1
|
Gupta S, Jani J, Vijayasurya, Mochi J, Tabasum S, Sabarwal A, Pappachan A. Aminoacyl-tRNA synthetase - a molecular multitasker. FASEB J 2023; 37:e23219. [PMID: 37776328 DOI: 10.1096/fj.202202024rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
Aminoacyl-tRNA synthetases (AaRSs) are valuable "housekeeping" enzymes that ensure the accurate transmission of genetic information in living cells, where they aminoacylated tRNA molecules with their cognate amino acid and provide substrates for protein biosynthesis. In addition to their translational or canonical function, they contribute to nontranslational/moonlighting functions, which are mediated by the presence of other domains on the proteins. This was supported by several reports which claim that AaRS has a significant role in gene transcription, apoptosis, translation, and RNA splicing regulation. Noncanonical/ nontranslational functions of AaRSs also include their roles in regulating angiogenesis, inflammation, cancer, and other major physio-pathological processes. Multiple AaRSs are also associated with a broad range of physiological and pathological processes; a few even serve as cytokines. Therefore, the multifunctional nature of AaRSs suggests their potential as viable therapeutic targets as well. Here, our discussion will encompass a range of noncanonical functions attributed to Aminoacyl-tRNA Synthetases (AaRSs), highlighting their links with a diverse array of human diseases.
Collapse
Affiliation(s)
- Swadha Gupta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jaykumar Jani
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Vijayasurya
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jigneshkumar Mochi
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Saba Tabasum
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Akash Sabarwal
- Harvard Medical School, Boston, Massachusetts, USA
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
2
|
Ham S, Yun SP, Kim H, Kim D, Seo BA, Kim H, Shin JY, Dar MA, Lee GH, Lee YI, Kim D, Kim S, Kweon HS, Shin JH, Ko HS, Lee Y. Amyloid-like oligomerization of AIMP2 contributes to α-synuclein interaction and Lewy-like inclusion. Sci Transl Med 2021; 12:12/569/eaax0091. [PMID: 33177178 DOI: 10.1126/scitranslmed.aax0091] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/03/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Lewy bodies are pathological protein inclusions present in the brain of patients with Parkinson's disease (PD). These inclusions consist mainly of α-synuclein with associated proteins, such as parkin and its substrate aminoacyl transfer RNA synthetase complex-interacting multifunctional protein-2 (AIMP2). Although AIMP2 has been suggested to be toxic to dopamine neurons, its roles in α-synuclein aggregation and PD pathogenesis are largely unknown. Here, we found that AIMP2 exhibits a self-aggregating property. The AIMP2 aggregate serves as a seed to increase α-synuclein aggregation via specific and direct binding to the α-synuclein monomer. The coexpression of AIMP2 and α-synuclein in cell cultures and in vivo resulted in the rapid formation of α-synuclein aggregates with a corresponding increase in toxicity. Moreover, accumulated AIMP2 in mouse brain was largely redistributed to insoluble fractions, correlating with the α-synuclein pathology. Last, we found that α-synuclein preformed fibril (PFF) seeding, adult Parkin deletion, or oxidative stress triggered a redistribution of both AIMP2 and α-synuclein into insoluble fraction in cells and in vivo. Supporting the pathogenic role of AIMP2, AIMP2 knockdown ameliorated the α-synuclein aggregation and dopaminergic cell death in response to PFF or 6-hydroxydopamine treatment. Together, our results suggest that AIMP2 plays a pathological role in the aggregation of α-synuclein in mice. Because AIMP2 insolubility and coaggregation with α-synuclein have been seen in the PD Lewy body, targeting pathologic AIMP2 aggregation might be useful as a therapeutic strategy for neurodegenerative α-synucleinopathies.
Collapse
Affiliation(s)
- Sangwoo Ham
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon 16419, Republic of Korea.,ToolGen Inc., Seoul 08501, Republic of Korea
| | - Seung Pil Yun
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyojung Kim
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon 16419, Republic of Korea
| | - Donghoon Kim
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bo Am Seo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Heejeong Kim
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon 16419, Republic of Korea
| | - Jeong-Yong Shin
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon 16419, Republic of Korea
| | - Mohamad Aasif Dar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gum Hwa Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Yun Il Lee
- Well Aging Research Center, DGIST, Daegu 42988, Republic of Korea.,Companion Diagnostics and Medical Technology Research Group, DGIST, Daegu 42988, Republic of Korea
| | - Doyeun Kim
- Medicinal Bioconvergence Research Center, Yonsei University, Incheon 21983, Republic of Korea.,College of Pharmacy and School of Medicine, Yonsei University, Incheon 21983, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Yonsei University, Incheon 21983, Republic of Korea.,College of Pharmacy and School of Medicine, Yonsei University, Incheon 21983, Republic of Korea
| | - Hee-Seok Kweon
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Joo-Ho Shin
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon 16419, Republic of Korea
| | - Han Seok Ko
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. .,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yunjong Lee
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon 16419, Republic of Korea.
