1
|
Engel N, Hoffmann T, Behrendt F, Liebing P, Weber C, Gottschaldt M, Schubert US. Cryogels Based on Poly(2-oxazoline)s through Development of Bi- and Trifunctional Cross-Linkers Incorporating End Groups with Adjustable Stability. Macromolecules 2024; 57:2915-2927. [PMID: 38560346 PMCID: PMC10977347 DOI: 10.1021/acs.macromol.3c02030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
1,4-Bis(iodomethyl)benzene and 1,3,5-tris(iodomethyl)benzene were used as initiators for the cationic ring-opening polymerization (CROP) of 2-ethyl-2-oxazoline (EtOx) and its copolymerization with tert-butyl (3-(4,5-dihydrooxazol-2-yl)propyl)carbamate (BocOx) or methyl 3-(4,5-dihydrooxazol-2-yl)propanoate (MestOx). Kinetic studies confirmed the applicability of these initiators. Termination with suitable nucleophiles resulted in two- and three-armed cross-linkers featuring acrylate, methacrylate, piperazine-acrylamide, and piperazine-methacrylamide as polymerizable ω-end groups. Matrix-assisted laser desorption/ionization mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy confirmed the successful attachment of the respective ω-end groups at all initiation sites for every prepared cross-linkers. Except for acrylate, each ω-end group remained stable during deprotection of BocOx containing cross-linkers. The cryogels were prepared using EtOx-based cross-linkers, as confirmed by solid-state NMR spectroscopy, scanning electron microscopy, and thermogravimetric analysis. Stability tests revealed a complete dissolution of the acrylate-containing gels at pH = 14, whereas the piperazine-acrylamide-based cryogels featured excellent hydrolytic stability.
Collapse
Affiliation(s)
- Nora Engel
- Laboratory
of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University at Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Tim Hoffmann
- Laboratory
of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University at Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Florian Behrendt
- Laboratory
of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University at Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Phil Liebing
- Institute
of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University at Jena, Humboldtstraße 8, 07743 Jena, Germany
| | - Christine Weber
- Laboratory
of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University at Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Michael Gottschaldt
- Laboratory
of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University at Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory
of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University at Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
2
|
Patel H, Li J, Bo L, Mehta R, Ashby CR, Wang S, Cai W, Chen ZS. Nanotechnology-based delivery systems to overcome drug resistance in cancer. MEDICAL REVIEW (2021) 2024; 4:5-30. [PMID: 38515777 PMCID: PMC10954245 DOI: 10.1515/mr-2023-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/24/2024] [Indexed: 03/23/2024]
Abstract
Cancer nanomedicine is defined as the application of nanotechnology and nanomaterials for the formulation of cancer therapeutics that can overcome the impediments and restrictions of traditional chemotherapeutics. Multidrug resistance (MDR) in cancer cells can be defined as a decrease or abrogation in the efficacy of anticancer drugs that have different molecular structures and mechanisms of action and is one of the primary causes of therapeutic failure. There have been successes in the development of cancer nanomedicine to overcome MDR; however, relatively few of these formulations have been approved by the United States Food and Drug Administration for the treatment of cancer. This is primarily due to the paucity of knowledge about nanotechnology and the fundamental biology of cancer cells. Here, we discuss the advances, types of nanomedicines, and the challenges regarding the translation of in vitro to in vivo results and their relevance to effective therapies.
Collapse
Affiliation(s)
- Harsh Patel
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Jiaxin Li
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan Province, China
| | - Letao Bo
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Riddhi Mehta
- St. John’s College of Liberal Arts and Sciences, St. John’s University, New York, NY, USA
| | - Charles R. Ashby
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Shanzhi Wang
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan Province, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| |
Collapse
|
3
|
Deng H, Wang J, He W, Ye Y, Bai R, Zhang X, Ye XY, Xie T, Hui Z. Microwave-assisted rapid synthesis of chiral oxazolines. Org Biomol Chem 2023; 21:2312-2319. [PMID: 36637123 DOI: 10.1039/d2ob02192g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chiral oxazoline compounds play an extremely important role in asymmetric synthesis and drug discovery. Herein a simpler, greener and more efficient microwave-assisted protocol to rapidly access chiral oxazolines is developed using aryl nitriles or cyano-containing compounds and chiral β-amino alcohols as starting materials. The reaction proceeds smoothly in the presence of a recoverable heterogeneous catalyst in either concentrated solution or under solvent-free conditions. The advantages of this method include rapidness, convenience, environmental protection, high atom economy, and excellent yields. The protocol should find wider application in the community in the future.
