1
|
Chen N, Zhang B. IAV Antagonizes Host Innate Immunity by Weakening the LncRNA-LRIR2-Mediated Antiviral Functions. BIOLOGY 2024; 13:998. [PMID: 39765665 PMCID: PMC11727275 DOI: 10.3390/biology13120998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/15/2025]
Abstract
A growing number of studies have shown that long non-coding RNAs (lncRNAs) are implicated in many biological processes, including the regulation of innate immunity and IAV replication. In addition, IAV has been found to be able to hijack lncRNAs and thus antagonize host innate immunity. Nonetheless, whether IAV can antagonize host innate immunity by weakening the antiviral functions mediated by lncRNAs is unknown. In this study, we found that LncRNA-ENST00000491430 regulates IAV replication and named it LRIR2. Interestingly, we found that the expression of LRIR2 was suppressed during IAV infection. Importantly, LRIR2 overexpression inhibited IAV replication, suggesting that LRIR2 plays an antiviral role during IAV infection. Mechanistically, we demonstrated that LRIR2 inhibits the transcription and replication of the IAV genome. In addition, the antiviral function of LRIR2 is mainly dependent on the stem-loop structures of 1-118 nt and 575-683 nt. Taken together, IAV could antagonize host innate immunity by weakening the LncRNA-LRIR2-mediated antiviral functions. Our study provides novel perspectives into viral strategies to antagonize host innate immunity. It lays a theoretical foundation for the design of novel anti-IAV drugs that target host lncRNAs or the antagonism effect.
Collapse
Affiliation(s)
- Na Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | | |
Collapse
|
2
|
Shin WJ, Choi S, Seong BL. What are the considerations when selecting a model for influenza drug discovery? Expert Opin Drug Discov 2023; 18:1-3. [PMID: 36529907 DOI: 10.1080/17460441.2023.2157812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Woo-Jin Shin
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, Florida, USA
| | - Seongil Choi
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 03721, Seoul, South Korea
| | - Baik-Lin Seong
- Department of Microbiology, Yonsei University College of Medicine, 03721, Seoul, South Korea.,Vaccine Innovation Technology ALliance (Vital)-Korea, Yonsei University, 03721, Seoul South Korea
| |
Collapse
|
3
|
Antiviral Activity of Benzoic Acid Derivative NC-5 Against Influenza A Virus and Its Neuraminidase Inhibition. Int J Mol Sci 2019; 20:ijms20246261. [PMID: 31842256 PMCID: PMC6940900 DOI: 10.3390/ijms20246261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 11/30/2022] Open
Abstract
The currently available drugs against influenza A virus primarily target neuraminidase (NA) or the matrix protein 2 (M2) ion channel. The emergence of drug-resistant viruses requires the development of new antiviral chemicals. Our study applied a cell-based approach to evaluate the antiviral activity of a series of newly synthesized benzoic acid derivatives, and 4-(2,2-Bis(hydroxymethyl)-5-oxopyrrolidin-l-yl)-3-(5-cyclohexyl-4H-1,2,4-triazol-3-yl)amino). benzoic acid, termed NC-5, was found to possess antiviral activity. NC-5 inhibited influenza A viruses A/FM/1/47 (H1N1), A/Beijing/32/92 (H3N2) and oseltamivir-resistant mutant A/FM/1/47-H275Y (H1N1-H275Y) in a dose-dependent manner. The 50% effective concentrations (EC50) for H1N1 and H1N1-H275Y were 33.6 μM and 32.8 μM, respectively, which showed that NC-5 had a great advantage over oseltamivir in drug-resistant virus infections. The 50% cytotoxic concentration (CC50) of NC-5 was greater than 640 μM. Orally administered NC-5 protected mice infected with H1N1 and H1N1-H275Y, conferring 80% and 60% survival at 100 mg/kg/d, reducing body weight loss, and alleviating virus-induced lung injury. NC-5 could suppress NP and M1 protein expression levels during the late stages of viral biosynthesis and inhibit NA activity, which may influence virus release. Our study proved that NC-5 has potent anti-influenza activity in vivo and in vitro, meaning that it could be regarded as a promising drug candidate to treat infection with influenza viruses, including oseltamivir-resistant viruses.
