1
|
Wu ST, Voltoline R, Loos W, Rubianes Silva JAI, Watanabe L, Amorim B, Coan A, Cendes F, L Yasuda C. Toward a Multimodal Diagnostic Exploratory Visualization of Focal Cortical Dysplasia. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2018; 38:73-89. [PMID: 29877805 DOI: 10.1109/mcg.2018.032421655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Focal cortical dysplasia (FCD) is a malformation of cortical development and a common cause of pharmacoresistant epilepsy. Resective surgery of clear-cut lesions may be curative. However, the localization of the seizure focus and the evaluation of its spatial extent can be challenging in many situations. For concordance assessment, medical studies show the relevance of accurate correlation of multisource imaging sequences. to improve the sensitivity and specificity of the evaluation. In this paper, we share the process we went through to reach our simple, but effective, solution for integrating multi-volume rendering into an exploratory visualization environment for the diagnosis of FCD. We focus on fetching of multiple data assigned to a sample when they are rendered. Knowing that the major diagnostic role of multiple volumes is to complement information, we demonstrate that appropriate geometric transformations in the texture space are sufficient for accomplishing this task. This allows us to fully implement our proposal in the OpenGL rendering pipeline and to easily integrate it into the existing visual diagnostic application. Both time performance and the visual quality of our proposal were evaluated with a set of clinical data volumes for assessing the potential practical impact of our solution in routine diagnostic use.
Collapse
|
2
|
Silva-Alves MS, Secolin R, Carvalho BS, Yasuda CL, Bilevicius E, Alvim MKM, Santos RO, Maurer-Morelli CV, Cendes F, Lopes-Cendes I. A Prediction Algorithm for Drug Response in Patients with Mesial Temporal Lobe Epilepsy Based on Clinical and Genetic Information. PLoS One 2017; 12:e0169214. [PMID: 28052106 PMCID: PMC5215688 DOI: 10.1371/journal.pone.0169214] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/13/2016] [Indexed: 11/17/2022] Open
Abstract
Mesial temporal lobe epilepsy is the most common form of adult epilepsy in surgical series. Currently, the only characteristic used to predict poor response to clinical treatment in this syndrome is the presence of hippocampal sclerosis. Single nucleotide polymorphisms (SNPs) located in genes encoding drug transporter and metabolism proteins could influence response to therapy. Therefore, we aimed to evaluate whether combining information from clinical variables as well as SNPs in candidate genes could improve the accuracy of predicting response to drug therapy in patients with mesial temporal lobe epilepsy. For this, we divided 237 patients into two groups: 75 responsive and 162 refractory to antiepileptic drug therapy. We genotyped 119 SNPs in ABCB1, ABCC2, CYP1A1, CYP1A2, CYP1B1, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, and CYP3A5 genes. We used 98 additional SNPs to evaluate population stratification. We assessed a first scenario using only clinical variables and a second one including SNP information. The random forests algorithm combined with leave-one-out cross-validation was used to identify the best predictive model in each scenario and compared their accuracies using the area under the curve statistic. Additionally, we built a variable importance plot to present the set of most relevant predictors on the best model. The selected best model included the presence of hippocampal sclerosis and 56 SNPs. Furthermore, including SNPs in the model improved accuracy from 0.4568 to 0.8177. Our findings suggest that adding genetic information provided by SNPs, located on drug transport and metabolism genes, can improve the accuracy for predicting which patients with mesial temporal lobe epilepsy are likely to be refractory to drug treatment, making it possible to identify patients who may benefit from epilepsy surgery sooner.
