1
|
Mirza-Aghazadeh-Attari M, Darband SG, Kaviani M, Mihanfar A, Aghazadeh Attari J, Yousefi B, Majidinia M. DNA damage response and repair in colorectal cancer: Defects, regulation and therapeutic implications. DNA Repair (Amst) 2018; 69:34-52. [PMID: 30055507 DOI: 10.1016/j.dnarep.2018.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/15/2018] [Accepted: 07/15/2018] [Indexed: 12/11/2022]
Abstract
DNA damage response, a key factor involved in maintaining genome integrity and stability, consists of several kinase-dependent signaling pathways, which sense and transduce DNA damage signal. The severity of damage appears to determine DNA damage responses, which can include cell cycle arrest, damage repair and apoptosis. A number of recent studies have demonstrated that defection in signaling through this network is thought to be an underlying mechanism behind the development and progression of various types of human malignancies, including colorectal cancer. In this review, colorectal cancer and its molecular pathology as well as DNA damage response is briefly introduced. Finally, the involvement of key components of this network in the initiation/progression, prognosis, response to treatment and development of drug resistance is comprehensively discussed.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saber Ghazizadeh Darband
- Danesh Pey Hadi Co., Health Technology Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Ainaz Mihanfar
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Ibragimova MK, Tsyganov MM, Litviakov NV. Natural and Chemotherapy-Induced Clonal Evolution of Tumors. BIOCHEMISTRY (MOSCOW) 2017; 82:413-425. [PMID: 28371598 DOI: 10.1134/s0006297917040022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Evolution and natural selection of tumoral clones in the process of transformation and the following carcinogenesis can be called natural clonal evolution. Its main driving factors are internal: genetic instability initiated by driver mutations and microenvironment, which enables selective pressure while forming the environment for cell transformation and their survival. We present our overview of contemporary research dealing with mechanisms of carcinogenesis in different localizations from precancerous pathologies to metastasis and relapse. It shows that natural clonal evolution establishes intratumoral heterogeneity and enables tumor progression. Tumors of monoclonal origin are of low-level intratumoral heterogeneity in the initial stages, and this increases with the size of the tumor. Tumors of polyclonal origin are of extremely high-level intratumoral heterogeneity in the initial stages and become more homogeneous when larger due to clonal expansion. In cases of chemotherapy-induced clonal evolution of a tumor, chemotherapy becomes the leading factor in treatment. The latest research shows that the impact of chemotherapy can radically increase the speed of clonal evolution and lead to new malignant and resistant clones that cause tumor metastasis. Another option of chemotherapy-induced clonal evolution is formation of a new dominant clone from a clone that was minor in the initial tumor and obtained free space due to elimination of sensitive clones by chemotherapy. As a result, in ~20% of cases, chemotherapy can stimulate metastasis and relapse of tumors due to clonal evolution. The conclusion of the overview formulates approaches to tumor treatment based on clonal evolution: in particular, precision therapy, prediction of metastasis stimulation in patients treated with chemotherapy, methods of genetic evaluation of chemotherapy efficiency and clonal-oriented treatment, and approaches to manipulating the clonal evolution of tumors are presented.
Collapse
Affiliation(s)
- M K Ibragimova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, 634050, Russia.
