1
|
Majeed BJM, Saadallah MA, Al-Ani IH, El-Tanani MK, Al Azzam KM, Abdallah HH, Al-Hajji F. Evaluation of Solubility, Dissolution Rate, and Oral Bioavailability of β-Cyclodextrin and Hydroxypropyl β-Cyclodextrin as Inclusion Complexes of the Tyrosine Kinase Inhibitor, Alectinib. Pharmaceuticals (Basel) 2024; 17:737. [PMID: 38931404 PMCID: PMC11207005 DOI: 10.3390/ph17060737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
This study aims to improve the solubility and dissolution rate of alectinib (ALB), a tyrosine kinase inhibitor commonly used for treating non-small-cell carcinoma (NSCLC). Given ALB's low solubility and bioavailability, complexation with β-cyclodextrin (βCD) and hydroxy propyl β-cyclodextrin (HPβCD) was evaluated. Some of the different preparation methods used with varying ALB-to-CD ratios led to the formation of complexes that were characterized using Fourier-Transform Infrared (FTIR) techniques and Differential Scanning Calorimetry (DSC) to prove complex formation. The encapsulation efficiency was also determined. The simulations were carried out for ALB's interactions with βCD and HPβCD. This study identified the most soluble complex (ALB-HPβCD; 1:2 ratio) and evaluated its dissolution. The bioavailability of the ALB-HPβCD complex was evaluated in Wistar rats relative to free ALB. Pharmacokinetic profiles revealed increased Cmax (240 ± 26.95 ng/mL to 474 ± 50.07 ng/mL) and AUC0-48 (5946.75 ± 265 ng.h/mL to 10520 ± 310 ng.h/mL) with no change in the elimination rate constant. In conclusion, the complexation of ALB-HPβCD manages to increase in vitro solubility, the dissolution rate, and oral bioavailability, providing a favorable approach to improving ALB administration.
Collapse
Affiliation(s)
- Bashar J. M. Majeed
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Center (PDRC), Al-Ahliyya Amman University, Amman 19328, Jordan; (B.J.M.M.); (M.K.E.-T.)
| | - Mohammed A. Saadallah
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Center (PDRC), Al-Ahliyya Amman University, Amman 19328, Jordan; (B.J.M.M.); (M.K.E.-T.)
| | - Israa H. Al-Ani
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Center (PDRC), Al-Ahliyya Amman University, Amman 19328, Jordan; (B.J.M.M.); (M.K.E.-T.)
| | - Mohamed K. El-Tanani
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Center (PDRC), Al-Ahliyya Amman University, Amman 19328, Jordan; (B.J.M.M.); (M.K.E.-T.)
- College of Pharmacy, RAK Medical and Health Sciences University, Ras Al-Khaimah P.O. Box 12973, United Arab Emirates
| | - Khaldun M. Al Azzam
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman 11942, Jordan;
| | - Hassan H. Abdallah
- Chemistry Department, College of Education, Salahaddin University, Erbil 44002, Iraq;
| | - Feras Al-Hajji
- Faculty of Pharmacy, Applied Science University, Amman 11937, Jordan;
| |
Collapse
|
2
|
Zhang H, Jian B. Resibufogenin: An Emerging Therapeutic Compound with Multifaceted Pharmacological Effects - A Comprehensive Review. Med Sci Monit 2024; 30:e942783. [PMID: 38369741 PMCID: PMC10885638 DOI: 10.12659/msm.942783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
Resibufogenin (RBG), a significant bufadienolide compound found in the traditional Chinese medicine Chansu, has garnered increasing attention in recent years for its wide range of pharmacological effects. This compound has shown promising potential in various therapeutic areas, including oncology, cardiology, and respiratory medicine. Among its notable properties, the anticancer effects of RBG are particularly striking, positioning it as a potential candidate for innovative cancer treatments. The mechanism of action of RBG is diverse, impacting various cellular processes. Its anticancer efficacy has been observed in different types of cancer cells, where it induces apoptosis and inhibits cell proliferation. Beyond its oncological applications, RBG also demonstrates substantial anti-inflammatory and antiviral activities. These properties suggest its utility in managing chronic inflammatory disorders and viral infections, respectively. The compound's cardiotonic effects are also noteworthy, providing potential benefits in cardiovascular health, particularly in heart failure management. Additionally, RBG has shown effectiveness in blood pressure regulation and respiratory function improvement, making it a versatile agent in the treatment of hypertension and respiratory disorders. However, despite these promising aspects, systematic reviews focusing specifically on RBG are limited. This article aims to address this gap by comprehensively reviewing RBG's origin, physiological, and pharmacological effects. The review will serve as a crucial reference for clinicians and researchers interested in the therapeutic applications of RBG, highlighting its potential in various medical domains. By synthesizing current research findings, this review will facilitate a deeper understanding of RBG's role in medicine and encourage further investigation into its clinical uses.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, Heilongjiang, China (mainland)
| | - Baiyu Jian
- Institute of Polygenic Disease, Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| |
Collapse
|
3
|