Collapse
Affiliation(s)
- Mariana S Silva-Alves
- Department of Medical Genetics, University of Campinas-UNICAMP, and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Rodrigo Secolin
- Department of Medical Genetics, University of Campinas-UNICAMP, and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Benilton S Carvalho
- Department of Statistics, Institute of Mathematics, Statistics and Scientific Computing, University of Campinas-UNICAMP, and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Clarissa L Yasuda
- Department of Neurology, University of Campinas-UNICAMP, and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Elizabeth Bilevicius
- Department of Neurology, University of Campinas-UNICAMP, and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Marina K M Alvim
- Department of Neurology, University of Campinas-UNICAMP, and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Renato O Santos
- Department of Medical Genetics, University of Campinas-UNICAMP, and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Claudia V Maurer-Morelli
- Department of Medical Genetics, University of Campinas-UNICAMP, and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Fernando Cendes
- Department of Neurology, University of Campinas-UNICAMP, and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics, University of Campinas-UNICAMP, and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| |
Collapse
|
3
|
Jehi L, Jetté N. Not all that glitters is gold: A guide to surgical trials in epilepsy. Epilepsia Open 2016; 1:22-36. [PMID: 29588926 PMCID: PMC5867837 DOI: 10.1002/epi4.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2016] [Indexed: 02/03/2023] Open
Abstract
Epilepsy surgery is often the only effective treatment in appropriately selected patients with drug‐resistant epilepsy, a disease affecting about 30% of those with epilepsy. We review the evidence supporting the use of epilepsy surgery, with a focus on randomized controlled trials (RCTs). Second, we identify gaps in knowledge about the benefits of epilepsy surgery for certain populations, the challenges of individualizing the choice of surgery, and our lack of understanding of the mechanisms of surgical outcomes. We conducted a search (MEDLINE, Embase, Cochrane, Clinicaltrials.gov) on March 2, 2016, to identify epilepsy surgery RCTs, systematic reviews, or health technology assessments (HTAs). Abstracts were screened to identify resective, palliative (e.g., corpus callosotomy, multiple subpial transection [MST]), ablative (e.g., Laser interstitial thermal therapy [LITT], gamma knife radiosurgery [RS]), and neuromodulation (e.g., cerebellar stimulation [CS], hippocampal stimulation [HS], repetitive transcranial magnetic stimulation [rTMS], responsive neurostimulation [RNS], thalamic stimulation [TS], trigeminal nerve stimulation [TNS], and vagal nerve stimulation [VNS]) RCTs. Study characteristics and outcomes were extracted. Knowledge gaps were identified. Of 1,205 abstracts, 20 RCTs were identified (resective surgery including corpus callosotomy [n = 7], MST [n = 0], RS [n = 1, 3 papers], LITT [n = 0], CS [n = 1], HS [n = 2], RNS [n = 1], rTMS [n = 1], TNS [n = 1], TS [n = 1], and VNS [n = 5]). Most studies targeted patients with temporal lobe epilepsy (TLE) and none examined the effectiveness of resective surgical therapies in patients with extra‐TLE (ETLE) or with specific lesions aside from mesial temporal lobe sclerosis. No pediatric surgical RCTs were identified except for VNS. Few RCTs address the effectiveness of surgery in epilepsy and most are of limited generalizability. Future studies are needed to compare the effectiveness of different surgical strategies, better understand the mechanisms of surgical outcomes, and define the ideal surgical approaches, particularly for patients with high or very low cognitive function, normal imaging, or ETLE.