Collapse
|
4
|
Becker JC, Tollefson SJ, Weaver D, Williams JV. A medium-throughput screen for inhibitors of human metapneumovirus. Antivir Chem Chemother 2019; 27:2040206619830197. [PMID: 30759993 PMCID: PMC6376503 DOI: 10.1177/2040206619830197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Human metapneumovirus, a paramyxovirus discovered in 2001, is a major cause of lower respiratory infection in adults and children worldwide. There are no licensed vaccines or drugs for human metapneumovirus. We developed a fluorescent, cell-based medium-throughput screening assay for human metapneumovirus that captures inhibitors of all stages of the viral lifecycle except budding of progeny virus particles from the cell membrane. We optimized and validated the assay and performed a successful medium-throughput screening. A number of hits were identified, several of which were confirmed to inhibit viral replication in secondary assays. This assay offers potential to discover new antivirals for human metapneumovirus and related respiratory viruses. Compounds discovered using the medium-throughput screening may also provide useful probes of viral biology.
Collapse
Affiliation(s)
- Jennifer C Becker
- 1 Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sharon J Tollefson
- 2 Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David Weaver
- 3 Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John V Williams
- 2 Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA.,4 Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Xu J, Chen S, Jin J, Ma L, Guo M, Zhou C, Dou J. Inhibition of peptide BF-30 on influenza A virus infection in vitro/vivo by causing virion membrane fusion. Peptides 2019; 112:14-22. [PMID: 30447229 DOI: 10.1016/j.peptides.2018.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 12/14/2022]
Abstract
Influenza A virus is a leading cause of mortality in humans and poses a global health emergency due to its newly adapted and resistant strains. Thus, there is an urgency to develop novel anti-influenza drugs. Peptides are a type of biological molecule having a wide range of inhibitory effects against bacteria, fungi, viruses and cancer cells. The prospects of several peptides and their mechanisms of action have received significant attention. BF-30, a 30 amino acid residue peptide isolated from the venom of the snake, Bungarus fasciatus, is reported to have antibacterial and antitumor activities. Here, we demonstrated that the 50% cytotoxic concentration (CC50) of the peptide to MDCK cells is 67.7 μM. While BF-30 could inhibit the influenza virus strains H1N1, H3N2 and the oseltamivir-resistant strain H1N1, in vitro, with 50% effective concentration (EC50) of 5.2, 7.4 and 18.9 μM, respectively. In animal experiments, mice treated with BF-30 showed 50% survival at a dosage of 4 μM, with an approximately 2 log viral titer decrease in the lung. However, further studies showed that BF-30 worked on only the virus invasion stage, and inhibited the influenza virus infection by causing virion membrane fusion rather than interacting with hemagglutinin or neuraminidase. These results demonstrated that the peptide BF-30 exhibited an effective inhibitory activity against the influenza A virus and could be a promising candidate for influenza virus therapy.
Collapse
Affiliation(s)
- Jun Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.
| | - Shuo Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.
| | - Jing Jin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.
| | - Lingman Ma
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.
| | - Min Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.
| | - Changlin Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.
| | - Jie Dou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.
| |
Collapse
|
6
|
Ma C, Zhang J, Wang J. Pharmacological Characterization of the Spectrum of Antiviral Activity and Genetic Barrier to Drug Resistance of M2-S31N Channel Blockers. Mol Pharmacol 2016; 90:188-98. [PMID: 27385729 PMCID: PMC4998667 DOI: 10.1124/mol.116.105346] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/30/2016] [Indexed: 12/11/2022] Open
Abstract
Adamantanes (amantadine and rimantadine) are one of the two classes of Food and Drug Administration-approved antiviral drugs used for the prevention and treatment of influenza A virus infections. They inhibit viral replication by blocking the wild-type (WT) M2 proton channel, thus preventing viral uncoating. However, their use was discontinued due to widespread drug resistance. Among a handful of drug-resistant mutants, M2-S31N is the predominant mutation and persists in more than 95% of currently circulating influenza A strains. We recently designed two classes of M2-S31N inhibitors, S31N-specific inhibitors and S31N/WT dual inhibitors, which are represented by N-[(5-cyclopropyl-1,2-oxazol-3-yl)methyl]adamantan-1-amine (WJ379) and N-[(5-bromothiophen-2-yl)methyl]adamantan-1-amine (BC035), respectively. However, their antiviral activities against currently circulating influenza A viruses and their genetic barrier to drug resistance are unknown. In this report, we evaluated the therapeutic potential of these two classes of M2-S31N inhibitors (WJ379 and BC035) by profiling their antiviral efficacy against multidrug-resistant influenza A viruses, in vitro drug resistance barrier, and synergistic effect with oseltamivir. We found that M2-S31N inhibitors were active against several influenza A viruses that are resistant to one or both classes of Food and Drug Administration-approved anti-influenza drugs. In addition, M2-S31N inhibitors display a higher in vitro genetic barrier to drug resistance than amantadine. The antiviral effect of WJ379 was also synergistic with oseltamivir carboxylate. Overall, these results reaffirm that M2-S31N inhibitors are promising antiviral drug candidates that warrant further development.
