1
|
Palma CD, Mamba M, Geldenhuys J, Fadahun O, Rossaint R, Zacharowski K, Brand M, Díaz-Cambronero Ó, Belda J, Westphal M, Brauer U, Dormann D, Dehnhardt T, Hernandez-Gonzalez M, Schmier S, de Korte D, Plani F, Buhre W. PragmaTic, prospEctive, randomized, controlled, double-blind, mulTi-centre, multinational study on the safety and efficacy of a 6% HydroxYethyl Starch (HES) solution versus an electrolyte solution in trauma patients: study protocol for the TETHYS study. Trials 2022; 23:456. [PMID: 35655234 PMCID: PMC9164328 DOI: 10.1186/s13063-022-06390-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trauma may be associated with significant to life-threatening blood loss, which in turn may increase the risk of complications and death, particularly in the absence of adequate treatment. Hydroxyethyl starch (HES) solutions are used for volume therapy to treat hypovolemia due to acute blood loss to maintain or re-establish hemodynamic stability with the ultimate goal to avoid organ hypoperfusion and cardiovascular collapse. The current study compares a 6% HES 130 solution (Volulyte 6%) versus an electrolyte solution (Ionolyte) for volume replacement therapy in adult patients with traumatic injuries, as requested by the European Medicines Agency to gain more insights into the safety and efficacy of HES in the setting of trauma care. METHODS TETHYS is a pragmatic, prospective, randomized, controlled, double-blind, multicenter, multinational trial performed in two parallel groups. Eligible consenting adults ≥ 18 years, with an estimated blood loss of ≥ 500 ml, and in whom initial surgery is deemed necessary within 24 h after blunt or penetrating trauma, will be randomized to receive intravenous treatment at an individualized dose with either a 6% HES 130, or an electrolyte solution, for a maximum of 24 h or until reaching the maximum daily dose of 30 ml/kg body weight, whatever occurs first. Sample size is estimated as 175 patients per group, 350 patients total (α = 0.025 one-tailed, power 1-β = 0.8). Composite primary endpoint evaluated in an exploratory manner will be 90-day mortality and 90-day renal failure, defined as AKIN stage ≥ 2, RIFLE injury/failure stage, or use of renal replacement therapy (RRT) during the first 3 months. Secondary efficacy and safety endpoints are fluid administration and balance, changes in vital signs and hemodynamic status, changes in laboratory parameters including renal function, coagulation, and inflammation biomarkers, incidence of adverse events during treatment period, hospital, and intensive care unit (ICU) length of stay, fitness for ICU or hospital discharge, and duration of mechanical ventilation and/or RRT. DISCUSSION This pragmatic study will increase the evidence on safety and efficacy of 6% HES 130 for treatment of hypovolemia secondary to acute blood loss in trauma patients. TRIAL REGISTRATION Registered in EudraCT, No.: 2016-002176-27 (21 April 2017) and ClinicalTrials.gov, ID: NCT03338218 (09 November 2017).
Collapse
Affiliation(s)
| | | | | | | | - Rolf Rossaint
- RWTH University Hospital, Rhineland-Westfalen Technical University, Aachen, Germany
| | - Kai Zacharowski
- Frankfurt University Hospital, Johannes Goethe University, Frankfurt, Germany
| | - Martin Brand
- Steve Biko Academic Hospital, Pretoria, South Africa
| | | | - Javier Belda
- Hospital Clínico Universitario, University of Valencia, Valencia, Spain
| | | | - Ute Brauer
- B. Braun Melsungen AG, Melsungen, Germany
| | - Dirk Dormann
- Fresenius Kabi Deutschland GmbH, Bad Homburg, Germany
| | | | | | | | - Dianne de Korte
- Division of Acute and Critical Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Frank Plani
- Chris Hani Baragwanath Hospital, Soweto, South Africa
| | - Wolfgang Buhre
- Division of Acute and Critical Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands.
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands.
| |
Collapse
|
2
|
Husi H, Human C. Molecular determinants of acute kidney injury. J Inj Violence Res 2016; 7:75-86. [PMID: 26104320 PMCID: PMC4522318 DOI: 10.5249/jivr.v7i2.615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 07/10/2014] [Indexed: 12/18/2022] Open
Abstract
Background: Acute kidney injury (AKI) is a condition that leads to a rapid deterioration of renal function associated with impairment to maintain electrolyte and acid balance, and, if left untreated, ultimately irreversible kidney damage and renal necrosis. There are a number of causes that can trigger AKI, ranging from underlying conditions as well as trauma and surgery. Specifically, the global rise in surgical procedures led to a substantial increase of AKI incidence rates, which in turn impacts on mortality rates, quality of life and economic costs to the healthcare system. However, no effective therapy for AKI exists. Current approaches, such as pharmacological intervention, help in alleviating symptoms in slowing down the progression, but do not prevent or reverse AKI-induced organ damage. Methods: An in-depth understanding of the molecular machinery involved in and modulated by AKI induction and progression is necessary to specifically pharmacologically target key molecules. A major hurdle to devise a successful strategy is the multifactorial and complex nature of the disorder itself, whereby the activation of a number of seemingly independent molecular pathways in the kidney leads to apoptotic and necrotic events. Results: The renin-angiotensin-aldosterone-system (RAAS) axis appears to be a common element, leading to downstream events such as triggers of immune responses via the NFB pathway. Other pathways intricately linked with AKI-induction and progression are the tumor necrosis factor alpha (TNF α) and transforming growth factor beta (TGF β) signaling cascades, as well as a number of other modulators. Surprisingly, it has been shown that the involvement of the glutamatergic axis, believed to be mainly a component of the neurological system, is also a major contributor. Conclusions: Here we address the current understanding of the molecular pathways evoked in AKI, their interplay, and the potential to pharmacologically intervene in the effective prevention and/or progression of AKI.
Collapse
Affiliation(s)
- Holger Husi
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.
| | | |
Collapse
|