Collapse
Affiliation(s)
- Lara Jehi
- Epilepsy Center Cleveland Clinic Neurological Institute Cleveland Ohio U.S.A
| | - Nathalie Jetté
- Department of Clinical Neurosciences and Hotchkiss Brain Institute Cumming School of Medicine University of Calgary Calgary Alberta Canada.,Department of Community Health Sciences and O'Brien Institute for Public Health Cumming School of Medicine University of Calgary Calgary Alberta Canada
| |
Collapse
|
4
|
Wei W, Zhang Z, Xu Q, Yang F, Sun K, Lu G. More Severe Extratemporal Damages in Mesial Temporal Lobe Epilepsy With Hippocampal Sclerosis Than That With Other Lesions: A Multimodality MRI Study. Medicine (Baltimore) 2016; 95:e3020. [PMID: 26962820 PMCID: PMC4998901 DOI: 10.1097/md.0000000000003020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mesial temporal lobe epilepsy with hippocampal sclerosis (mTLE-HS) presents different clinical presentations from that with other lesions (OL). It is significant to investigate the neural mechanism underlying the different clinical presentations using neuroimaging study.Thirty mTLE patients with mTLE-HS, 30 mTLE patients with other lesions (mTLE-OL), and 30 age- and sex-matched healthy controls were involved. Amplitude of low-frequency fluctuation (ALFF) analysis-based resting-state functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM) based morphometric MRI were employed to describing functional and structural imaging alterations in mTLE. Imaging parameters of ALFF and gray matter volume (GMV) were compared among groups and correlated with clinical variables and cognitive scores.For parameter of ALFF, both patient groups of mTLE-HS and mTLE-OL showed decrease in the frontal cortices relative to the healthy controls; mTLE-HS showed more decrease in the prefrontal and brain default regions relative to mTLE-OL. For GMV, both patient groups showed decrease in the frontal cortex, thalamus, and cerebellum; mTLE-HS showed more GMV decrease relative to the mTLE-OL, also mainly in the prefrontal and brain default regions. In both patient groups, the prefrontal regions showed negative correlation between GMV and epilepsy duration.This work revealed distinct alteration patterns of functional and structural brain organizations in mTLEs with different forms. MTLE-HS, despite with smaller lesion size of the pathological focus, presented more severe functional and structural damages in the extratemporal regions than mTLE-OL. The findings provided imaging evidence to support the proposal that mTLE-HS is a special epilepsy syndrome.
Collapse
Affiliation(s)
- Wei Wei
- From the Department of Medical Imaging (WW, ZZ, QX, GL), Department of Neurology (QX), Department of Neurosurgery (FY), Jinling Hospital, Nanjing University School of Medicine, and State Key Laboratory of Analytical Chemistry for Life Science (ZZ, GL), Nanjing University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
Imaging is pivotal in the evaluation and management of patients with seizure disorders. Elegant structural neuroimaging with magnetic resonance imaging (MRI) may assist in determining the etiology of focal epilepsy and demonstrating the anatomical changes associated with seizure activity. The high diagnostic yield of MRI to identify the common pathological findings in individuals with focal seizures including mesial temporal sclerosis, vascular anomalies, low-grade glial neoplasms and malformations of cortical development has been demonstrated. Positron emission tomography (PET) is the most commonly performed interictal functional neuroimaging technique that may reveal a focal hypometabolic region concordant with seizure onset. Single photon emission computed tomography (SPECT) studies may assist performance of ictal neuroimaging in patients with pharmacoresistant focal epilepsy being considered for neurosurgical treatment. This chapter highlights neuroimaging developments and innovations, and provides a comprehensive overview of the imaging strategies used to improve the care and management of people with epilepsy.
Collapse
|
6
|
Pohlmann-Eden B, Aldenkamp A, Baker GA, Brandt C, Cendes F, Coras R, Crocker CE, Helmstaedter C, Jones-Gotman M, Kanner AM, Mazarati A, Mula M, Smith ML, Omisade A, Tellez-Zenteno J, Hermann BP. The relevance of neuropsychiatric symptoms and cognitive problems in new-onset epilepsy - Current knowledge and understanding. Epilepsy Behav 2015; 51:199-209. [PMID: 26291774 DOI: 10.1016/j.yebeh.2015.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 07/03/2015] [Indexed: 01/11/2023]
Abstract
Neurobehavioral and cognition problems are highly prevalent in epilepsy, but most research studies to date have not adequately addressed the precise nature of the relationship between these comorbidities and seizures. To address this complex issue and to facilitate collaborative, innovative research in the rising field of neurobehavioral comorbidities and cognition disturbances in new-onset epilepsy, international epilepsy experts met at the 3rd Halifax International Epilepsy Conference & Retreat at White Point, South Shore, Nova Scotia, Canada from September 18 to 20, 2014. This Conference Proceedings provides a summary of the conference proceedings. Specifically, the following topics are discussed: (i) role of comorbidities in epilepsy diagnosis and management, (ii) role of antiepileptic medications in understanding the relationship between epilepsy and neurobehavioral and cognition problems, and (iii) animal data and diagnostic approaches. Evidence to date, though limited, strongly suggests a bidirectional relationship between epilepsy and cognitive and psychiatric comorbidities. In fact, it is likely that seizures and neurobehavioral problems represent different symptoms of a common etiology or network-wide disturbance. As a reflection of this shared network, psychiatric comorbidities and/or cognition problems may actually precede the seizure occurrence and likely get often missed if not screened.