| |
Collapse
|
3
|
Lee JJ, Han YM, Kwon TW, Kim DH, Lee HS, Jung WJ, Kim J, Kang S, Kim SK, Cho CW, Lee KR, Kim DD, Park MC, Lee JY. Functional Fragments of AIMP1-Derived Peptide (AdP) and Optimized Hydrosol for Their Topical Deposition by Box-Behnken Design. Molecules 2019; 24:molecules24101967. [PMID: 31121831 PMCID: PMC6572189 DOI: 10.3390/molecules24101967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 11/16/2022] Open
Abstract
Aminoacyl-tRNA synthetase complex-interacting multifunctional protein 1 (AIMP1)-derived peptide (AdP) has been developed as a cosmeceutical ingredient for skin anti-aging given its fibroblast-activating (FA) and melanocyte-inhibiting (MI) functions. However, a suitable strategy for the topical delivery of AdP was required due to its low-permeable properties. In this study, FA and MI domains of AdP (FA-AdP and MI-AdP, respectively) were determined by functional domain mapping, where the activities of several fragments of AdP on fibroblast and melanocyte were tested, and a hydrosol-based topical delivery system for these AdP fragments was prepared. The excipient composition of the hydrosol was optimized to maximize the viscosity and drying rate by using Box-Behnken design. The artificial skin deposition of FA-AdP-loaded hydrosol was evaluated using Keshary-Chien diffusion cells equipped with Strat-M membrane (STM). The quantification of the fluorescent dye-tagged FA-AdP in STM was carried out by near-infrared fluorescence imaging. The optimized hydrosol showed 127-fold higher peptide deposition in STM than free FA-AdP (p < 0.05). This work suggests that FA- and MI-AdP are active-domains for anti-wrinkle and whitening activities, respectively, and the hydrosol could be used as a promising cosmetic formulation for the delivery of AdPs to the skin.
Collapse
Affiliation(s)
- Jeong-Jun Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Young-Min Han
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Tae-Wan Kwon
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Dong Hyun Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Han Sol Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Woo Jin Jung
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Jina Kim
- CureBio Research Center, Suwon 16229, Korea.
| | - Sujin Kang
- CureBio Research Center, Suwon 16229, Korea.
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Cheong-Weon Cho
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Keong-Ryoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Ochang 28116, Korea.
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.
| | | | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
4
|
Khan A, Bennett J, Scantlebury MH, Wei XC, Kerr M. AIMP1 Mutation Long-Term Follow-Up, With Decreased Brain N-Acetylaspartic Acid and Secondary Mitochondrial Abnormalities. Child Neurol Open 2019; 6:2329048X19829520. [PMID: 30828585 PMCID: PMC6388456 DOI: 10.1177/2329048x19829520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/13/2019] [Indexed: 01/14/2023] Open
Abstract
Aminoacyl transfer RNA (tRNA) synthetase complex-interacting multifunctional protein I is a noncatalytic component of tRNA multi-synthetase complexes. Although important in joining tRNAs to their cognate amino acids, AIMP1 has several other functions including axonal growth, cytokine activity, and interactions with N-acetylaspartic acid in ribosomal tRNA synthetase complexes. Further, N-acetylaspartic acid donates an aspartate during myelination and is therefore important to axonal integrity. Mutations in AIMP1 can disrupt these functions, as demonstrated in this clinical case study of 2 monozygotic twins, who display congenital opisthotonus, microcephaly, severe developmental delay, and seizures. Whole exome sequencing was used to identify a premature stop codon in the AIMP1 gene (g. 107248613_c.115C>T; p.(Gln39). In the absence of whole exome sequencing, we propose that decreased N-acetylaspartic acid peaks on magnetic resonance spectroscopy could act as a biomarker for AIMP1 mutations.
