1
|
Li C, Wang Y, Zhang W, Yang X, Wang Y, Hou G, Wang D, Han B, Zhang Y. The antitumor mechanisms of glabridin and drug delivery strategies for enhancing its bioavailability. Front Oncol 2024; 14:1506588. [PMID: 39723390 PMCID: PMC11668808 DOI: 10.3389/fonc.2024.1506588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Glabridin, a flavonoid derived from the plant Glycyrrhiza glabra, has garnered significant attention due to its diverse pharmacological effects, including antioxidant, antibacterial, anti-inflammatory, hypolipidemic, and hypoglycemic activities. Studies have shown that glabridin exhibits substantial antitumor activity by modulating the proliferation, apoptosis, metastasis, and invasion of cancer cells through the targeting of various signaling pathways, thus indicating its potential as a therapeutic agent for malignant tumors. To enhance its solubility, stability, and bioavailability, several drug delivery systems have been developed, including liposomes, cyclodextrin inclusion complexes, nanoparticles, and polymeric micelles. These de.livery systems have shown promise in preclinical studies but face challenges in clinical translation, such as issues with biocompatibility, delivery efficiency, and long-term stability. A comprehensive analysis of the antitumor mechanism of glabridin and its novel drug delivery system is still lacking. Therefore, the authors performed a comprehensive review of recent literature on the antitumor effects of glabridin and its novel drug delivery systems, covering the antitumor mechanism, action targets, and novel drug delivery systems, offering new theoretical insights and development directions for its further advancement and clinical application.
Collapse
Affiliation(s)
- Chong Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yu Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenjing Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaoman Yang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yufang Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Guanqun Hou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dongli Wang
- Department of Spleen and Stomach, Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bingbing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yimin Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Abbassi A, Yaghmaei P, Hosseinzadeh L. Cinnamaldehyde potentiates cytotoxic and apoptogenic effects of doxorubicin in prostate cancer cell line. Res Pharm Sci 2024; 19:425-435. [PMID: 39399724 PMCID: PMC11468172 DOI: 10.4103/rps.rps_82_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 10/15/2024] Open
Abstract
Background and purpose Nowadays, herbal medicine has been utilized to treat various diseases such as cancer, which showed successful therapeutic efficacy in previous studies. This study for the first time evaluated the cytotoxic potential of cinnamaldehyde (CIN) alone and in combination with doxorubicin (DOX), a well-known potent anti-tumor agent, on the proliferation of prostatic cancer cell line (PC3). Experimental approach The cytotoxicity and apoptotic activities of CIN and DOX, either separately or together, were determined on PC3 cells by the MTT test and Annexin V/PI assay, respectively. To further investigate which apoptotic pathway participated in cell death a collection of prominent markers of apoptosis induction including caspase-3/7 activations, mitochondrial membrane potential (MMP), and phosphatidyl serine translocation were detected. Findings/Results The different concentrations of CIN and DOX significantly inhibited the proliferation of PC3 cells in a concentration-dependent way within a 24-h treatment. In addition, the induction of apoptosis by CIN was accompanied by an increase in the activation of caspase-3/7 in PC3 cells with IC50 concentrations of 12.5 and 10 μg/mL for CIN and DOX, respectively. Moreover, the morphological observations obtained from flow cytometry MMP and caspase-3/7 activity assays, altogether, revealed the potential effect of CIN on apoptosis induced in PC3 cells by DOX. Conclusions and implications Taken together, the current study concluded that the combination of CIN and DOX could lead to the production of a potential therapeutic agent for prostate cancer. However, further in vivo and clinical studies are still needed to validate this combination in prostate cancer therapy.