Bolourchian N, Nili M, Foroutan SM, Mahboubi A, Nokhodchi A. The use of cooling and anti-solvent precipitation technique to tailor dissolution and physicochemical properties of meloxicam for better performance. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Kuncahyo I, Choiri S, Fudholi A, Rohman A, Martien R. Understanding the effect of lipid formulation loading and ethanol as a diluent on solidification of pitavastatin super-saturable SNEDDS using factorial design approach. Res Pharm Sci 2019; 14:378-390. [PMID: 31798654 PMCID: PMC6827189 DOI: 10.4103/1735-5362.268198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Solidification of a preconcentrate lipid formulation namely self-nano emulsifying drug delivery system (SNEDDS) is required to achieve feasibility, flexibility, and a new concept of “dry nano-emulsion”. The purpose of this study was to assess the effect of SNEDDS loading and ethanol as a diluent on the solidification of pitavastatin supersaturable SNEDDS (S-SNEDDS). A 22 full factorial design approach with a center point addition as a curvature was implemented to determine the effect of S-SNEDDS loading and ethanol on the physical characteristics, namely flowability, compactibility, and drug release behavior. Vibrational spectra, thermal behavior, and morphology of solid S-SNEDDS formulation were also evaluated. The results indicated that there was no interaction between S-SNEDDS and carrier, based on vibrational spectra. However, thermal behaviors (enthalpy and weight loss) were depending on SNEDDS loading. Thereafter, the ethanol as a diluent of preconcentrated formulation had no effect on the morphology of carrier structure. However, the S-SNEDDS loading altered the structure of carrier owing to either solubilization or abrasion processes. The statistical model suggested that ethanol as diluent reduced the flowability, compactibility, and drug releases. Meanwhile, the liquid SNEDDS loading affected the reducing of flowability and compactibility. Finally, solidification without diluent and 20% lipid formulation load was recommended. In addition, it was very useful because of ease on handling, flexibility for further formulation, and desired characteristics of final solid dosage form.
Collapse
Affiliation(s)
- Ilham Kuncahyo
- Faculty of Pharmacy, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia.,Department of Pharmaceutical Science, Setia Budi University, Surakarta, Indonesia
| | - Syaiful Choiri
- Drug Delivery and Pharmaceutical Technology, Pharmaceutics Research Group, Department of Pharmacy, Universitas Sebelas Maret, Ir. Sutami 36A, Surakarta, Indonesia
| | - Achmad Fudholi
- Department of Pharmaceutics, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia
| | - Abdul Rohman
- Department of Pharmaceutical Chemistry, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia
| | - Ronny Martien
- Department of Pharmaceutics, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia
| |
Collapse
|
5
|
Sulaiman TNS, Larasati D, Nugroho AK, Choiri S. Assessment of the Effect of PLGA Co-polymers and PEG on the Formation and Characteristics of PLGA-PEG-PLGA Co-block Polymer Using Statistical Approach. Adv Pharm Bull 2019; 9:382-392. [PMID: 31592431 PMCID: PMC6773940 DOI: 10.15171/apb.2019.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/20/2019] [Accepted: 05/20/2019] [Indexed: 02/04/2023] Open
Abstract
Purpose: To assess the effect of the lactic acid (LA)-to-glycolic acid (GA) molar ratio and polyethylene glycol (PEG) concentration on the formation of poly-lactide co-glycolide acid (PLGA)-PEG-PLGA co-block polymers simultaneously using statistical approach. Methods: A 22 full factorial design with the addition of a point in the center of the design, namely curvature, was applied. Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR) were performed to confirm the formation of the co-block polymer. Simvastatin (SMV), a drug model was incorporated into the nano-polymeric micellar (NpM) of PLGA-PEG-PLGA followed by solubility phase, particle size, zeta potential, and entrapment efficiency characterizations. Results: FTIR, DSC, and NMR successfully confirmed the formation of co-block polymers. Solubility of SMV increased from 2 to 44-folds depending on co-block concentration with entrapment efficiency of 59%-80%. The NpM had size in the range of 206 to 402 nm with negative zeta potential. LA to GA ratio had greater effect on particle size reduction and increasing of co-polymer length. In addition, it had higher contributions on increasing of solubility and entrapment efficiency of SMV than PEG. Conclusion: According to these findings, the LA to GA ratio and PEG concentration gained a great consideration in order to prepare the PLGA-PEG-PLGA co-block which fulfilled the quality target product profile of NpM delivery system.
Collapse
Affiliation(s)
| | - Dwi Larasati
- Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, Indonesia 55281
| | - Akhmad Kharis Nugroho
- Department of Pharmaceutics, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, Indonesia 55281
| | - Syaiful Choiri
- Pharmaceutical Technology and Drug Delivery, Department of Pharmacy, Universitas Sebelas Maret, Ir. Sutami 36A, Surakarta, Indonesia, 57126
| |
Collapse
|
6
|
Li YH, Li YN, Li HT, Qi YR, Wu ZF, Yang M. Comparative study of microwave-vacuum and vacuum drying on the physicochemical properties and antioxidant capacity of licorice extract powder. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2017.07.076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|