Collapse
Affiliation(s)
- Haowen Deng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, China
| | - Jianshe Wang
- Drug Discovery, Hangzhou PurpleCrystal Pharma Co. Ltd, Hangzhou, Zhejiang 311121, China
| | - Wei He
- Chemical Manufacturing and Control, Adlai Nortye Ltd, Hangzhou, Zhejiang 311121, China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, China
| | - Xuelei Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, China
| | - Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, China
| |
Collapse
|
4
|
Abdeen SA, hefni H, Awadallah-f A, El-rahman NRA. The Synergistic Effect of Biochar and Poly(2-ethyl-2-oxazoline)/poly(2- hydroxyethylmethacarylate)/Chitosan) Hydrogels on Saline Soil Properties and Carrot Productivity.. [DOI: 10.21203/rs.3.rs-2409982/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractBackground Soil Salinity is one of the most important factors limiting crop production. Moreover, with the increasing population and saline soil worldwide there is no choice but to use saline soil to increase the agricultural area. Therefore, to increase carrot productivity under saline conditions, it's necessary to provide good management such as applying hydrogels and biochar for improving soil properties. Methodology Hydrogels (PEtOx-HEMA-CS) were prepared from poly (2-ethyl-2-oxazoline), chitosan (CS), and 2-hydroxyethyl methacrylate (HEMA as crosslinker), by exposure those to gamma irradiation at range from 0–50 kGy with 0.9 kGy/h, and obtained three types of hydrogels according to concentration of chitosan. The PEtOx-HEMA-CS hydrogels were prepared for enhanced water holding capacity for agriculture purposes. The chemical structures of those were investigated by FTIR, XRD and SEM. Biochar (BC) as an active substance was physically mixed with those hydrogels at different ratios (0/100, 0.5/99.5, 1/99 and 100/0 (g/g) biochar/hydrogels). BC, PEtOx-HEMA-CS and the mixture of PEtOx-HEMA-CS-BC were mixed with saline soil at ratio 0.05 and 0.1% w/w of prepared materials/soil. Pot agriculture carrot experiments were conducted to mitigate the salinity hazards by using biochar with and without hydrogels. Findings The obtained data referred that there is a significant decrease in soil salinity and exchangeable sodium percentage and increase in organic matter, cation exchange capacity, field capacity, permanent wilting point and available water especially at (PEtOx-HEMA-CS5)0.1-BC1. The highest increment percentage of NP and K were 36.36, 70 and 72%, respectively. Also, the relative increase of carrot productivity was 49.63% at the highest rates of biochar and hydrogels. However, the highest value of water use efficiency was observed at the mixture of biochar and hydrogels at (PEtOx-HEMA-CS5)0.1-BC1. Conclusion Finally, applying biochar combined with (PEtOx-HEMA-CS5) could be recommended as a good approach to enhance carrot productivity and water use efficiency under saline soil conditions.
Collapse
Affiliation(s)
| | | | - Ahmed Awadallah-F
- National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA)
| | | |
Collapse
|
5
|
Drug repurposing strategy II: from approved drugs to agri-fungicide leads. J Antibiot (Tokyo) 2023; 76:131-182. [PMID: 36707717 PMCID: PMC9880955 DOI: 10.1038/s41429-023-00594-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/28/2023]
Abstract
Epidemic diseases of crops caused by fungi deeply affected the course of human history and processed a major restriction on social and economic development. However, with the enormous misuse of existing antimicrobial drugs, an increasing number of fungi have developed serious resistance to them, making the diseases caused by pathogenic fungi even more challenging to control. Drug repurposing is an attractive alternative, it requires less time and investment in the drug development process than traditional R&D strategies. In this work, we screened 600 existing commercially available drugs, some of which had previously unknown activity against pathogenic fungi. From the primary screen at a fixed concentration of 100 μg/mL, 120, 162, 167, 85, 102, and 82 drugs were found to be effective against Rhizoctonia solani, Sclerotinia sclerotiorum, Botrytis cinerea, Phytophthora capsici, Fusarium graminearum and Fusarium oxysporum, respectively. They were divided into nine groups lead compounds, including quinoline alkaloids, benzimidazoles/carbamate esters, azoles, isothiazoles, pyrimidines, pyridines, piperidines/piperazines, ionic liquids and miscellaneous group, and simple structure-activity relationship analysis was carried out. Comparison with fungicides to identify the most promising drugs or lead structures for the development of new antifungal agents in agriculture.