Collapse
Affiliation(s)
- Abbas Abbassi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, I. R. Iran
| | - Parichehr Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, I. R. Iran
| | - Leila Hosseinzadeh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, I. R. Iran
| |
Collapse
|
3
|
Alam A, Khan MS, Mathur Y, Sulaimani MN, Farooqui N, Ahmad SF, Nadeem A, Yadav DK, Mohammad T. Structure-based identification of potential inhibitors of ribosomal protein S6 kinase 1, targeting cancer therapy: a combined docking and molecular dynamics simulations approach. J Biomol Struct Dyn 2024; 42:5758-5769. [PMID: 37365756 DOI: 10.1080/07391102.2023.2228912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023]
Abstract
Ribosomal protein S6 kinase 1 (S6K1), commonly known as P70-S6 kinase 1 (p70S6), is a key protein kinase involved in cellular signaling pathways that regulate cell growth, proliferation, and metabolism. Its significant role is reported in the PIK3/mTOR signaling pathway and is associated with various complex diseases, including diabetes, obesity, and different types of cancer. Due to its involvement in various physiological and pathological conditions, S6K1 is considered as an attractive target for drug design and discovery. One way to target S6K1 is by developing small molecule inhibitors that specifically bind to its ATP-binding site, preventing its activation and thus inhibiting downstream signaling pathways necessary for cell growth and survival. In this study, we have conducted a multitier virtual screening of a pool of natural compounds to identify potential S6K1 inhibitors. We performed molecular docking on IMPPAT 2.0 library and selected top hits based on their binding affinity, ligand efficiency, and specificity towards S6K1. The selected hits were further assessed based on different filters of drug-likeliness where two compounds (Hecogenin and Glabrene) were identified as potential leads for S6K1 inhibition. Both compounds showed appreciable affinity, ligand efficiency and specificity towards S6K1 binding pocket, drug-like properties, and stable protein-ligand complexes in molecular dynamics (MD) simulations. Finally, our study has suggested that Hecogenin and Glabrene can be potential S6K1 inhibitors which are presumably implicated in the therapeutic management of associated diseases such as diabetes, obesity, and varying types of cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Afsar Alam
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Shahzeb Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Yash Mathur
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Nayab Sulaimani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Naqiya Farooqui
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
4
|
Zhang J, Wu X, Zhong B, Liao Q, Wang X, Xie Y, He X. Review on the Diverse Biological Effects of Glabridin. Drug Des Devel Ther 2023; 17:15-37. [PMID: 36647530 PMCID: PMC9840373 DOI: 10.2147/dddt.s385981] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Glabridin is a prenylated isoflavan from the roots of Glycyrrhiza glabra Linne and has posed great impact on the areas of drug development and medicine, due to various biological properties such as anti-inflammation, anti-oxidation, anti-tumor, anti-microorganism, bone protection, cardiovascular protection, neuroprotection, hepatoprotection, anti-obesity, and anti-diabetes. Many signaling pathways, including NF-κB, MAPK, Wnt/β-catenin, ERα/SRC-1, PI3K/AKT, and AMPK, have been implicated in the regulatory activities of glabridin. Interestingly, glabridin has been considered as an inhibitor of tyrosinase, P-glycoprotein (P-gp), and CYP2E1 and an activator of peroxisome proliferator-activated receptor γ (PPARγ), although their molecular regulating mechanisms still need further investigation. However, poor water solubility and low bioavailability have greatly limited the clinical applications of glabridin. Hopefully, several effective strategies, such as nanoemulsions, microneedles, and smartPearls formulation, have been developed for improvement.
