1
|
Hashem Boroojerdi M, Hosseinpour Sarmadi V, Maqbool M, Ling KH, Safarzadeh Kozani P, Safarzadeh Kozani P, Ramasamy R. Directional capacity of human mesenchymal stem cells to support hematopoietic stem cell proliferation in vitro. Gene 2022; 820:146218. [PMID: 35134469 DOI: 10.1016/j.gene.2022.146218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/16/2021] [Accepted: 01/13/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Hematopoietic stem cells (HSCs) reside in a specialised microenvironment in the bone marrow, which is majorly composed of mesenchymal stem cells (MSCs) and its' derivatives. This study aimed to investigate the regulatory role of MSCs to decipher the cellular and humoral communications on HSCs' proliferation, self-renewal, and differentiation at the transcriptomic level. MATERIALS AND METHODS Microarray assay was employed to analyse the gene expression profile of HSCs that imparted by MSCs during co-culture. RESULTS The proliferation of human umbilical cord blood-derived HSCs (hUC-HSCs) markedly propagated when MSCs were used as the feeder layer, without disturbing the undifferentiated state of HSCs, and reduced the cell death of HSCs. Upon co-culture with MSCs, the global microarray analysis of HSCs disclosed 712 differentially expressed genes (DEGs) (561 up-regulated and 151 down-regulated). The dysregulations of various transcripts were enriched for cellular functions such as cell cycle (including CCND1), apoptosis (including TNF), and genes related to signalling pathways governing self-renewal, as well as WNT5A from the Wnt signalling pathway, MAPK, Hedgehog, FGF2 from FGF, Jak-STAT, and PITX2 from the TGF-β signalling pathway. To concur this, real-time quantitative PCR (RT-qPCR) was utilised for corroborating the microarray results from five of the most dysregulated genes. CONCLUSION This study elucidates the underlying mechanisms of the mitogenic influences of MSCs on the propagation of HSCs. The exploitation of such mechanisms provides a potential means for achieving larger quantities of HSCs in vitro, thus obviating the need for manipulating their differentiation potential for clinical application.
Collapse
Affiliation(s)
- Mohadese Hashem Boroojerdi
- Stem Cell & Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Vahid Hosseinpour Sarmadi
- Institute of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Science, Tehran, Iran
| | - Maryam Maqbool
- Stem Cell & Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Rajesh Ramasamy
- Stem Cell & Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Dental Radiology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| |
Collapse
|