Collapse
Affiliation(s)
- Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, and BIO5 Institute, University of Arizona, Tucson, Arizona
| | - Jiantao Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, and BIO5 Institute, University of Arizona, Tucson, Arizona
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, and BIO5 Institute, University of Arizona, Tucson, Arizona
| |
Collapse
|
7
|
The inhibitory effect of dehydroepiandrosterone and its derivatives against influenza A virus in vitro and in vivo. Arch Virol 2016; 161:3061-72. [DOI: 10.1007/s00705-016-2993-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 07/16/2016] [Indexed: 10/21/2022]
|
8
|
Antiviral activity of SA-2 against influenza A virus in vitro/vivo and its inhibition of RNA polymerase. Antiviral Res 2016; 127:68-78. [PMID: 26802558 DOI: 10.1016/j.antiviral.2016.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/19/2015] [Accepted: 01/19/2016] [Indexed: 12/29/2022]
Abstract
A target-free and cell-based approach was applied to evaluate the anti-influenza properties of six newly synthesized benzoic acid derivatives. SA-2, the ethyl 4-(2-hydroxymethyl-5-oxopyrrolidin-1-yl)-3-[3-(3-methylbenzoyl)-thioureido] benzoate (compound 2) was screened as a potential drug candidate. In a cytopathic effect assay, SA-2 dose dependently inhibited H1N1, H3N2 and the oseltamivir-resistant mutant H1N1-H275Y influenza viruses in both virus-infected MDCK and A549 cells, with 50% effective concentrations (EC50) in MDCK cells of 9.6, 19.2 and 19.8 μM respectively, and 50% cytotoxic concentration (CC50) of 444.5 μM, showing competitive antiviral activity with oseltamivir in vitro. Orally administered SA-2 effectively protected mice infected with lethal doses of H1N1 or oseltamivir-resistant strain H1N1-H275Y, conferring 70% or 50% survival at a dosage of 100 mg/kg/d, reducing body weight loss, alleviating the influenza-induced acute lung injury, and reducing lung virus titer. Mechanistic studies showed that SA-2 efficiently inhibited the activity of RNA polymerase and suppressed NP and M1 levels during viral biosynthesis by interfering with gene transcription without having an obvious influence on virus entry and release. Based on these favourable findings, SA-2, a novel anti-influenza agent, with its potent anti-influenza activity in vitro and in vivo, could be a promising antiviral for the treatment of infection of influenza A viruses, including oseltamivir-resistant mutants.
Collapse
|
9
|
Rasmussen L, Tigabu B, White EL, Bostwick R, Tower N, Bukreyev A, Rockx B, LeDuc JW, Noah JW. Adapting high-throughput screening methods and assays for biocontainment laboratories. Assay Drug Dev Technol 2015; 13:44-54. [PMID: 25710545 DOI: 10.1089/adt.2014.617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
High-throughput screening (HTS) has been integrated into the drug discovery process, and multiple assay formats have been widely used in many different disease areas but with limited focus on infectious agents. In recent years, there has been an increase in the number of HTS campaigns using infectious wild-type pathogens rather than surrogates or biochemical pathogen-derived targets. Concurrently, enhanced emerging pathogen surveillance and increased human mobility have resulted in an increase in the emergence and dissemination of infectious human pathogens with serious public health, economic, and social implications at global levels. Adapting the HTS drug discovery process to biocontainment laboratories to develop new drugs for these previously uncharacterized and highly pathogenic agents is now feasible, but HTS at higher biosafety levels (BSL) presents a number of unique challenges. HTS has been conducted with multiple bacterial and viral pathogens at both BSL-2 and BSL-3, and pilot screens have recently been extended to BSL-4 environments for both Nipah and Ebola viruses. These recent successful efforts demonstrate that HTS can be safely conducted at the highest levels of biological containment. This review outlines the specific issues that must be considered in the execution of an HTS drug discovery program for high-containment pathogens. We present an overview of the requirements for HTS in high-level biocontainment laboratories.