Collapse
Affiliation(s)
- Jianhong Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China,Ganzhou Key Laboratory of Hepatocellular Carcinoma, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xinhui Wu
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Baiyin Zhong
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Qicheng Liao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xin Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Yuankang Xie
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xiao He
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China,Correspondence: Xiao He, Email
| |
Collapse
|
5
|
Protective effects of monoammonium glycyrrhizinate on fatty deposit degeneration induced in primary calf hepatocytes by sodium oleate administration in vitro. Res Vet Sci 2022; 150:213-223. [DOI: 10.1016/j.rvsc.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 11/20/2022]
|
6
|
Müllerová M, Maciel D, Nunes N, Wrobel D, Stofik M, Červenková Št Astná L, Krupková A, Cuřínová P, Nováková K, Božík M, Malý M, Malý J, Rodrigues J, Strašák T. Carbosilane Glycodendrimers for Anticancer Drug Delivery: Synthetic Route, Characterization, and Biological Effect of Glycodendrimer-Doxorubicin Complexes. Biomacromolecules 2022; 23:276-290. [PMID: 34928129 DOI: 10.1021/acs.biomac.1c01264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The complexity of drug delivery mechanisms calls for the development of new transport system designs. Here, we report a robust synthetic procedure toward stable glycodendrimer (glyco-DDM) series bearing glucose, galactose, and oligo(ethylene glycol)-modified galactose peripheral units. In vitro cytotoxicity assays showed exceptional biocompatibility of the glyco-DDMs. To demonstrate applicability in drug delivery, the anticancer agent doxorubicin (DOX) was encapsulated in the glyco-DDM structure. The anticancer activity of the resulting glyco-DDM/DOX complexes was evaluated on the noncancerous (BJ) and cancerous (MCF-7 and A2780) cell lines, revealing their promising generation- and concentration-dependent effect. The glyco-DDM/DOX complexes show gradual and pH-dependent DOX release profiles. Fluorescence spectra elucidated the encapsulation process. Confocal fluorescence microscopy demonstrated preferential cancer cell internalization of the glyco-DDM/DOX complexes. The conclusions were supported by computer modeling. Overall, our results are consistent with the assumption that novel glyco-DDMs and their drug complexes are very promising in drug delivery and related applications.
Collapse
Affiliation(s)
- Monika Müllerová
- The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Dina Maciel
- CQM-Centro de Química da Madeira, Universidade da Madeira Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Nádia Nunes
- CQM-Centro de Química da Madeira, Universidade da Madeira Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Dominika Wrobel
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Marcel Stofik
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Lucie Červenková Št Astná
- The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Alena Krupková
- The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Petra Cuřínová
- The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Kateřina Nováková
- The Czech Academy of Sciences, Institute of Organic Chemistry and Biochemistry, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Matěj Božík
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic
| | - Marek Malý
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Jan Malý
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - João Rodrigues
- CQM-Centro de Química da Madeira, Universidade da Madeira Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Tomáš Strašák
- The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| |
Collapse
|
7
|
Müllerová M, Maciel D, Nunes N, Wrobel D, Stofik M, Červenková Št́astná L, Krupková A, Cuřínová P, Nováková K, Božík M, Malý M, Malý J, Rodrigues J, Strašák T. Carbosilane Glycodendrimers for Anticancer Drug Delivery: Synthetic Route, Characterization, and Biological Effect of Glycodendrimer–Doxorubicin Complexes. Biomacromolecules 2021. [DOI: https://doi.org/10.1021/acs.biomac.1c01264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Monika Müllerová
- The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Dina Maciel
- CQM-Centro de Química da Madeira, Universidade da Madeira Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Nádia Nunes
- CQM-Centro de Química da Madeira, Universidade da Madeira Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Dominika Wrobel
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Marcel Stofik
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Lucie Červenková Št́astná
- The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Alena Krupková
- The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Petra Cuřínová
- The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Kateřina Nováková
- The Czech Academy of Sciences, Institute of Organic Chemistry and Biochemistry, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Matěj Božík
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic
| | - Marek Malý