Collapse
|
6
|
Alimardani V, Sadat Abolmaali S, Yousefi G, Hossein Nowroozzadeh M, Mohammad Tamaddon A. In-situ nanomicelle forming microneedles of poly NIPAAm-b-poly glutamic acid for trans-scleral delivery of dexamethasone. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Heidari M, Salmanpour M, Tamaddon AM. Implication of nanotechnology-based approaches to combat SARS-CoV-2 infection. Indian J Pharmacol 2021; 53:78-79. [PMID: 33976004 PMCID: PMC8216115 DOI: 10.4103/ijp.ijp_857_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Mana Heidari
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Salmanpour
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences; Razi Pharmed-Far'avaran Pharmaceutical Inc., Shiraz, Iran
| | - Ali-Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Ghosh B, Biswas S. Polymeric micelles in cancer therapy: State of the art. J Control Release 2021; 332:127-147. [PMID: 33609621 DOI: 10.1016/j.jconrel.2021.02.016] [Citation(s) in RCA: 233] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
In recent years, polymeric micelles have been extensively utilized in pre-clinical studies for delivering poorly soluble chemotherapeutic agents in cancer. Polymeric micelles are formed via self-assembly of amphiphilic polymers in facile manners. The wide availability of hydrophobic and, to some extent, hydrophilic polymeric blocks allow researchers to explore various polymeric combinations for optimum loading, stability, systemic circulation, and delivery to the target cancer tissues. Moreover, polymeric micelles could easily be tailor-made by increasing and decreasing the number of monomers in each polymeric chain. Some of the widely accepted hydrophobic polymers are poly(lactide) (PLA), poly(caprolactone) (PCL), poly(lactide-co-glycolide) (PLGA), polyesters, poly(amino acids), lipids. The hydrophilic polymers used to wrap the hydrophobic core are poly(ethylene glycol), poly(oxazolines), chitosan, dextran, and hyaluronic acids. Drugs could be conjugated to polymers at the distal ends to prepare pharmacologically active polymeric systems that impart enhanced solubility and stability of the conjugates and provide an opportunity for combination drug delivery. Their nano-size enables them to accumulate to the tumor microenvironment via the Enhanced Permeability and Retention (EPR) effect. Moreover, the stimuli-sensitive breakdown provides the micelles an effective means to deliver the therapeutic cargo effectively. The tumor micro-environmental stimuli are pH, hypoxia, and upregulated enzymes. Externally applied stimuli to destroy micellar disassembly to release the payload include light, ultrasound, and temperature. This article delineates the current trend in developing polymeric micelles combining various block polymeric scaffolds. The development of stimuli-sensitive micelles to achieve enhanced therapeutic activity are also discussed.
Collapse
Affiliation(s)
- Balaram Ghosh
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India.