Collapse
Affiliation(s)
- Lynn Rasmussen
- 1 Drug Discovery Division, Southern Research, Birmingham, Alabama
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Tai CJ, Li CL, Tai CJ, Wang CK, Lin LT. Early Viral Entry Assays for the Identification and Evaluation of Antiviral Compounds. J Vis Exp 2015:e53124. [PMID: 26555014 DOI: 10.3791/53124] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cell-based systems are useful for discovering antiviral agents. Dissecting the viral life cycle, particularly the early entry stages, allows a mechanistic approach to identify and evaluate antiviral agents that target specific steps of the viral entry. In this report, the methods of examining viral inactivation, viral attachment, and viral entry/fusion as antiviral assays for such purposes are described, using hepatitis C virus as a model. These assays should be useful for discovering novel antagonists/inhibitors to early viral entry and help expand the scope of candidate antiviral agents for further drug development.
Collapse
Affiliation(s)
- Chen-Jei Tai
- Department of Chinese Medicine, Taipei Medical University Hospital; Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University
| | - Chia-Lin Li
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University
| | - Cheng-Jeng Tai
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University
| | - Chien-Kai Wang
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University; Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University;
| |
Collapse
|
11
|
Preclinical activity of VX-787, a first-in-class, orally bioavailable inhibitor of the influenza virus polymerase PB2 subunit. Antimicrob Agents Chemother 2014; 59:1569-82. [PMID: 25547360 DOI: 10.1128/aac.04623-14] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
VX-787 is a novel inhibitor of influenza virus replication that blocks the PB2 cap-snatching activity of the influenza viral polymerase complex. Viral genetics and X-ray crystallography studies provide support for the idea that VX-787 occupies the 7-methyl GTP (m(7)GTP) cap-binding site of PB2. VX-787 binds the cap-binding domain of the PB2 subunit with a KD (dissociation constant) of 24 nM as determined by isothermal titration calorimetry (ITC). The cell-based EC50 (the concentration of compound that ensures 50% cell viability of an uninfected control) for VX-787 is 1.6 nM in a cytopathic effect (CPE) assay, with a similar EC50 in a viral RNA replication assay. VX-787 is active against a diverse panel of influenza A virus strains, including H1N1pdm09 and H5N1 strains, as well as strains with reduced susceptibility to neuraminidase inhibitors (NAIs). VX-787 was highly efficacious in both prophylaxis and treatment models of mouse influenza and was superior to the neuraminidase inhibitor, oseltamivir, including in delayed-start-to-treat experiments, with 100% survival at up to 96 h postinfection and partial survival in groups where the initiation of therapy was delayed up to 120 h postinfection. At different doses, VX-787 showed a 1-log to >5-log reduction in viral load (relative to vehicle controls) in mouse lungs. Overall, these favorable findings validate the PB2 subunit of the viral polymerase as a drug target for influenza therapy and support the continued development of VX-787 as a novel antiviral agent for the treatment of influenza infection.
Collapse
|
12
|
Eyer L, Hruska K. Antiviral agents targeting the influenza virus: a review and publication analysis. VET MED-CZECH 2013; 58:113-185. [DOI: 10.17221/6746-vetmed] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
13
|
Tárnok A. Improvements in high-throughput, high-content analysis of single cells. Cytometry A 2013; 83:331-2. [DOI: 10.1002/cyto.a.22285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 02/27/2013] [Indexed: 11/07/2022]
|
14
|
Ma-Lauer Y, Lei J, Hilgenfeld R, von Brunn A. Virus-host interactomes--antiviral drug discovery. Curr Opin Virol 2013; 2:614-21. [PMID: 23057872 PMCID: PMC7102765 DOI: 10.1016/j.coviro.2012.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 12/21/2022]
Abstract
One of the key questions in virology is how viruses, encoding relatively few genes, gain temporary or constant control over their hosts. To understand pathogenicity of a virus it is important to gain knowledge on the function of the individual viral proteins in the host cell, on their interactions with viral and cellular proteins and on the consequences of these interactions on cellular signaling pathways. A combination of transcriptomics, proteomics, high-throughput technologies and the bioinformatical analysis of the respective data help to elucidate specific cellular antiviral drug target candidates. In addition, viral and human interactome analyses indicate that different viruses target common, central human proteins for entering cellular signaling pathways and machineries which might constitute powerful broad-spectrum antiviral targets.
Collapse
Affiliation(s)
- Yue Ma-Lauer
- Max-von-Pettenkofer Institute, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstrasse 9a, 80336 München, Germany
| | - Jian Lei
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- German Center for Infection Research (DZIF), University of Lübeck, Germany
| | - Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- German Center for Infection Research (DZIF), University of Lübeck, Germany
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Rd., Shanghai 201203, China
| | - Albrecht von Brunn
- Max-von-Pettenkofer Institute, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstrasse 9a, 80336 München, Germany
| |
Collapse
|