Collapse
Affiliation(s)
- Aneal Khan
- Department of Medical Genetics and Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer Bennett
- Department of Medical Genetics and Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Morris H Scantlebury
- Departments of Pediatrics Clinical Neuroscience, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Xing-Chang Wei
- Department of Medical Genetics and Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marina Kerr
- Department of Medical Genetics and Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Kim J, Kang S, Kwon H, Moon H, Park MC. Dual functional bioactive-peptide, AIMP1-derived peptide (AdP), for anti-aging. J Cosmet Dermatol 2018; 18:251-257. [PMID: 29921010 DOI: 10.1111/jocd.12671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND Human skin aging is caused by several factors, such as UV irradiation, stress, hormone, and pollution. Wrinkle formation and skin pigmentation are representative features of skin aging. Although EGF and arbutin are used as anti-wrinkle and skin whitening agents, respectively, they have adverse effects on skin. When more cosmeceutical ingredients are added to cosmetic product, adverse effects are also accumulated. For these reasons, multifunctional and safe cosmetic ingredients are in demand. The aim of the present study is to investigate the novel anti-aging agents, AIMP1-derived peptide (AdP, INCI name: sh-oligopeptide-5/sh-oligopeptide SP) for cosmetic products. METHODS To assess the anti-wrinkle effect of AdP, collagen type I synthesis and fibroblast proliferation were determined on human fibroblasts. The anti-wrinkle effect of AdP was examined by ELISA and cell titer glo assay. To assess the whitening, melanin content and tyrosinase activity were determined on melanocytes. The whitening effect of AdP was examined by melanin measurement and enzyme activity assay. The safety of AdP was determined by cytotoxicity and immunogenicity, CCK-8 and TNF-α ELISA assay, respectively. RESULTS AdP treatment induced the collagen type I synthesis and fibroblast proliferation. Also, AdP treatment inhibited melanin synthesis by regulating tyrosinase activity. The anti-aging effect of AdP is more potent than EGF and albutin. AdP did not show adverse effects. CONCLUSION These results show that AdP can be dual functional and safe cosmeceutical agent to prevent skin aging.
Collapse
Affiliation(s)
- Jina Kim
- Cure Bio Co., Ltd. Research Center, Suwon-si, Korea
| | - Sujin Kang
- Cure Bio Co., Ltd. Research Center, Suwon-si, Korea
| | - HanJin Kwon
- UltraV Co., Ltd. Research Center, Seoul, Korea
| | - HoSang Moon
- UltraV Co., Ltd. Research Center, Seoul, Korea
| | | |
Collapse
|
6
|
Xu H, Malinin NL, Awasthi N, Schwarz RE, Schwarz MA. The N terminus of pro-endothelial monocyte-activating polypeptide II (EMAP II) regulates its binding with the C terminus, arginyl-tRNA synthetase, and neurofilament light protein. J Biol Chem 2015; 290:9753-66. [PMID: 25724651 DOI: 10.1074/jbc.m114.630533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Indexed: 12/17/2022] Open
Abstract
Pro-endothelial monocyte-activating polypeptide II (EMAP II), one component of the multi-aminoacyl tRNA synthetase complex, plays multiple roles in physiological and pathological processes of protein translation, signal transduction, immunity, lung development, and tumor growth. Recent studies have determined that pro-EMAP II has an essential role in maintaining axon integrity in central and peripheral neural systems where deletion of the C terminus of pro-EMAP II has been reported in a consanguineous Israeli Bedouin kindred suffering from Pelizaeus-Merzbacher-like disease. We hypothesized that the N terminus of pro-EMAP II has an important role in the regulation of protein-protein interactions. Using a GFP reporter system, we defined a putative leucine zipper in the N terminus of human pro-EMAP II protein (amino acid residues 1-70) that can form specific strip-like punctate structures. Through GFP punctum analysis, we uncovered that the pro-EMAP II C terminus (amino acids 147-312) can repress GFP punctum formation. Pulldown assays confirmed that the binding between the pro-EMAP II N terminus and its C terminus is mediated by a putative leucine zipper. Furthermore, the pro-EMAP II 1-70 amino acid region was identified as the binding partner of arginyl-tRNA synthetase, a polypeptide of the multi-aminoacyl tRNA synthetase complex. We also determined that the punctate GFP pro-EMAP II 1-70 amino acid aggregate colocalizes and binds to the neurofilament light subunit protein that is associated with pathologic neurofilament network disorganization and degeneration of motor neurons. These findings indicate the structure and binding interaction of pro-EMAP II protein and suggest a role of this protein in pathological neurodegenerative diseases.