| |
Collapse
|
9
|
Hydrolytic stabilization of irinotecan active metabolite (SN38) against physiologic pH through self-assembly of conjugated poly (2-oxazoline) - poly (l-amino acid) block copolymer: A-synthesis and physicochemical characterization. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Salmanpour M, Saeed-Vaghefi M, Abolmaali SS, Tamaddon AM. Sterically Stabilized Polyionic Complex Nanogels of Chitosan Lysate and PEG-b-Polyglutamic Acid Copolymer for the Delivery of Irinotecan Active Metabolite (SN-38). Curr Drug Deliv 2020; 18:741-752. [PMID: 33155910 DOI: 10.2174/1567201817999201103195846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Poly Ionic Complex (PIC) nanogels are promising delivery systems with numerous attractions such as simple, fast, and organic solvent-free particle formation and mild drug loading conditions. Among polyelectrolytes, poly (L-amino acid) copolymers, such as poly (ethylene glycol)-block-poly (L-glutamic acid) copolymers (PEG-b-PGlu) are interesting biocompatible and biodegradable candidates bearing carboxylic acid functional groups. OBJECTIVE Aiming to solubilize and to preserve short-acting irinotecan active metabolite (SN38), sterically stabilized PIC nanogels were prepared through electrostatic charge neutralization between PEG-b-PGlu and chitosan lysate, a polycationic natural polymer obtained through digestion of chitosan by hydrogen peroxide oxidation and is soluble in a wide range of pH. METHODS Synthesis of PEG-b-PGlu was accomplished by N-carboxy anhydride polymerization of γ -benzyl L-glutamic acid, which is initiated by methoxy PEG-NH2 and successive debenzylation reaction. RESULTS The resulting block copolymer was characterized by FTIR, 1H-NMR, and Size Exclusion Chromatography (SEC). Self-assembling properties of the PIC nanogels were investigated by pyrene assay, Dynamic Light Scattering (DLS), and Transmission Electron Microscopy (TEM), indicating the formation of homogeneous spherical particles with a mean size of 28 nm at the PEGb- PGlu concentrations/LMWC weight ratio of 5:1. Upon direct loading of SN38, the drug solubility enhanced more than 4×103 folds with a mean loading efficiency of 89% and the drug loading of 30%. PIC nanogels exhibited zeta potential of +1 mV, acceptable biocompatibility, and superior cytotoxicity in murine colorectal carcinoma (CT26 cell line) compared to free drug. CONCLUSION In addition, the PIC nanogels provided SN38 protection against hydrolytic degradation in physiologic conditions. Conclusively, the well-tuned PIC nanogels are suggested as a potentially biocompatible nanocarrier for SN38 delivery.
Collapse
Affiliation(s)
- Mohsen Salmanpour
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Mahvand Saeed-Vaghefi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Samira Sadat Abolmaali
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Ali Mohamad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| |
Collapse
|
11
|
Double hydrophilic block copolymers self-assemblies in biomedical applications. Adv Colloid Interface Sci 2020; 283:102213. [PMID: 32739324 DOI: 10.1016/j.cis.2020.102213] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022]
Abstract
Double-hydrophilic block copolymers (DHBCs), consisting of at least two different water-soluble blocks, are an alternative to the classical amphiphilic block copolymers and have gained increasing attention in the field of biomedical applications. Although the chemical nature of the two blocks can be diverse, most classical DHBCs consist of a bioeliminable non-ionic block to promote solubilization in water, like poly(ethylene glycol), and a second block that is more generally a pH-responsive block capable of interacting with another ionic polymer or substrate. This second block is generally non-degradable and the presence of side chain functional groups raises the question of its fate and toxicity, which is a limitation in the frame of biomedical applications. In this review, following a first part dedicated to recent examples of non-degradable DHBCs, we focus on the DHBCs that combine a biocompatible and bioeliminable non-ionic block with a degradable functional block including polysaccharides, polypeptides, polyesters and other miscellaneous polymers. Their use to design efficient drug delivery systems for various biomedical applications through stimuli-dependent self-assembly is discussed along with the current challenges and future perspectives for this class of copolymers.
Collapse
|
12
|
Curcumin loaded polymeric micelles of variable hydrophobic lengths by RAFT polymerization: Preparation and in-vitro characterization. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101793] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Blum SP, Schollmeyer D, Turks M, Waldvogel SR. Metal- and Reagent-Free Electrochemical Synthesis of Alkyl Arylsulfonates in a Multi-Component Reaction. Chemistry 2020; 26:8358-8362. [PMID: 32338808 PMCID: PMC7383810 DOI: 10.1002/chem.202001180] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Indexed: 12/12/2022]
Abstract
This work presents the first electrochemical preparation of alkyl arylsulfonates by direct anodic oxidation of electron-rich arenes. The reaction mechanism features a multi-component reaction consisting of electron-rich arenes, an alcohol of choice and excess SO2 in an acetonitrile-HFIP reaction mixture. In-situ formed monoalkyl sulfites are considered as key intermediates with bifunctional purpose. Firstly, this species functions as nucleophile and secondly, excellent conductivity is provided. Several primary and secondary alcohols and electron-rich arenes are implemented in this reaction to form the alkyl arylsulfonates in yields up to 73 % with exquisite selectivity. Boron-doped diamond electrodes (BDD) are employed in divided cells, separated by a simple commercially available glass frit.
