1
|
Rosiak N, Tykarska E, Cielecka-Piontek J. Mechanochemical Approach to Obtaining a Multicomponent Fisetin Delivery System Improving Its Solubility and Biological Activity. Int J Mol Sci 2024; 25:3648. [PMID: 38612460 PMCID: PMC11011862 DOI: 10.3390/ijms25073648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, binary amorphous solid dispersions (ASDs, fisetin-Eudragit®) and ternary amorphous solid inclusions (ASIs, fisetin-Eudragit®-HP-β-cyclodextrin) of fisetin (FIS) were prepared by the mechanochemical method without solvent. The amorphous nature of FIS in ASDs and ASIs was confirmed using XRPD (X-ray powder diffraction). DSC (Differential scanning calorimetry) confirmed full miscibility of multicomponent delivery systems. FT-IR (Fourier-transform infrared analysis) confirmed interactions that stabilize FIS's amorphous state and identified the functional groups involved. The study culminated in evaluating the impact of amorphization on water solubility and conducting in vitro antioxidant assays: 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)-ABTS, 2,2-diphenyl-1-picrylhydrazyl-DPPH, Cupric Reducing Antioxidant Capacity-CUPRAC, and Ferric Reducing Antioxidant Power-FRAP and in vitro neuroprotective assays: inhibition of acetylcholinesterase-AChE and butyrylcholinesterase-BChE. In addition, molecular docking allowed for the determination of possible bonds and interactions between FIS and the mentioned above enzymes. The best preparation turned out to be ASI_30_EPO (ASD fisetin-Eudragit® containing 30% FIS in combination with HP-β-cyclodextrin), which showed an improvement in apparent solubility (126.5 ± 0.1 µg∙mL-1) and antioxidant properties (ABTS: IC50 = 10.25 µg∙mL-1, DPPH: IC50 = 27.69 µg∙mL-1, CUPRAC: IC0.5 = 9.52 µg∙mL-1, FRAP: IC0.5 = 8.56 µg∙mL-1) and neuroprotective properties (inhibition AChE: 39.91%, and BChE: 42.62%).
Collapse
Affiliation(s)
- Natalia Rosiak
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| |
Collapse
|
2
|
Correlation between Perturbation of Redox Homeostasis and Antibiofilm Capacity of Phytochemicals at Non-Lethal Concentrations. Antioxidants (Basel) 2022; 11:antiox11122451. [PMID: 36552659 PMCID: PMC9774353 DOI: 10.3390/antiox11122451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Biofilms are the multicellular lifestyle of microorganisms and are present on potentially every type of biotic or abiotic surface. Detrimental biofilms are generally targeted with antimicrobial compounds. Phytochemicals at sub-lethal concentrations seem to be an exciting alternative strategy to control biofilms, as they are less likely to impose selective pressure leading to resistance. This overview gathers the literature on individual phytocompounds rather than on extracts of which the use is difficult to reproduce. To the best of our knowledge, this is the first review to target only individual phytochemicals below inhibitory concentrations against biofilm formation. We explored whether there is an overall mechanism that can explain the effects of individual phytochemicals at sub-lethal concentrations. Interestingly, in all experiments reported here in which oxidative stress was investigated, a modest increase in intracellular reactive oxygen species was reported in treated cells compared to untreated specimens. At sub-lethal concentrations, polyphenolic substances likely act as pro-oxidants by disturbing the healthy redox cycle and causing an accumulation of reactive oxygen species.
Collapse
|
3
|
Hassan SSU, Samanta S, Dash R, Karpiński TM, Habibi E, Sadiq A, Ahmadi A, Bungau S. The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress. Front Pharmacol 2022; 13:1015835. [PMID: 36299900 PMCID: PMC9589363 DOI: 10.3389/fphar.2022.1015835] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress (OS) disrupts the chemical integrity of macromolecules and increases the risk of neurodegenerative diseases. Fisetin is a flavonoid that exhibits potent antioxidant properties and protects the cells against OS. We have viewed the NCBI database, PubMed, Science Direct (Elsevier), Springer-Nature, ResearchGate, and Google Scholar databases to search and collect relevant articles during the preparation of this review. The search keywords are OS, neurodegenerative diseases, fisetin, etc. High level of ROS in the brain tissue decreases ATP levels, and mitochondrial membrane potential and induces lipid peroxidation, chronic inflammation, DNA damage, and apoptosis. The subsequent results are various neuronal diseases. Fisetin is a polyphenolic compound, commonly present in dietary ingredients. The antioxidant properties of this flavonoid diminish oxidative stress, ROS production, neurotoxicity, neuro-inflammation, and neurological disorders. Moreover, it maintains the redox profiles, and mitochondrial functions and inhibits NO production. At the molecular level, fisetin regulates the activity of PI3K/Akt, Nrf2, NF-κB, protein kinase C, and MAPK pathways to prevent OS, inflammatory response, and cytotoxicity. The antioxidant properties of fisetin protect the neural cells from inflammation and apoptotic degeneration. Thus, it can be used in the prevention of neurodegenerative disorders.
