1
|
Weng HB, Chen HX, Wang MW. Innovation in neglected tropical disease drug discovery and development. Infect Dis Poverty 2018; 7:67. [PMID: 29950174 PMCID: PMC6022351 DOI: 10.1186/s40249-018-0444-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/23/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Neglected tropical diseases (NTDs) are closely related to poverty and affect over a billion people in developing countries. The unmet treatment needs cause high mortality and disability thereby imposing a huge burden with severe social and economic consequences. Although coordinated by the World Health Organization, various philanthropic organizations, national governments and the pharmaceutical industry have been making efforts in improving the situation, the control of NTDs is still inadequate and extremely difficult today. The lack of safe, effective and affordable medicines is a key contributing factor. This paper reviews the recent advances and some of the challenges that we are facing in the fight against NTDs. MAIN BODY In recent years, a number of innovations have demonstrated propensity to promote drug discovery and development for NTDs. Implementation of multilateral collaborations leads to continued efforts and plays a crucial role in drug discovery. Proactive approaches and advanced technologies are urgently needed in drug innovation for NTDs. However, the control and elimination of NTDs remain a formidable task as it requires persistent international cooperation to make sustainable progresses for a long period of time. Some currently employed strategies were proposed and verified to be successful, which involve both mechanisms of 'Push' which aims at cutting the cost of research and development for industry and 'Pull' which aims at increasing market attractiveness. Coupled to this effort should be the exercise of shared responsibility globally to reduce risks, overcome obstacles and maximize benefits. Since NTDs are closely associated with poverty, it is absolutely essential that the stakeholders take concerted and long-term measures to meet multifaceted challenges by alleviating extreme poverty, strengthening social intervention, adapting climate changes, providing effective monitoring and ensuring timely delivery. CONCLUSIONS The ongoing endeavor at the global scale will ultimately benefit the patients, the countries they are living and, hopefully, the manufacturers who provide new preventive, diagnostic and therapeutic products.
Collapse
Affiliation(s)
- Hong-Bo Weng
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Hai-Xia Chen
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Ming-Wei Wang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203 China
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 189 Guoshoujing Road, Pudong New District, Shanghai, 201203 China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, Shanghai, 201210 China
| |
Collapse
|
2
|
Abstract
Over the past 17 years, the number of reported cases of human African trypanosomiasis (HAT) has declined by over 90%, a significant result since the disease was highlighted as a public health problem by the WHO in 1995. However, if the goal of eliminating HAT by 2020 is to be achieved, then new treatments need to be identified and developed. A plethora of compound collections has been screened against Trypanosoma brucei spp, the etiological agents of HAT, resulting in three compounds progressing to clinical development. However, due to the high attrition rates in drug discovery, it is essential that research continues to identify novel molecules. Failure to do so, will result in the absence of molecules in the pipeline to fall back on should the current clinical trials be unsuccessful. This could seriously compromise control efforts to date, resulting in a resurgence in the number of HAT cases.
Collapse
Affiliation(s)
- Amy J Jones
- a Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Brisbane, 4111, Australia
| | - Vicky M Avery
- a Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Brisbane, 4111, Australia
| |
Collapse
|
3
|
Engel JA, Jones AJ, Avery VM, Sumanadasa SDM, Ng SS, Fairlie DP, Skinner-Adams T, Andrews KT. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2015. [PMID: 26199860 PMCID: PMC4506969 DOI: 10.1016/j.ijpddr.2015.05.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Histone deacetylase (HDAC) enzymes work together with histone acetyltransferases (HATs) to reversibly acetylate both histone and non-histone proteins. As a result, these enzymes are involved in regulating chromatin structure and gene expression as well as other important cellular processes. HDACs are validated drug targets for some types of cancer, with four HDAC inhibitors clinically approved. However, they are also showing promise as novel drug targets for other indications, including malaria and other parasitic diseases. In this study the in vitro activity of four anti-cancer HDAC inhibitors was examined against parasites that cause malaria and trypanosomiasis. Three of these inhibitors, suberoylanilide hydroxamic acid (SAHA; vorinostat®), romidepsin (Istodax®) and belinostat (Beleodaq®), are clinically approved for the treatment of T-cell lymphoma, while the fourth, panobinostat, has recently been approved for combination therapy use in certain patients with multiple myeloma. All HDAC inhibitors were found to inhibit the growth of asexual-stage Plasmodium falciparum malaria parasites in the nanomolar range (IC50 10–200 nM), while only romidepsin was active at sub-μM concentrations against bloodstream form Trypanosoma brucei brucei parasites (IC50 35 nM). The compounds were found to have some selectivity for malaria parasites compared with mammalian cells, but were not selective for trypanosome parasites versus mammalian cells. All compounds caused hyperacetylation of histone and non-histone proteins in P. falciparum asexual stage parasites and inhibited deacetylase activity in P. falciparum nuclear extracts in addition to recombinant PfHDAC1 activity. P. falciparum histone hyperacetylation data indicate that HDAC inhibitors may differentially affect the acetylation profiles of histone H3 and H4. Four clinically approved anti-cancer HDAC inhibitors potently inhibited P. falciparum. Only one, Romidepsin, was active against T. b. brucei parasites. All compounds hyperacetylated histone and non-histone proteins in P. falciparum. Some differential effects on Plasmodium histone acetylation were observed. All compounds inhibited Plasmodium nuclear deacetylase activity and PfHDAC1.
