1
|
Zubaidi AA, Al-Shamsi A. A Novel Missense Heterozygous Mutation in NKX2-5 Gene in a Family with Congenital Septal Defects and Cardiomyopathy: Case Series and Literature Review. J Pediatr Genet 2024; 13:308-314. [PMID: 39502842 PMCID: PMC11534424 DOI: 10.1055/s-0044-1788252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/10/2024] [Indexed: 11/08/2024]
Abstract
Single-gene mutations are important causes of congenital heart defects in children. Mutations in the NKX2-5 gene have been recently described in the literature as a cause of septal defects and cardiomyopathy. However, the spectrum of cardiac disease associated with NKX2-5 gene mutations is variable, ranging from asymptomatic septal defects to cardiomyopathy and sudden death. In this case report, we describe a case of 2-year-old child, along with two other family members, with a novel missense heterozygous (c.544G > T p.[Val182Phe]) mutation in NKX2-5 gene consistent with the diagnosis of autosomal dominant atrial septal defects with cardiomyopathy. This report can contribute to the understanding of genotype-phenotype correlations; it emphasizes the significant clinical relevance of NKX2-5 gene defects for congenital heart defects, sudden death, and cardiomyopathy, especially in multiple affected family members. It also suggests that individuals with NKX2-5 mutations are at risk of lethal arrhythmias and conduction disorders, that is why they should be evaluated routinely to assess the need for implantable cardioverter-defibrillator or pacemaker implantation.
Collapse
Affiliation(s)
| | - Aisha Al-Shamsi
- Genetic Division, Pediatrics Department, Tawam Hospital, Al Ain, United Arab Emirates
| |
Collapse
|
2
|
Cervantes-Salazar JL, Pérez-Hernández N, Calderón-Colmenero J, Rodríguez-Pérez JM, González-Pacheco MG, Villamil-Castañeda C, Rosas-Tlaque AA, Ortega-Zhindón DB. Genetic Insights into Congenital Cardiac Septal Defects-A Narrative Review. BIOLOGY 2024; 13:911. [PMID: 39596866 PMCID: PMC11592229 DOI: 10.3390/biology13110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Congenital heart diseases (CHDs) are a group of complex diseases characterized by structural and functional malformations during development in the human heart; they represent an important problem for public health worldwide. Within these malformations, septal defects such as ventricular (VSD) and atrial septal defects (ASD) are the most common forms of CHDs. Studies have reported that CHDs are the result of genetic and environmental factors. Here, we review and summarize the role of genetics involved in cardiogenesis and congenital cardiac septal defects. Moreover, treatment regarding these congenital cardiac septal defects is also addressed.
Collapse
Affiliation(s)
- Jorge L. Cervantes-Salazar
- Department of Pediatric Cardiac Surgery and Congenital Heart Disease, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (J.L.C.-S.); (A.A.R.-T.)
| | - Nonanzit Pérez-Hernández
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (N.P.-H.); (J.M.R.-P.); (C.V.-C.)
| | - Juan Calderón-Colmenero
- Department of Pediatric Cardiology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - José Manuel Rodríguez-Pérez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (N.P.-H.); (J.M.R.-P.); (C.V.-C.)
| | | | - Clara Villamil-Castañeda
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (N.P.-H.); (J.M.R.-P.); (C.V.-C.)
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Angel A. Rosas-Tlaque
- Department of Pediatric Cardiac Surgery and Congenital Heart Disease, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (J.L.C.-S.); (A.A.R.-T.)
- Dirección General de Calidad y Educación en Salud, Secretaría de Salud, Mexico City 06600, Mexico
| | - Diego B. Ortega-Zhindón
- Department of Pediatric Cardiac Surgery and Congenital Heart Disease, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (J.L.C.-S.); (A.A.R.-T.)
- Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
3
|
El-Medany A, Aziz S, Duncan E. NKX2-5 genetic mutation in a young woman with an atrial septal defect presenting with complete heart block: ICD or bradycardia pacemaker? BMJ Case Rep 2023; 16:e252523. [PMID: 36609421 PMCID: PMC9827188 DOI: 10.1136/bcr-2022-252523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A woman in her 40s was admitted following syncope. The 12-lead ECG showed atrial fibrillation with slow ventricular response and suspected complete atrioventricular (AV) block. Cardiac monitoring demonstrated non-sustained monomorphic ventricular tachycardia (VT). Her medical history included surgical repair of an atrial septal defect (ASD) aged 4 years. The patient's mother died suddenly in her early 50s and also had an ASD. Given the patient's syncope, background of familial sudden cardiac death (SCD), suspicion of complete AV block and non-sustained VT, she received an implantable cardiac defibrillator (ICD). She underwent genetic testing, revealing a heterozygous NKX2-5 genetic mutation. The signature phenotype in NKX2-5 mutations is ASD with AV conduction disturbance and an increased risk of SCD secondary to ventricular arrhythmias or severe bradycardia. SCD has been described in NKX2-5 mutation carriers despite functioning permanent pacemakers (PPMs). Therefore, we propose implantation of a preventive ICD, as opposed to a PPM.
Collapse
Affiliation(s)
- Ahmed El-Medany
- Cardiology, Bristol Heart Institute, Bristol, UK
- Cardiology, Southmead Hospital, Bristol, UK
| | | | | |
Collapse
|
4
|
Ma Q, Yang Y, Liu Y. Associations between NKX2-5 gene polymorphisms and congenital heart disease in the Chinese Tibetan population. Am J Transl Res 2022; 14:8407-8415. [PMID: 36505279 PMCID: PMC9730064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The pathogenesis of congenital heart disease (CHD) has not been fully elucidated, and this study considers the interaction between inheritance and the environment as the main cause of CHD. Previous studies have found that the incidence of CHD in the Tibetan plateau population is significantly higher than in low-altitude populations. Numerous reports have confirmed that NKX2-5 gene mutations can lead to coronary heart disease, but the relationship between NKX2-5 and Tibetan nationality has not yet been reported. OBJECTIVE To explore the relationship between NKX2-5 gene polymorphisms and CHD in Tibetan people. METHODS Blood samples were collected retrospectively from Tibetan patients diagnosed with CHD as well as healthy Tibetans, and the exons of NKX2-5 were sequenced. The MassARRAY technique was used to detect and genotype candidate tag single nucleotide polymorphisms (SNPs) in the non-coding regions of NKX2-5. RESULTS Exon sequencing revealed no difference in the coding regions of the NKX2-5 gene between the CHD and control groups. In the non-coding regions of NKX2-5, rs6882776 and rs2546741 differed significantly between the two groups. Strong linkage disequilibrium was found between the selected sites of NKX2-5. CONCLUSIONS The NKX2-5 exons do not associate with CHD in Tibetans. Rs6882776 and rs2546741 in the non-coding regions of NKX2-5 may protect against CHD in Tibetans. The NKX2-5 haplotype associated with CHD occurrence in the Tibetan population.
Collapse
Affiliation(s)
- Qiang Ma
- High Altitude Medical Research Center, Medical College of Qinghai University16 Kunlun Road, Xining 810001, Qinghai, China,Department of Pathology, Sunshine Union HospitalYingqian Road, Weifang 261000, Shandong, China
| | - Yingzhong Yang
- High Altitude Medical Research Center, Medical College of Qinghai University16 Kunlun Road, Xining 810001, Qinghai, China
| | - Yongnian Liu
- High Altitude Medical Research Center, Medical College of Qinghai University16 Kunlun Road, Xining 810001, Qinghai, China
| |
Collapse
|
5
|
Hao L, Ma J, Wu F, Ma X, Qian M, Sheng W, Yan T, Tang N, Jiang X, Zhang B, Xiao D, Qian Y, Zhang J, Jiang N, Zhou W, Chen W, Ma D, Huang G. WDR62 variants contribute to congenital heart disease by inhibiting cardiomyocyte proliferation. Clin Transl Med 2022; 12:e941. [PMID: 35808830 PMCID: PMC9270576 DOI: 10.1002/ctm2.941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Background Congenital heart disease (CHD) is the most common birth defect and has high heritability. Although some susceptibility genes have been identified, the genetic basis underlying the majority of CHD cases is still undefined. Methods A total of 1320 unrelated CHD patients were enrolled in our study. Exome‐wide association analysis between 37 tetralogy of Fallot (TOF) patients and 208 Han Chinese controls from the 1000 Genomes Project was performed to identify the novel candidate gene WD repeat‐containing protein 62 (WDR62). WDR62 variants were