Collapse
Affiliation(s)
- Haiming Xu
- From the Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390 and
| | - Nikolay L Malinin
- the Indiana University School of Medicine, South Bend, Indiana 46617
| | - Niranjan Awasthi
- the Indiana University School of Medicine, South Bend, Indiana 46617
| | | | - Margaret A Schwarz
- From the Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390 and the Indiana University School of Medicine, South Bend, Indiana 46617
| |
Collapse
|
7
|
Jeong JH, Park M, Park M, Lim EJ, Kim HR, Song H, Park SG, Choi EJ, Hong KH, Lee DR, Ko JJ, Choi Y. The expression of aminoacyl-tRNA-synthetase-interacting multifunctional protein-1 (Aimp1) is regulated by estrogen in the mouse uterus. Mol Cell Endocrinol 2015; 399:78-86. [PMID: 25132647 DOI: 10.1016/j.mce.2014.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/18/2014] [Accepted: 07/11/2014] [Indexed: 11/20/2022]
Abstract
Aimp1 is known as a multifunctional cytokine in various cellular events. Recent study showed Aimp1 is localized in glandular epithelial, endothelial, and stromal cells in functionalis and basalis layers of the endometrium. However, the regulatory mechanism of Aimp1 in the uterus remains unknown. In the present study, we found that Aimp1 is expressed in the mouse uterus. Aimp1 transcripts were decreased at diestrus stage. However, the level of Aimp1 protein was significantly increased in the luminal epithelium in the uterine endometrium at estrus stage during the estrous cycle. We found that treatment of estrogen increased the expression of Aimp1 in the uterus in ovarectomized mice. We identified one estrogen receptor binding element (ERE) on mouse Aimp1 promoter. The activity of Aimp1 promoter was increased with estrogen treatment. Our findings indicate that Aimp1 might act as an important regulator to remodel the uterine endometrium and its expression might be regulated by estrogen during the estrous cycle. This will give us better understanding of the dynamic change of uterine remodeling during the estrous cycle.
Collapse
Affiliation(s)
- Ji-Hye Jeong
- Department of Biomedical Science, College of Medicine CHA University, Seoul 135-081, Korea
| | - Miree Park
- Department of Biomedical Science, College of Medicine CHA University, Seoul 135-081, Korea
| | - Miseon Park
- Fertility Center of CHA Gangnam Medical Center, Seoul 135-081, Korea
| | - Eun Jin Lim
- Department of Biomedical Science, College of Medicine CHA University, Seoul 135-081, Korea
| | - Hye-Ryun Kim
- Department of Biomedical Science, College of Medicine CHA University, Seoul 135-081, Korea
| | - Haengseok Song
- Department of Biomedical Science, College of Medicine CHA University, Seoul 135-081, Korea
| | - Sang Gyu Park
- Department of Biomedical Science, College of Medicine CHA University, Seoul 135-081, Korea
| | - Eun-Jin Choi
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Korea
| | - Kwon-Ho Hong
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, College of Medicine CHA University, Seoul 135-081, Korea; Fertility Center of CHA Gangnam Medical Center, Seoul 135-081, Korea
| | - Jeong-Jae Ko
- Department of Biomedical Science, College of Medicine CHA University, Seoul 135-081, Korea
| | - Youngsok Choi
- Department of Biomedical Science, College of Medicine CHA University, Seoul 135-081, Korea; Fertility Center of CHA Gangnam Medical Center, Seoul 135-081, Korea.
| |
Collapse
|
8
|
Protein-protein interactions and multi-component complexes of aminoacyl-tRNA synthetases. Top Curr Chem (Cham) 2013; 344:119-44. [PMID: 24072587 DOI: 10.1007/128_2013_479] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Protein-protein interaction occurs transiently or stably when two or more proteins bind together to mediate a wide range of cellular processes such as protein modification, signal transduction, protein trafficking, and structural folding. The macromolecules involved in protein biosynthesis such as aminoacyl-tRNA synthetase (ARS) have a number of protein-protein interactions. The mammalian multi-tRNA synthetase complex (MSC) consists of eight different enzymes: EPRS, IRS, LRS, QRS, MRS, KRS, RRS, and DRS, and three auxiliary proteins: AIMP1/p43, AIMP2/p38, and AIMP/p18. The distinct ARS proteins are also connected to diverse protein networks to carry out biological functions. In this chapter we first show the protein networks of the entire MSC and explain how MSC components interact with or can regulate other proteins. Finally, it is pointed out that the understanding of protein-protein interaction mechanism will provide insight to potential therapeutic application for diseases related to the MSC network.