Collapse
Affiliation(s)
- Jessica A Engel
- Eskitis Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - Amy J Jones
- Eskitis Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - Vicky M Avery
- Eskitis Institute for Drug Discovery, Griffith University, Queensland, Australia
| | | | - Susanna S Ng
- Eskitis Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Q4072, Australia
| | - Tina Skinner-Adams
- Eskitis Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - Katherine T Andrews
- Eskitis Institute for Drug Discovery, Griffith University, Queensland, Australia
| |
Collapse
|
4
|
Hameed P S, Chinnapattu M, Shanbag G, Manjrekar P, Koushik K, Raichurkar A, Patil V, Jatheendranath S, Rudrapatna SS, Barde SP, Rautela N, Awasthy D, Morayya S, Narayan C, Kavanagh S, Saralaya R, Bharath S, Viswanath P, Mukherjee K, Bandodkar B, Srivastava A, Panduga V, Reddy J, Prabhakar KR, Sinha A, Jiménez-Díaz MB, Martínez MS, Angulo-Barturen I, Ferrer S, Sanz LM, Gamo FJ, Duffy S, Avery VM, Magistrado PA, Lukens AK, Wirth DF, Waterson D, Balasubramanian V, Iyer PS, Narayanan S, Hosagrahara V, Sambandamurthy VK, Ramachandran S. Aminoazabenzimidazoles, a Novel Class of Orally Active Antimalarial Agents. J Med Chem 2014; 57:5702-13. [DOI: 10.1021/jm500535j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Stefan Kavanagh
- Safety
Assessment, AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | - María Belén Jiménez-Díaz
- Tres
Cantos Medicines Development Campus, Diseases of Developing World
(DDW), GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - María Santos Martínez
- Tres
Cantos Medicines Development Campus, Diseases of Developing World
(DDW), GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Iñigo Angulo-Barturen
- Tres
Cantos Medicines Development Campus, Diseases of Developing World
(DDW), GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Santiago Ferrer
- Tres
Cantos Medicines Development Campus, Diseases of Developing World
(DDW), GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Laura María Sanz
- Tres
Cantos Medicines Development Campus, Diseases of Developing World
(DDW), GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Francisco Javier Gamo
- Tres
Cantos Medicines Development Campus, Diseases of Developing World
(DDW), GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Sandra Duffy
- Discovery
Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Vicky M. Avery
- Discovery
Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | | | - Amanda K. Lukens
- Harvard School of Public Health, Boston, Massachusetts 02115, United States
| | - Dyann F. Wirth
- Harvard School of Public Health, Boston, Massachusetts 02115, United States
| | - David Waterson
- Medicines for Malaria Venture, International Center
Cointrin, Route de Pré-Bois 20, Post Office Box 1826, 1215 Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
5
|
Drug discovery and human African trypanosomiasis: a disease less neglected? Future Med Chem 2014; 5:1801-41. [PMID: 24144414 DOI: 10.4155/fmc.13.162] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Human African trypanosomiasis (HAT) has been neglected for a long time. The most recent drug to treat this disease, eflornithine, was approved by the US FDA in 2000. Current treatments exhibit numerous problematic side effects and are often ineffective against the debilitating CNS resident stage of the disease. Fortunately, several partnerships and initiatives have been formed over the last 20 years in an effort to eradicate HAT, along with a number of other neglected diseases. This has led to an increasing number of foundations and research institutions that are currently working on the development of new drugs for HAT and tools with which to diagnose and treat patients. New biochemical pathways as therapeutic targets are emerging, accompanied by increasing numbers of new antitrypanosomal compound classes. The future looks promising that this collaborative approach will facilitate eagerly awaited breakthroughs in the treatment of HAT.