searched in another expanded set of 200 TOF patients by Sanger sequencing. Rescue experiments in zebrafish were conducted to observe the effects of WDR62 variants. The roles of WDR62 in heart development were examined in mouse models with Wdr62 deficiency. WDR62 variants were investigated in an additional 1083 CHD patients with similar heart phenotypes to knockout mice by multiplex PCR‐targeting sequencing. The cellular phenotypes of WDR62 deficiency and variants were tested in cardiomyocytes, and the molecular mechanisms were preliminarily explored by RNA‐seq and co‐immunoprecipitation. Results Seven WDR62 coding variants were identified in the 237 TOF patients and all were indicated to be loss of function variants. A total of 25 coding and 22 non‐coding WDR62 variants were identified in 80 (6%) of the 1320 CHD cases sequenced, with a higher proportion of WDR62 variation (8%) found in the ventricular septal defect (VSD) cohort. WDR62 deficiency resulted in a series of heart defects affecting the outflow tract and right ventricle in mouse models, including VSD as the major abnormality. Cell cycle arrest and an increased number of cells with multipolar spindles that inhibited proliferation were observed in cardiomyocytes with variants or knockdown of WDR62. WDR62 deficiency weakened the association between WDR62 and the cell cycle‐regulated kinase AURKA on spindle poles, reduced the phosphorylation of AURKA, and decreased expression of target genes related to cell cycle and spindle assembly shared by WDR62 and AURKA. Conclusions WDR62 was identified as a novel susceptibility gene for CHD with high variant frequency. WDR62 was shown to participate in the cardiac development by affecting spindle assembly and cell cycle pathway in cardiomyocytes.
Collapse
Affiliation(s)
- Lili Hao
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jing Ma
- ENT institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Feizhen Wu
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaojing Ma
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Maoxiang Qian
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Wei Sheng
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Tizhen Yan
- Department of Medical Genetics, Department of Clinical Laboratory, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Ning Tang
- Department of Medical Genetics, Department of Clinical Laboratory, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Xin Jiang
- Medical Laboratory of Nantong ZhongKe, Nantong, Jiangsu
| | - Bowen Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Deyong Xiao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanyan Qian
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenhao Zhou
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Weicheng Chen
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Duan Ma
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guoying Huang
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.,Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
6
|
Chen H, Li T, Wu Y, Wang X, Wang M, Wang X, Fang X. Association between single-nucleotide polymorphisms of NKX2.5 and congenital heart disease in Chinese population: A meta-analysis. Open Life Sci 2022; 17:473-482. [PMID: 35647298 PMCID: PMC9102305 DOI: 10.1515/biol-2022-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
NKX2.5 is a transcription factor that plays a key role in cardiovascular growth and development. Several independent studies have been previously conducted to investigate the association between the single-nucleotide polymorphism (SNP) 606G >C (rs3729753) in the coding region of NKX2.5 and congenital heart disease (CHD). However, the results of these studies have been inconsistent. Therefore, the present study aimed to reveal the relationship between NKX2.5 SNP 606G >C and the risk of CHD as possible in the Chinese population through meta-analysis. After retrieving related articles in PubMed, MEDLINE, EMBASE, Web of science, Cochrane, China National Knowledge Infrastructure, Wanfang DATA, and VIP database until August 2021, a total of eight studies were included in the present meta-analysis. The qualified research data were then merged into allele, dominant, recessive, heterozygous, homozygous, and additive models. Overall results of the current meta-analysis showed that 606G >C was not associated with CHD of the Chinese population in any model. In addition, subgroup analysis based on CHD type gave the same negative result. Results of sensitivity analysis showed that there was no significant correlation after the deletion of each study. Furthermore, it was noted that the results were negative and the heterogeneity was not significant. In conclusion, it was evident that NKX2-5 SNP 606G >C may not lead to the risk of CHD in Chinese population.
