other students, and finally met the entire biomedical studies entering class of 2007, I knew that I had made the right decision in coming to Baylor. This would be an experience unlike any other, and I was wholeheartedly open to embracing it. -Christine Morel, PhD candidate, Institute of Biomedical Studies.
Collapse
Affiliation(s)
- Christine R Morel
- Institute of Biomedical Studies, Baylor Health Care System, Dallas, Texas, and Baylor University, Waco, Texas, USA
| | | | | | | | | | | | | |
Collapse
|