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Jan Malý
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - João Rodrigues
- CQM-Centro de Química da Madeira, Universidade da Madeira Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Tomáš Strašák
- The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| |
Collapse
|
8
|
Pharmacological properties of glabridin (a flavonoid extracted from licorice): A comprehensive review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
9
|
Doxorubicin metabolism moderately attributes to putative toxicity in prodigiosin/doxorubicin synergism in vitro cells. Mol Cell Biochem 2020; 475:119-126. [PMID: 32754875 PMCID: PMC7599147 DOI: 10.1007/s11010-020-03864-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/28/2020] [Indexed: 02/05/2023]
Abstract
Doxorubicin (Dox) is a widely neoplasm chemotherapeutic drug with high incidences of cardiotoxicity. Prodigiosin (PG), a red bacterial pigment from Serratia marcescens, has been demonstrated to potentiate Dox’s cytotoxicity against oral squamous cell carcinoma cells through elevating Dox influx and identified as a Dox enhancer via PG-induced autophagy; however, toxicity of normal cell remains unclear. This study is conducted to evaluate putative cytotoxicity features of PG/Dox synergism in the liver, kidney, and heart cells and further elucidate whether PG augmented Dox’s effect via modulating Dox metabolism in normal cells. Murine hepatocytes FL83B, cardio-myoblast h9c2, and human kidney epithelial cells HK-2 were sequentially treated with PG and Dox by measuring cell viability, cell death characteristics, oxidative stress, Dox flux, and Dox metabolism. PG could slightly significant increase Dox cytotoxicity in all tested normal cells whose toxic alteration was less than that of oral squamous carcinoma cells. The augmentation of Dox cytotoxicity might be attributed to the increase of Dox-mediated ROS accumulation that might cause slight reduction of Dox influx and reduction of Dox metabolism. It was noteworthy to notice that sustained cytotoxicity appeared in normal cells after PG and Dox were removed. Taken together, moderately metabolic reduction of Dox might be ascribed to the mechanism of increase Dox cytotoxicity in PG-induced normal cells; nevertheless, the determination of PG/Dox dose with sustained cytotoxicity in normal cells needs to be comprehensively considered.
Collapse
|
10
|
Pan H, Qiu H, Zhang K, Zhang P, Liang W, Yang M, Mou C, Lin M, He M, Xiao X, Zhang D, Wang H, Liu F, Li Y, Jin H, Yan X, Liang H, Cui W. Fascaplysin Derivatives Are Potent Multitarget Agents against Alzheimer's Disease: in Vitro and in Vivo Evidence. ACS Chem Neurosci 2019; 10:4741-4756. [PMID: 31639294 DOI: 10.1021/acschemneuro.9b00503] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive neurodegeneration and impaired cognitive functions. Fascaplysin is a β-carboline alkaloid isolated from marine sponge Fascaplysinopsis bergquist in 1988. Previous studies have shown that fascaplysin might act on acetylcholinesterase and β-amyloid (Aβ) to produce anti-AD properties. In this study, a series of fascaplysin derivatives were synthesized. The cholinesterase inhibition activities, the neuronal protective effects, and the toxicities of these compounds were evaluated in vitro. Compounds 2a and 2b, the two most powerful compounds in vitro, were further selected to evaluate their cognitive-enhancing effects in animals. Both 2a and 2b could ameliorate cognitive dysfunction induced by scopolamine or Aβ oligomers without affecting locomotor functions in mice. We also found that 2a and 2b could prevent cholinergic dysfunctions, decrease pro-inflammatory cytokine expression, and inhibit Aβ-induced tau hyperphosphorylation in vivo. Most importantly, pharmacodynamics studies suggested that 2b could penetrate the blood-brain barrier and be retained in the central nervous system. All these results suggested that fascaplysin derivatives are potent multitarget agents against AD and might be clinical useful for AD treatment.
Collapse
Affiliation(s)
- Hanbo Pan
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Hongda Qiu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ke Zhang
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Panpan Zhang
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Weida Liang
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Mengxiang Yang
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Chenye Mou
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Miaoman Lin
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ming He
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xiao Xiao
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Difan Zhang
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Haixing Wang
- Zhejiang Province Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Fufeng Liu
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yongmei Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Haixiao Jin
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xiaojun Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Hongze Liang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Wei Cui
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|