Collapse
Affiliation(s)
- Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, West Bengal, India
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Emran Habibi
- Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
4
|
Wang R, Li J, Niu DB, Xu FY, Zeng XA. Protective effect of baicalein on DNA oxidative damage and its binding mechanism with DNA: An in vitro and molecular docking study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119605. [PMID: 33667888 DOI: 10.1016/j.saa.2021.119605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
In this work, the protective effect of baicalein on DNA oxidative damage and its possible protection mechanisms were investigated. 2-thiobarbituric acid (TBA) colorimetry and agarose gel electrophoresis study found that baicalein protected the deoxyribose residue and double-stranded backbone of DNA from the damage of hydroxyl radicals. Antioxidant analysis results showed that baicalein has excellent radicals scavenging effects and Fe2+ chelating ability, which might be the mechanism of baicalein protecting DNA. DNA binding studies indicated that baicalein bound to the minor groove of DNA with moderate binding affinity (K = (7.35 ± 0.91) × 103 M-1). Hydrogen bonding and van der Waals forces played a major role in driving the binding process. Molecular docking further confirmed the experimental results. This binding could stabilize DNA double helix structure, thereby protecting DNA from oxidative damage. This study may provide theoretical basis for designing new functional foods of baicalein for DNA damage protection.
Collapse
Affiliation(s)
- Rui Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Jian Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - De-Bao Niu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Fei-Yue Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| |
Collapse
|
5
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
6
|
Ahmad A, Ali T, Rehman SU, Kim MO. Phytomedicine-Based Potent Antioxidant, Fisetin Protects CNS-Insult LPS-Induced Oxidative Stress-Mediated Neurodegeneration and Memory Impairment. J Clin Med 2019; 8:E850. [PMID: 31207963 PMCID: PMC6616651 DOI: 10.3390/jcm8060850] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022] Open
Abstract
Phytomedicine based natural flavonoids have potent antioxidant, anti-inflammatory, and neuroprotective activities against neurodegenerative diseases. The aim of the present study is to investigate the potent neuroprotective and antioxidant potential effects of fisetin (natural flavonoid) against central nervous system (CNS)-insult, lipopolysaccharide (LPS)-induced reactive oxygen species (ROS), neuroinflammation, neurodegeneration, and synaptic/memory deficits in adult mice. The mice were injected intraperitoneally (i.p.) with LPS (250 μg/kg/day for 1 week) and a fisetin dosage regimen (20 mg/kg/day i.p. for 2 weeks, 1 week pre-treated to LPS and 1 week co-treated with LPS). Behavioral tests, and biochemical and immunofluorescence assays were applied. Our results revealed that fisetin markedly abrogated the LPS-induced elevated ROS/oxidative stress and activated phosphorylated c-JUN N-terminal Kinase (p-JNK) in the adult mouse hippocampus. Fisetin significantly alleviated LPS-induced activated gliosis. Moreover, fisetin treatment inhibited LPS-induced activation of the inflammatory Toll-like Receptors (TLR4)/cluster of differentiation 14 (CD14)/phospho-nuclear factor kappa (NF-κB) signaling and attenuated other inflammatory mediators (tumor necrosis factor-α (TNF-α), interleukin-1 β (IL1-β), and cyclooxygenase (COX-2). Furthermore, immunoblotting and immunohistochemical results revealed that fisetin significantly reversed LPS-induced apoptotic neurodegeneration. Fisetin improved the hippocampal-dependent synaptic and memory functions in LPS-treated adult mice. In summary, our results strongly recommend that fisetin, a natural potent antioxidant, and neuroprotective phytomedicine, represents a promising, valuable, and therapeutic candidate for the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Tahir Ali
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Shafiq Ur Rehman
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Myeong Ok Kim
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
7
|
Wang R, Hu X, Pan J, Zhang G, Gong D. Interaction of isoeugenol with calf thymus DNA and its protective effect on DNA oxidative damage. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Imai K, Nakanishi I, Ohkubo K, Ohno A, Mizuno M, Fukuzumi S, Matsumoto KI, Fukuhara K. Synthesis and radical-scavenging activity of C-methylated fisetin analogues. Bioorg Med Chem 2019; 27:1720-1727. [PMID: 30846403 DOI: 10.1016/j.bmc.2019.02.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 11/30/2022]
Abstract
The radical-scavenging reaction of fisetin, a natural antioxidant found in strawberries, is known to proceed via hydrogen transfer to produce a fisetin radical intermediate. Thus, introduction of an electron-donating group into the fisetin molecule is expected to stabilize the radical, leading to enhanced radical-scavenging activity. In this study, fisetin derivatives in which methyl substituents were introduced at the ortho positions relative to the catechol hydroxyl groups were synthesized and their radical scavenging activities were evaluated and compared with that of the parent fisetin molecule. Among the methyl derivatives, 5'-methyl fisetin, in which the inherent planar structure of fisetin was retained, exhibited the strongest radical scavenging activity. Introduction of methyl substituents may be effective for the enhancement of various biological activities of antioxidants, particularly radical-scavenging activity.