Collapse
Affiliation(s)
- B Pohlmann-Eden
- Division of Neurology, Dalhousie University of Halifax, Canada; Brain Repair Center, Dalhousie University of Halifax, Canada.
| | - A Aldenkamp
- Epilepsiecentrum Kempenhaeghe, The Netherlands
| | - G A Baker
- Division of Neurosciences, University of Liverpool, United Kingdom
| | - C Brandt
- Bethel Epilepsy Center, Mara Hospital, Bielefeld, Germany
| | - F Cendes
- Department of Neurology, University of Campinas, São Paulo, Brazil
| | - R Coras
- Department of Neuropathology, University of Erlangen, Germany
| | - C E Crocker
- Division of Neurology, Dalhousie University of Halifax, Canada
| | | | - M Jones-Gotman
- McGill University, Montreal Neurological Institute, Montreal, Canada
| | - A M Kanner
- Epilepsy Center, University of Miami, Miller School of Medicine, USA
| | - A Mazarati
- Children's Discovery and Innovation Institute, D. Geffen School of Medicine at UCLA, Los Angeles, USA
| | - M Mula
- Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's University Hospitals NHS Foundation Trust and Institute of Medical and Biomedical Sciences St. George's University of London, United Kingdom
| | - M L Smith
- Department of Psychology, University of Toronto, Canada
| | - A Omisade
- Division of Neurology, Dalhousie University of Halifax, Canada
| | | | - B P Hermann
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW This review discusses the MRI and functional imaging findings in patients with focal seizures, practical ways to improve the detection of subtle lesions, and limitations and pitfalls of the various imaging techniques in this context. RECENT FINDINGS A proper MRI investigation of patients with focal epilepsy requires the use of specific protocols, selected based on identification of the region of onset by clinical and EEG information. For practical purposes, the focal epilepsies are divided here into mesial temporal lobe epilepsies and neocortical epilepsies. The majority of patients with mesial temporal lobe epilepsies associated with hippocampal sclerosis undergoing presurgical evaluation will have a clear-cut unilateral atrophic hippocampus with increased T2 signal and a normal-appearing contralateral hippocampus. Among the several types of neocortical lesions, focal cortical dysplasias deserve especial attention because these lesions are often missed on routine MRIs. The focal cortical dysplasias include a gradient of morphologic changes from dysplastic lesions that can be easily identified by conventional MRI techniques to minor structural abnormalities with small areas of discrete cortical thickening and blurring of the gray/white matter interface that often go unrecognized. SUMMARY The use of MRI protocols targeted for the study of patients with epilepsy allows the diagnosis of the etiology of epilepsy in most patients with focal seizures. However, in a considerable number of patients with epilepsy, MRI results are considered normal. Although the etiology remains unclear in these cases, the malformations of cortical development (mainly focal cortical dysplasias) have been identified as most likely pathologic substrates. The effort involved in trying to increase the detection of these "invisible" lesions involves the improvement of structural imaging techniques and the combination of metabolic and functional studies, including 18F-fluorodeoxyglucose-positron emission tomography (18F-FDG-PET), ictal single-photon emission computed tomography (SPECT), diffusion MRI, and magnetic resonance spectroscopy (MRS). The methods used to enhance the detection of subtle cortical abnormalities by improving the structural images have addressed two basic aspects of the examination by MRI: signal acquisition and imaging postprocessing.
Collapse
Affiliation(s)
- Fernando Cendes
- Departamento de Neurologia, FCM, UNICAMP, Campinas, SP 13083-880, Brazil.
| |
Collapse
|