Collapse
Affiliation(s)
- Huan Chen
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University , Changsha , Hunan , China
| | - Tianjiao Li
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University , Changsha , Hunan , China
| | - Yuqing Wu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University , Changsha , Hunan , China
| | - Xi Wang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University , Changsha , Hunan , China
| | - Mingyuan Wang
- Department of Pathophysiology, Xiangya Medical College, Central South University , Changsha , Hunan , China
| | - Xin Wang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University , Changsha , Hunan , China
| | - Xiaoling Fang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University , Changsha , Hunan , China
| |
Collapse
|
7
|
EL Bouchikhi I, Belhassan K, Moufid FZ, Bouguenouch L, Samri I, Iraqui Houssaïni M, Ouldim K, Atmani S. Screening of NKX2.5 gene in Moroccan Tetralogy of Fallot (TOF) patients: worldwide mutation rate comparisons show a significant association between R25C variant and TOF phenotype. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00136-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
Background
Tetralogy of Fallot is the most prevalent cyanotic congenital heart disease, occurring in 1/3 600 live births. This disorder comprises ventricular septal defect, right ventricular outflow obstruction, over-riding aorta, and right ventricular hypertrophy. The present study aims to reveal the spectrum of Nk2 homeobox 5 (NKX2-5) variants identified in a Moroccan non-syndromic tetralogy of Fallot cohort and to compare mutation rate with different studies from all over the world. Thirty-one patients with non-syndromic tetralogy of Fallot were recruited in this cross-sectional study. DNAs were extracted, and coding regions of NKX2.5 were PCR-amplified and sequenced. The obtained sequences were analyzed using different bioinformatics tools. Statistical comparisons were carried out using the R software.
Results
R25C mutation was found in two patients, in association with the E21E variant. The latter variant was frequently observed in the population and seems to have a potential altering effect on the splicing process. The NKX2.5 mutation rate in our tetralogy of Fallot population is around 6.4%, and no significant difference was noticed in comparison with previous studies. At the same time, a comparison of R25C mutation rate between atrial septal defect and tetralogy of Fallot worldwide populations shows a particular association of R25C mutation with tetralogy of Fallot phenotype.
Conclusions
This study reveals a consistency between our NKX2.5 mutation rate and those of different tetralogy of Fallot populations around the world. Our findings suggest a possible combined effect of R25C mutation and E21E variant on the carriers and emphasize particularly the significant association of R25C mutation with tetralogy of Fallot, which highlights the importance of an anticipative screening for TOF phenotype among the carriers’ offspring at the perinatal period.
Collapse
|
8
|
Morlanes-Gracia P, Antoniutti G, Alvarez-Rubio J, Torres-Juan L, Heine-Suñer D, Ripoll-Vera T. Case Report: A Novel NKX2-5 Mutation in a Family With Congenital Heart Defects, Left Ventricular Non-compaction, Conduction Disease, and Sudden Cardiac Death. Front Cardiovasc Med 2021; 8:691203. [PMID: 34277740 PMCID: PMC8280289 DOI: 10.3389/fcvm.2021.691203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/01/2021] [Indexed: 01/27/2023] Open
Abstract
The NKX2-5 gene encodes for a transcription factor crucial for cardiac cell differentiation and proliferation. It was the first gene associated with congenital heart disease (CHD) in humans and has been linked to conduction disorders or cardiomyopathies. However, an overlapping phenotype is not frequent in the literature. We describe a family with a novel missense mutation in the NKX2-5 gene (p.Gln181Pro) with numerous antecedents with atrial septal defect (ASD), left ventricular non-compaction (LVNC), conduction disease, and sudden cardiac death (SCD).