Collapse
Affiliation(s)
- Stephan P. Blum
- Department of ChemistryJohannes Gutenberg-University MainzDuesbergweg 10-1455128MainzGermany
| | - Dieter Schollmeyer
- Department of ChemistryJohannes Gutenberg-University MainzDuesbergweg 10-1455128MainzGermany
| | - Maris Turks
- Institute of Technology of Organic ChemistryFaculty of Materials Science and Applied ChemistryRiga Technical UniversityP. Valdena 3Riga1048Latvia
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg-University MainzDuesbergweg 10-1455128MainzGermany
| |
Collapse
|
14
|
Salmanpour M, Yousefi G, Samani SM, Mohammadi S, Anbardar MH, Tamaddon A. Nanoparticulate delivery of irinotecan active metabolite (SN38) in murine colorectal carcinoma through conjugation to poly (2-ethyl 2-oxazoline)-b-poly (L-glutamic acid) double hydrophilic copolymer. Eur J Pharm Sci 2019; 136:104941. [DOI: 10.1016/j.ejps.2019.05.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 01/04/2023]
|
15
|
Mostoufi H, Yousefi G, Tamaddon AM, Firuzi O. Reversing multi-drug tumor resistance to Paclitaxel by well-defined pH-sensitive amphiphilic polypeptide block copolymers via induction of lysosomal membrane permeabilization. Colloids Surf B Biointerfaces 2019; 174:17-27. [DOI: 10.1016/j.colsurfb.2018.10.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/18/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023]
|
16
|
Monajati M, Tavakoli S, Abolmaali SS, Yousefi G, Tamaddon A. Effect of PEGylation on assembly morphology and cellular uptake of poly ethyleneimine-cholesterol conjugates for delivery of sorafenib tosylate in hepatocellular carcinoma. ACTA ACUST UNITED AC 2018; 8:241-252. [PMID: 30397579 PMCID: PMC6209830 DOI: 10.15171/bi.2018.27] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/01/2018] [Accepted: 04/07/2018] [Indexed: 12/19/2022]
Abstract
Introduction: Sorafenib (SFB) is an FDA-approved chemotherapeutic agent with a high partition coefficient (log P = 4.34) for monotherapy of hepatocellular carcinoma (HCC). The oral bioavailability is low and variable, so it was aimed to study the application of the polymeric nanoassembly of cholesterol conjugates of branched polyethyleneimine (PEI) for micellar solubilization of SFB and to investigate the impact of the polymer PEGylation on the physicochemical and cellular characteristics of the lipopolymeric dispersions. Methods: Successful synthesis of cholesterol-PEI lipopolymers, either native or PEGylated, was confirmed by FTIR, 1H-NMR, pyrene assay methods. The nanoassemblies were also characterized in terms of morphology, particle size distribution and zeta-potential by TEM and dynamic light scattering (DLS). The SFB loading was optimized using general factorial design. Finally, the effect of particle characteristics on cellular uptake and specific cytotoxicity was investigated by flow cytometry and MTT assay in HepG2 cells. Results: Transmission electron microscopy (TEM) showed that PEGylation of the lipopolymers reduces the size and changes the morphology of the nanoassembly from rod-like to spherical shape. However, PEGylation of the lipopolymer increased critical micelle concentration (CMC) and reduced the drug loading. Moreover, the particle shape changes from large rods to small spheres promoted the cellular uptake and SFB-related cytotoxicity. Conclusion: The combinatory effects of enhanced cellular uptake and reduced general cytotoxicity can present PEGylated PEI-cholesterol conjugates as a potential carrier for delivery of poorly soluble chemotherapeutic agents such as SFB in HCC that certainly requires further investigations in vitro and in vivo.
Collapse
Affiliation(s)
- Maryam Monajati
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran.,Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Tavakoli
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology and Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Gholamhossein Yousefi
- Department of Pharmaceutical Nanotechnology and Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - AliMohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| |
Collapse
|