1
|
Leonard A, Bertaina A, Bonfim C, Cohen S, Prockop S, Purtill D, Russell A, Boelens JJ, Wynn R, Ruggeri A, Abraham A. Curative therapy for hemoglobinopathies: an International Society for Cell & Gene Therapy Stem Cell Engineering Committee review comparing outcomes, accessibility and cost of ex vivo stem cell gene therapy versus allogeneic hematopoietic stem cell transplantation. Cytotherapy 2021; 24:249-261. [PMID: 34879990 DOI: 10.1016/j.jcyt.2021.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/23/2021] [Accepted: 09/04/2021] [Indexed: 12/17/2022]
Abstract
Thalassemia and sickle cell disease (SCD) are the most common monogenic diseases in the world and represent a growing global health burden. Management is limited by a paucity of disease-modifying therapies; however, allogeneic hematopoietic stem cell transplantation (HSCT) and autologous HSCT after genetic modification offer patients a curative option. Allogeneic HSCT is limited by donor selection, morbidity and mortality from transplant conditioning, graft-versus-host disease and graft rejection, whereas significant concerns regarding long-term safety, efficacy and cost limit the broad applicability of gene therapy. Here the authors review current outcomes in allogeneic and autologous HSCT for transfusion-dependent thalassemia and SCD and provide our perspective on issues surrounding accessibility and costs as barriers to offering curative therapy to patients with hereditary hemoglobinopathies.
Collapse
Affiliation(s)
- Alexis Leonard
- Division of Hematology, Children's National Hospital, Washington, DC, USA
| | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Carmem Bonfim
- Pediatric Bone Marrow Transplantation Division, Hospital Pequeno Principe, Curitiba, Brazil
| | - Sandra Cohen
- Université de Montréal and Maisonneuve Rosemont Hospital, Montréal, Canada
| | - Susan Prockop
- Stem Cell Transplantation and Cellular Therapies, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Duncan Purtill
- Department of Haematology, Fiona Stanley Hospital, Perth, Australia
| | - Athena Russell
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jaap Jan Boelens
- Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Department of Pediatrics, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Robert Wynn
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Annalisa Ruggeri
- Department of Hematology and bone marrow transplantation, IRCCS Ospedale San Raffaele, Segrate, Milan, Italy
| | - Allistair Abraham
- Center for Cancer and Immunology Research, CETI, Children's National Hospital, Washington, DC, USA.
| |
Collapse
|
2
|
HSCT remains the only cure for patients with transfusion-dependent thalassemia until gene therapy strategies are proven to be safe. Bone Marrow Transplant 2021; 56:2882-2888. [PMID: 34531544 DOI: 10.1038/s41409-021-01461-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Patients with β-thalassemia suffer from severe anemia, iron overload and multiple complications, that affect their quality of life and well-being. Allogeneic hematopoietic stem cell transplantation (HSCT) from an HLA-matched sibling donor, performed in childhood, has been the gold standard for thalassemic patients for decades. Unfortunately, siblings are available only for the minority of patients. Fully matched unrelated donors have been the second choice for cure, with equal results as far as overall survival is concerned, having though the cost of frequent and serious complications. On the other hand, haploidentical transplantation is performed more frequently during the last decade, with promising results. Gene therapy represents a novel therapeutic approach, with impressive results from clinical trials, both from gene addition strategies, as well as from the emerging gene editing tools. After reviewing current critical points of HSCT using alternative donors and assessing recently reported safety issues of gene therapy methods, we conclude that, although a breakthrough, the safety of gene therapy remains to be established.
Collapse
|
3
|
Ernst MPT, Broeders M, Herrero-Hernandez P, Oussoren E, van der Ploeg AT, Pijnappel WWMP. Ready for Repair? Gene Editing Enters the Clinic for the Treatment of Human Disease. Mol Ther Methods Clin Dev 2020; 18:532-557. [PMID: 32775490 PMCID: PMC7393410 DOI: 10.1016/j.omtm.2020.06.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present an overview of clinical trials involving gene editing using clustered interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9), transcription activator-like effector nucleases (TALENs), or zinc finger nucleases (ZFNs) and discuss the underlying mechanisms. In cancer immunotherapy, gene editing is applied ex vivo in T cells, transgenic T cell receptor (tTCR)-T cells, or chimeric antigen receptor (CAR)-T cells to improve adoptive cell therapy for multiple cancer types. This involves knockouts of immune checkpoint regulators such as PD-1, components of the endogenous TCR and histocompatibility leukocyte antigen (HLA) complex to generate universal allogeneic CAR-T cells, and CD7 to prevent self-destruction in adoptive cell therapy. In cervix carcinoma caused by human papillomavirus (HPV), E6 and E7 genes are disrupted using topically applied gene editing machinery. In HIV infection, the CCR5 co-receptor is disrupted ex vivo to generate HIV-resistant T cells, CAR-T cells, or hematopoietic stem cells. In β-thalassemia and sickle cell disease, hematopoietic stem cells are engineered ex vivo to induce the production of fetal hemoglobin. AAV-mediated in vivo gene editing is applied to exploit the liver for systemic production of therapeutic proteins in hemophilia and mucopolysaccharidoses, and in the eye to restore splicing of the CEP920 gene in Leber's congenital amaurosis. Close consideration of safety aspects and education of stakeholders will be essential for a successful implementation of gene editing technology in the clinic.
Collapse
Affiliation(s)
- Martijn P T Ernst
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Mike Broeders
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Pablo Herrero-Hernandez
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Esmee Oussoren
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - W W M Pim Pijnappel
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| |
Collapse
|
4
|
Strocchio L, Locatelli F. Hematopoietic Stem Cell Transplantation in Thalassemia. Hematol Oncol Clin North Am 2018; 32:317-328. [PMID: 29458734 DOI: 10.1016/j.hoc.2017.11.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Although recent advances in gene therapy are expected to increase the chance of disease cure in thalassemia major, at present hematopoietic stem cell transplantation (HSCT) remains the only consolidated curative approach for this disorder. The widest experience has been obtained in the HLA-matched family donor (MFD) setting, with probabilities of overall and thalassemia-free survival exceeding 90% and 85%, respectively. As for most patients a suitable MFD is not available, alternative donors (HLA-matched unrelated donor, unrelated cord blood, HLA-haploidentical relative) have been increasingly explored, translating into the expansion of the number of patients treatable with HSCT.
Collapse
Affiliation(s)
- Luisa Strocchio
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Piazza S Onofrio, 4, Roma 00165, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Piazza S Onofrio, 4, Roma 00165, Italy; Department of Pediatric Science, University of Pavia, Viale Brambilla 74, Pavia, Italy.
| |
Collapse
|