Collapse
Affiliation(s)
- Kohei Imai
- School of Pharmacy, Showa University, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Quantitative RedOx Sensing Team (QRST), Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Inage-ku, Chiba 263-8555, Japan
| | - Ikuo Nakanishi
- Quantitative RedOx Sensing Team (QRST), Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Inage-ku, Chiba 263-8555, Japan
| | - Kei Ohkubo
- Quantitative RedOx Sensing Team (QRST), Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Inage-ku, Chiba 263-8555, Japan; Institute for Advanced Co-Creation Studies and Institute for Academic Initiatives, Osaka University, Suita, Osaka 565-0871, Japan; Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Akiko Ohno
- Division of Risk Assessment, National Institute of Health Sciences, Kawasaki, Kanagawa 210-9501, Japan
| | - Mirei Mizuno
- School of Pharmacy, Showa University, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea; Faculty of Science and Technology, Meijo University, SENTAN, Japan Science and Technology Agency (JST), Nagoya, Aichi 468-8502, Japan
| | - Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Team (QRST), Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Inage-ku, Chiba 263-8555, Japan
| | - Kiyoshi Fukuhara
- School of Pharmacy, Showa University, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| |
Collapse
|
9
|
Mishra J, Swain J, Mishra AK. Probing the temperature-dependent changes of the interfacial hydration and viscosity of Tween20 : cholesterol (1 : 1) niosome membrane using fisetin as a fluorescent molecular probe. Phys Chem Chem Phys 2018; 20:13279-13289. [PMID: 29610803 DOI: 10.1039/c8cp00492g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A detailed photophysical study of fisetin in a Tween20 : cholesterol (1 : 1) niosome membrane has been carried out. Fisetin is found to partition well into the Tween20 : cholesterol (1 : 1) niosome membrane at low temperature (Kp = 2.7 × 104 M-1 at 10 °C). Cetylpyridinium chloride quenching study confirms the location of fisetin molecules in the interfacial domain of Tween20 : cholesterol (1 : 1) niosome membrane. The emission from the prototropic forms of fisetin (neutral form, excited state anion, ground state anion and phototautomer form) is found to sensitively reflect the local heterogeneities in Tween20 : cholesterol (1 : 1) niosome membrane. The shift in anionic emission maximum with variation in temperature shows the sensitivity of fisetin towards water accessibility at the interfacial domain of Tween20 : cholesterol (1 : 1) niosome membrane. Zeta potential value confirms that there is no role of surface charge in the multiple prototropism of fisetin in Tween20 : cholesterol (1 : 1) niosome membrane. The microviscosity changes with temperature, as reflected in fluorescence anisotropy values of fisetin phototautomeric species FT*, give information about the temperature-induced changes in the motional resistance offered by the interfacial domain of the niosomal membrane to small molecules. A temperature-dependent fluorescence lifetime study confirms the distribution of FT* in the two different sites of niosomal interfacial domain, i.e. water-deficient inner site and water-accessible outer site. This heterogeneity in distribution of FT* is further confirmed through time-resolved fluorescence anisotropy decay resulting in two different rotational time constants (faster component of ∼1.04 ns originates from water-accessible outer site and slower component of ∼16.50 ns originates from water-deficient inner site). The interfacial location of fisetin in Tween20 : cholesterol (1 : 1) niosome membrane has an important implication with regards to antioxidant activity as confirmed from a DPPH radical scavenging study.
Collapse
Affiliation(s)
- Jhili Mishra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Jitendriya Swain
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Ashok Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
10
|
Łodyga-Chruscińska E, Pilo M, Zucca A, Garribba E, Klewicka E, Rowińska-Żyrek M, Symonowicz M, Chrusciński L, Cheshchevik VT. Physicochemical, antioxidant, DNA cleaving properties and antimicrobial activity of fisetin-copper chelates. J Inorg Biochem 2018; 180:101-118. [DOI: 10.1016/j.jinorgbio.2017.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/22/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022]
|
11
|
Antioxidant properties of the flavonoid fisetin: An updated review of in vivo and in vitro studies. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|