Collapse
|
9
|
Kwon HS, Park MC, Kim DG, Jo KW, Park YW, Han JM, Kim S. Identification of CD23 as a functional receptor for the proinflammatory cytokine AIMP1/p43. J Cell Sci 2012; 125:4620-9. [DOI: 10.1242/jcs.108209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ARS-interacting multifunctional protein 1 (AIMP1/p43) can be secreted to trigger proinflammatory molecules while it is predominantly bound to a cytoplasmic macromolecular protein complex that contains several different aminoacyl-tRNA synthetases. Although its activities as a secreted signaling factor have been well-characterized, the functional receptor for its proinflammatory activity has not yet identified. In this study, we have identified the receptor molecule for AIMP1 that mediates the secretion of TNF-α from THP-1 monocytic cells and primary human peripheral blood mononuclear cells (PBMCs). In a screen of 499 soluble receptors, we identified CD23, a known low-affinity receptor for IgE, as a high affinity binding partner of AIMP1. We found that down-regulation of CD23 attenuated AIMP1-induced TNF-α secretion and AIMP1 binding to THP-1 and PBMCs. We also observed that in THP-1 and PBMCs, AIMP1-induced TNF-α secretion mediated by CD23 involved activation of ERK1/2. Interestingly, endothelial monocyte activating polypeptide II (EMAP II), the C-terminal fragment of AIMP1 that is also known to work as a proinflammatory cytokine, was incapable of binding to CD23 and of activating ERK1/2. Therefore, identification of CD23 not only explains the inflammatory function of AIMP1 but also provides the first evidence by which the mode of action of AIMP1 can be distinguished from that of its C-terminal domain, EMAP II.
Collapse
|
10
|
Feinstein M, Markus B, Noyman I, Shalev H, Flusser H, Shelef I, Liani-Leibson K, Shorer Z, Cohen I, Khateeb S, Sivan S, Birk OS. Pelizaeus-Merzbacher-like disease caused by AIMP1/p43 homozygous mutation. Am J Hum Genet 2010; 87:820-8. [PMID: 21092922 DOI: 10.1016/j.ajhg.2010.10.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Revised: 10/10/2010] [Accepted: 10/14/2010] [Indexed: 01/23/2023] Open
Abstract
Pelizaeus-Merzbacher disease is an X-linked hypomyelinating leukodystrophy caused by PLP1 mutations. A similar autosomal-recessive phenotype, Pelizaeus-Merzbacher-like disease (PMLD), has been shown to be caused by homozygous mutations in GJC2 or HSPD1. We report a consanguineous Israeli Bedouin kindred with clinical and radiological findings compatible with PMLD in which linkage to PLP1, GJC2, and HSPD1 was excluded. Through genome-wide homozygosity mapping and mutation analysis, we demonstrated in all affected individuals a homozygous frameshift mutation that fully abrogates the main active domain of AIMP1, encoding ARS-interacting multifunctional protein 1. The mutation fully segregates with the disease-associated phenotype and was not found in 250 Bedouin controls. Our findings are in line with the previously demonstrated inability of mutant mice lacking the AIMP1/p43 ortholog to maintain axon integrity in the central and peripheral neural system.
Collapse
|
11
|
Park SG, Choi EC, Kim S. Aminoacyl-tRNA synthetase-interacting multifunctional proteins (AIMPs): a triad for cellular homeostasis. IUBMB Life 2010; 62:296-302. [PMID: 20306515 DOI: 10.1002/iub.324] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are highly conserved for efficient and precise translation of genetic codes. In higher eukaryotic systems, several different ARSs including glutamyl-prolyl-, isoelucyl-, leucyl-, methionyl-, glutaminyl-, lysyl-, arginyl-, and aspartyl-tRNA synthetase form a macromolecular protein complex with three nonenzymatic cofactors (AIMP1/p43, AIMP2/p38, and AIMP3/p18). Although the structure and functional implications for this complex formation are not completely understood, rapidly accumulating evidences suggest that this complex would work as a molecular hub linked to the multiple signaling pathways that involve the components of enzymes and cofactors. In this article, the roles of three nonenzymatic components of the multi-tRNA synthetase complex in the assembly of the components and in cell regulation are addressed.