| | | | | |
Collapse
|
3
|
Zhang H, Korenková V, Sjöback R, Švec D, Björkman J, Kruhøffer M, Verderio P, Pizzamiglio S, Ciniselli CM, Wyrich R, Oelmueller U, Kubista M, Lindahl T, Lönneborg A, Rian E. Biomarkers for monitoring pre-analytical quality variation of mRNA in blood samples. PLoS One 2014; 9:e111644. [PMID: 25369468 PMCID: PMC4219744 DOI: 10.1371/journal.pone.0111644] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 09/24/2014] [Indexed: 12/28/2022] Open
Abstract
There is an increasing need for proper quality control tools in the pre-analytical phase of the molecular diagnostic workflow. The aim of the present study was to identify biomarkers for monitoring pre-analytical mRNA quality variations in two different types of blood collection tubes, K2EDTA (EDTA) tubes and PAXgene Blood RNA Tubes (PAXgene tubes). These tubes are extensively used both in the diagnostic setting as well as for research biobank samples. Blood specimens collected in the two different blood collection tubes were stored for varying times at different temperatures, and microarray analysis was performed on resultant extracted RNA. A large set of potential mRNA quality biomarkers for monitoring post-phlebotomy gene expression changes and mRNA degradation in blood was identified. qPCR assays for the potential biomarkers and a set of relevant reference genes were generated and used to pre-validate a sub-set of the selected biomarkers. The assay precision of the potential qPCR based biomarkers was determined, and a final validation of the selected quality biomarkers using the developed qPCR assays and blood samples from 60 healthy additional subjects was performed. In total, four mRNA quality biomarkers (USP32, LMNA, FOSB, TNRFSF10C) were successfully validated. We suggest here the use of these blood mRNA quality biomarkers for validating an experimental pre-analytical workflow. These biomarkers were further evaluated in the 2nd ring trial of the SPIDIA-RNA Program which demonstrated that these biomarkers can be used as quality control tools for mRNA analyses from blood samples.
Collapse
Affiliation(s)
| | - Vlasta Korenková
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | - David Švec
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- TATAA Biocenter, Gothenburg, Sweden
| | | | | | - Paolo Verderio
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Sara Pizzamiglio
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | | | | | | | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- TATAA Biocenter, Gothenburg, Sweden
| | | | | | | |
Collapse
|
4
|
Bustin S. Transparency of reporting in molecular diagnostics. Int J Mol Sci 2013; 14:15878-84. [PMID: 23903047 PMCID: PMC3759891 DOI: 10.3390/ijms140815878] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 07/23/2013] [Accepted: 07/23/2013] [Indexed: 12/12/2022] Open
Affiliation(s)
- Stephen Bustin
- Postgraduate Medical Institute, Anglia Ruskin University, Chelmsford CM1 1SQ, UK; E-Mail: ; Tel.: +44-0-845-196-4845
| |
Collapse
|
5
|
Bustin SA, Murphy J. RNA biomarkers in colorectal cancer. Methods 2013; 59:116-25. [DOI: 10.1016/j.ymeth.2012.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 09/28/2012] [Accepted: 10/04/2012] [Indexed: 02/08/2023] Open
|
6
|
Bustin SA. Why the need for qPCR publication guidelines?—The case for MIQE. Methods 2010; 50:217-26. [DOI: 10.1016/j.ymeth.2009.12.006] [Citation(s) in RCA: 238] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/07/2009] [Accepted: 12/11/2009] [Indexed: 12/23/2022] Open
|
7
|
Murphy J, Bustin SA. Reliability of real-time reverse-transcription PCR in clinical diagnostics: gold standard or substandard? Expert Rev Mol Diagn 2009; 9:187-97. [PMID: 19298142 DOI: 10.1586/14737159.9.2.187] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molecular diagnostics is one of the major growth areas of modern medicine, with real-time PCR established as a qualitative and quantitative technology that is rapid, accurate and sensitive. The sequencing of the human genome, comprehensive genomic, mRNA and miRNA expression profiling of numerous cancer types, the ongoing identification of disease-associated polymorphisms and the expanding availability of genomic sequence information for human pathogens has opened the door to a wide range of translational applications for this technology. Consequently, novel real-time PCR assays have been developed for diagnosis and prognosis, treatment monitoring, transplant biology and pathogen detection, as well as more controversial uses such as lifestyle genotyping. However, this technology is still troubled by significant technical deficiencies. Hence its often-improper use as a clinical tool has important public health implications, most recently demonstrated through its association with the measles, mumps and rubella vaccine/autism controversy. This serves as a timely reminder of the indispensable requirement for careful experimental design, validation and analysis.
Collapse
Affiliation(s)
- Jamie Murphy
- Centre for Academic Surgery, Royal London Hospital, London, UK.
| | | |
Collapse
|
8
|
Nemtsova MV, Paltseva EM, Babayan AY, Mihaylenko DS, Babenko OV, Samofalova OY, Tsar’kov PV, Zaletaev DV. Molecular genetic analysis of the intratumoral clonal heterogeneity of colorectal adenocarcinomas. Mol Biol 2008. [DOI: 10.1134/s0026893308060149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|