Collapse
Affiliation(s)
| | | | - Jorge Alvarez-Rubio
- Hospital Universitario Son LLàtzer, Palma de Mallorca, Spain.,Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Laura Torres-Juan
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain.,Departmento de Genetica Clínica y Molecular, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Damian Heine-Suñer
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain.,Departmento de Genetica Clínica y Molecular, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Tomás Ripoll-Vera
- Hospital Universitario Son LLàtzer, Palma de Mallorca, Spain.,Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain.,Centro de Investigación Biomédica CIBEROBN, Madrid, Spain
| |
Collapse
|
9
|
Janin A, Januel L, Cazeneuve C, Delinière A, Chevalier P, Millat G. Molecular Diagnosis of Inherited Cardiac Diseases in the Era of Next-Generation Sequencing: A Single Center's Experience Over 5 Years. Mol Diagn Ther 2021; 25:373-385. [PMID: 33954932 DOI: 10.1007/s40291-021-00530-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Molecular diagnosis in inherited cardiac diseases is challenging because of the significant genetic and clinical heterogeneity. We present a detailed molecular investigation of a cohort of 4185 patients with referrals for inherited cardiac diseases. METHODS Patients suffering from cardiomyopathies (3235 probands), arrhythmia syndromes (760 probands), or unexplained sudden cardiac arrest (190 cases) were analyzed using a next-generation sequencing (NGS) workflow based on a panel of 105 genes involved in sudden cardiac death. RESULTS (Likely) pathogenic variations were identified for approximately 30% of the cohort. Pathogenic copy number variations (CNVs) were detected in approximately 3.1% of patients for whom a (likely) pathogenic variation were identified. A (likely) pathogenic variation was also detected for 21.1% of patients who died from sudden cardiac death. Unexpected variants, including incidental findings, were present for 28 cases. Pathogenic variations were mainly observed in genes with definitive evidence of disease causation. CONCLUSIONS Our study, which comprises over than 4000 probands, is one of most important cohorts reported in inherited cardiac diseases. The global mutation detection rate would be significantly increased by determining the putative pathogenicity of the large number of variants of uncertain significance. Identification of "unexpected" variants also showed the clinical utility of genetic testing in inherited cardiac diseases as they can redirect clinical management and medical resources toward a meaningful precision medicine. In cases with negative result, a WGS approach could be considered, but would probably have a limited impact on mutation detection rate as (likely) pathogenic variations were essentially clustered in genes with strong evidence of disease causation.
Collapse
Affiliation(s)
- Alexandre Janin
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron Cedex, 69677, Lyon, France.,Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France.,Université de Lyon, 69003, Lyon, France
| | - Louis Januel
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron Cedex, 69677, Lyon, France
| | - Cécile Cazeneuve
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron Cedex, 69677, Lyon, France
| | - Antoine Delinière
- Université de Lyon, 69003, Lyon, France.,Hôpital Cardiologique Louis Pradel, Service de Rythmologie, Lyon, France
| | - Philippe Chevalier
- Université de Lyon, 69003, Lyon, France.,Hôpital Cardiologique Louis Pradel, Service de Rythmologie, Lyon, France
| | - Gilles Millat
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron Cedex, 69677, Lyon, France. .,Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France. .,Université de Lyon, 69003, Lyon, France.
| |
Collapse
|
10
|
Crystal Structures of Ternary Complexes of MEF2 and NKX2-5 Bound to DNA Reveal a Disease Related Protein-Protein Interaction Interface. J Mol Biol 2020; 432:5499-5508. [PMID: 32681840 DOI: 10.1016/j.jmb.2020.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 11/22/2022]
Abstract
MEF2 and NKX2-5 transcription factors interact with each other in cardiogenesis and are necessary for normal heart formation. Despite evidence suggesting that these two transcription factors function synergistically and possibly through direct physical interactions, molecular mechanisms by which they interact are not clear. Here we determined the crystal structures of ternary complexes of MEF2 and NKX2-5 bound to myocardin enhancer DNA in two crystal forms. These crystal structures are the first example of human MADS-box/homeobox ternary complex structures involved in cardiogenesis. Our structures reveal two possible modes of interactions between MEF2 and NKX2-5: MEF2 and NKX bind to adjacent DNA sites to recognize DNA in cis; and MEF2 and NKX bind to different DNA strands to interact with each other in trans via a conserved protein-protein interface observed in both crystal forms. Disease-related mutations are mapped to the observed protein-protein interface. Our structural studies provide a starting point to understand and further study the molecular mechanisms of the interactions between MEF2 and NKX2.5 and their roles in cardiogenesis.
Collapse
|