Collapse
Affiliation(s)
- Sang Gyu Park
- Department of Biomedical Science, CHA University, Yeoksam-dong, Kangnam-gu, Seoul, Korea
| | | | | |
Collapse
|
12
|
Kim G, Han JM, Kim S. Toll-like receptor 4-mediated c-Jun N-terminal kinase activation induces gp96 cell surface expression via AIMP1 phosphorylation. Biochem Biophys Res Commun 2010; 397:100-5. [DOI: 10.1016/j.bbrc.2010.05.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 05/13/2010] [Indexed: 02/06/2023]
|
13
|
Han JM, Kwon NH, Lee JY, Jeong SJ, Jung HJ, Kim HR, Li Z, Kim S. Identification of gp96 as a novel target for treatment of autoimmune disease in mice. PLoS One 2010; 5:e9792. [PMID: 20352117 PMCID: PMC2843739 DOI: 10.1371/journal.pone.0009792] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 03/01/2010] [Indexed: 11/18/2022] Open
Abstract
Heat shock proteins have been implicated as endogenous activators for dendritic cells (DCs). Chronic expression of heat shock protein gp96 on cell surfaces induces significant DC activations and systemic lupus erythematosus (SLE)-like phenotypes in mice. However, its potential as a therapeutic target against SLE remains to be evaluated. In this work, we conducted chemical approach to determine whether SLE-like phenotypes can be compromised by controlling surface translocation of gp96. From screening of chemical library, we identified a compound that binds and suppresses surface presentation of gp96 by facilitating its oligomerization and retrograde transport to endoplasmic reticulum. In vivo administration of this compound reduced maturation of DCs, populations of antigen presenting cells, and activated B and T cells. The chemical treatment also alleviated the SLE-associated symptoms such as glomerulonephritis, proteinuria, and accumulation of anti-nuclear and -DNA antibodies in the SLE model mice resulting from chronic surface exposure of gp96. These results suggest that surface translocation of gp96 can be chemically controlled and gp96 as a potential therapeutic target to treat autoimmune disease like SLE.
Collapse
Affiliation(s)
- Jung Min Han
- Center for Medicinal Protein Network and Systems Biology, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Nam Hoon Kwon
- Center for Medicinal Protein Network and Systems Biology, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jin Young Lee
- Center for Medicinal Protein Network and Systems Biology, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Seung Jae Jeong
- Center for Medicinal Protein Network and Systems Biology, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hee Jung Jung
- Cancer & Infectious Disease Research Center, Bio-Organic Science Division, Korea Research Institute of Chemical Technology, Dae Jeon, Republic of Korea
| | - Hyeong Rae Kim
- Cancer & Infectious Disease Research Center, Bio-Organic Science Division, Korea Research Institute of Chemical Technology, Dae Jeon, Republic of Korea
| | - Zihai Li
- Center for Immunotherapy of Cancer and Infectious Diseases, University of Connecticut School of Medicine, Farmington, Connecticut, United States of America
| | - Sunghoon Kim
- Center for Medicinal Protein Network and Systems Biology, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Republic of Korea
- * E-mail:
| |
Collapse
|
14
|
Abstract
Neuron connectivity and correct neural function largely depend on axonal integrity. Neurofilaments (NFs) constitute the main cytoskeletal network maintaining the structural integrity of neurons and exhibit dynamic changes during axonal and dendritic growth. However, the mechanisms underlying axonal development and maintenance remain poorly understood. Here, we identify that multisynthetase complex p43 (MSC p43) is essential for NF assembly and axon maintenance. The MSC p43 protein was predominantly expressed in central neurons and interacted with NF light subunit in vivo. Mice lacking MSC p43 exhibited axon degeneration in motor neurons, defective neuromuscular junctions, muscular atrophy, and motor dysfunction. Furthermore, MSC p43 depletion in mice caused disorganization of the axonal NF network. Mechanistically, MSC p43 is required for maintaining normal phosphorylation levels of NFs. Thus, MSC p43 is indispensable in maintaining axonal integrity. Its dysfunction may underlie the NF disorganization and axon degeneration associated with motor neuron degenerative diseases.
Collapse
|