Collapse
|
6
|
Andrews KT, Fisher G, Skinner-Adams TS. Drug repurposing and human parasitic protozoan diseases. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2014; 4:95-111. [PMID: 25057459 PMCID: PMC4095053 DOI: 10.1016/j.ijpddr.2014.02.002] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/17/2014] [Accepted: 02/27/2014] [Indexed: 12/30/2022]
Abstract
Parasitic diseases have an enormous health, social and economic impact and are a particular problem in tropical regions of the world. Diseases caused by protozoa and helminths, such as malaria and schistosomiasis, are the cause of most parasite related morbidity and mortality, with an estimated 1.1 million combined deaths annually. The global burden of these diseases is exacerbated by the lack of licensed vaccines, making safe and effective drugs vital to their prevention and treatment. Unfortunately, where drugs are available, their usefulness is being increasingly threatened by parasite drug resistance. The need for new drugs drives antiparasitic drug discovery research globally and requires a range of innovative strategies to ensure a sustainable pipeline of lead compounds. In this review we discuss one of these approaches, drug repurposing or repositioning, with a focus on major human parasitic protozoan diseases such as malaria, trypanosomiasis, toxoplasmosis, cryptosporidiosis and leishmaniasis.
Collapse
Affiliation(s)
- Katherine T Andrews
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Gillian Fisher
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Tina S Skinner-Adams
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
7
|
Johnston KL, Ford L, Taylor MJ. Overcoming the challenges of drug discovery for neglected tropical diseases: the A·WOL experience. ACTA ACUST UNITED AC 2013; 19:335-43. [PMID: 24241712 DOI: 10.1177/1087057113511270] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neglected tropical diseases (NTDs) are a group of 17 diseases that typically affect poor people in tropical countries. Each has been neglected for decades in terms of funding, research, and policy, but the recent grouping of them into one unit, which can be targeted using integrated control measures, together with increased advocacy has helped to place them on the global health agenda. The World Health Organization has set ambitious goals to control or eliminate 10 NTDs by 2020 and launched a roadmap in January 2012 to guide this global plan. The result of the launch meeting, which brought together representatives from the pharmaceutical industry, donors, and politicians, was the London Declaration: a series of commitments to provide more drugs, research, and funds to achieve the 2020 goals. Drug discovery and development for these diseases are extremely challenging, and this article highlights these challenges in the context of the London Declaration, before focusing on an example of a drug discovery and development program for the NTDs onchocerciasis and lymphatic filariasis (the anti-Wolbachia consortium, A·WOL).
Collapse
Affiliation(s)
- Kelly L Johnston
- 1Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | | |
Collapse
|
8
|
Jones AJ, Grkovic T, Sykes ML, Avery VM. Trypanocidal activity of marine natural products. Mar Drugs 2013; 11:4058-82. [PMID: 24152565 PMCID: PMC3826150 DOI: 10.3390/md11104058] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 12/21/2022] Open
Abstract
Marine natural products are a diverse, unique collection of compounds with immense therapeutic potential. This has resulted in these molecules being evaluated for a number of different disease indications including the neglected protozoan diseases, human African trypanosomiasis and Chagas disease, for which very few drugs are currently available. This article will review the marine natural products for which activity against the kinetoplastid parasites; Trypanosoma brucei brucei, T.b. rhodesiense and T. cruzi has been reported. As it is important to know the selectivity of a compound when evaluating its trypanocidal activity, this article will only cover molecules which have simultaneously been tested for cytotoxicity against a mammalian cell line. Compounds have been grouped according to their chemical structure and representative examples from each class were selected for detailed discussion.
Collapse
Affiliation(s)
- Amy J Jones
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia.
| | | | | | | |
Collapse
|
9
|
Sykes ML, Avery VM. Approaches to Protozoan Drug Discovery: Phenotypic Screening. J Med Chem 2013; 56:7727-40. [DOI: 10.1021/jm4004279] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Melissa L. Sykes
- Discovery Biology, Eskitis Institute
for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Vicky M. Avery
- Discovery Biology, Eskitis Institute
for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|