1
|
Qian M, Zhang Y, Bian Y, Feng XS, Zhang ZB. Nitrophenols in the environment: An update on pretreatment and analysis techniques since 2017. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116611. [PMID: 38909393 DOI: 10.1016/j.ecoenv.2024.116611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
Nitrophenols, a versatile intermediate, have been widely used in leather, medicine, chemical synthesis, and other fields. Because these components are widely applied, they can enter the environment through various routes, leading to many hazards and toxicities. There has been a recent surge in the development of simple, rapid, environmentally friendly, and effective techniques for determining these environmental pollutants. This review provides a comprehensive overview of the latest research progress on the pretreatment and analysis methods of nitrophenols since 2017, with a focus on environmental samples. Pretreatment methods include liquid-liquid extraction, solid-phase extraction, dispersive extraction, and microextraction methods. Analysis methods mainly include liquid chromatography-based methods, gas chromatography-based methods, supercritical fluid chromatography. In addition, this review also discusses and compares the advantages/disadvantages and development prospects of different pretreatment and analysis methods to provide a reference for further research.
Collapse
Affiliation(s)
- Min Qian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Zhong-Bo Zhang
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
2
|
Skolariki TA, Chatzimitakos TG, Sygellou L, Stalikas CD. Two-Birds-with-One-Stone Synthesis of Hydrophilic and Hydrophobic Fluorescent Carbon Nanodots from Dunaliella salina Biomass as 4-Nitrophenol Nanoprobes Based on Inner Filter Effect and First Derivative Redshift of Emission Band. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101689. [PMID: 37242105 DOI: 10.3390/nano13101689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
4-Nitrophenol (4-NP) has been listed as a priority pollutant and has also been reported as a human urinary metabolite used as a marker to evaluate exposure to certain pesticides. In the work herein, a solvothermal approach is applied to the one-pot synthesis of both hydrophilic and hydrophobic fluorescent carbon nanodots (CNDs), utilizing the halophilic microalgae Dunaliella salina as a biomass precursor. Both kinds of the produced CNDs showed appreciable optical properties and quantum yields, good photostability and they were capable of probing 4-NP by quenching their fluorescence through the inner filter effect. Interestingly, a prominent 4-NP concentration-dependent redshift of the corresponding emission band of the hydrophilic CNDs was noticed, which was further exploited, for the first time, as an analytical platform. Capitalizing on these properties, analytical methods were developed and applied to a variety of matrixes, such as tap water, treated municipal wastewater and human urine. The method based on the hydrophilic CNDs (λex/λem: 330/420 nm) was linear in the range of 0.80-45.0 μM and showed acceptable recoveries (from 102.2 to 113.7%) with relative standard deviations of 2.1% (intra-day) and 2.8% (inter-day) for the quenching-based detection mode and 2.9% (intra-day) and 3.5% (inter-day) for the redshift one. The method based on the hydrophobic CNDs (λex/λem: 380/465 nm) was linear in the range of 1.4-23.0 μM, with recoveries laying within the range of 98.2-104.5% and relative standard deviations of 3.3% and 4.0% for intra-day and inter-day assays, respectively.
Collapse
Affiliation(s)
- Thomais A Skolariki
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Theodoros G Chatzimitakos
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Lamprini Sygellou
- Foundation for Research and Technology Hellas/Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou Str., P.O. Box 1414, 26504 Rio-Patras, Greece
| | - Constantine D Stalikas
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
3
|
You ZX, Xiao Y, Guan QL, Xing YH, Bai FY, Xu F. Cage Bismuth Metal-Organic Framework Materials Based on a Flexible Triazine-Polycarboxylic Acid: Subgram Synthesis, Application for Sensing, and White Light Tuning. Inorg Chem 2022; 61:13893-13914. [PMID: 35998739 DOI: 10.1021/acs.inorgchem.2c01893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bismuth-based metal-organic frameworks (MOFs) have always attracted the attention of many researchers. Here, we first report a crystalline Bi-MOF (Bi-TDPAT) based on a flexible triazine-polycarboxylic linker 2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine (H6TDPAT) and bismuth nitrate; its crystallite quality is adequately good and the diffraction data can be collected directly by single crystal X-ray diffraction rather than 3D electron diffraction. The structure of Bi-TDPAT belongs to a novel topology type btt. Notably, the synthesis scale of Bi-TDPAT can be expanded, and sub-gram synthesis can be realized. At the same time, we synthesized a microcrystalline material Bi-TATAB utilizing 2,4,6-tris(4-carboxylphenylamino)-1,3,5-triazine (H3TATAB). The structures of the two materials were characterized by several microanalysis tools. Considering that Bi-TDPAT is a blue light-emitting material with a broad emission peak, we prepared a white light emitting composite material Eu/Tb@Bi-TDPAT by encapsulating Eu(III)/Tb(III) in Bi-TDPAT. In addition, the fluorescence sensing functions of Bi-TDPAT and Bi-TATAB were explored. The results showed that they could detect and recognize various nitrophenols, and the optimal limit of detection is as low as 0.21 μM, which can be reused even after five cycles. Energy competitive absorption (CA) and photo-induced electron transfer are the main sensing mechanisms. By comparing and analyzing the properties of these two bismuth-based crystalline materials, we believe that this work also provides inspiration for the synthesis and development of bismuth-based MOF in the future.
Collapse
Affiliation(s)
- Zi-Xin You
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| | - Yao Xiao
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| | - Qing-Lin Guan
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| | - Yong-Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| | - Feng-Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| | - Fen Xu
- Guangxi Key Laboratory of Information Materials & Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| |
Collapse
|
4
|
|
5
|
Angelis PN, Casarin J, Gonçalves Júnior AC, Rocha LR, Prete MC, Tarley CRT. Development of a Novel Molecularly Imprinted Polyvinylimidazole/Functionalized Carbon Black Nanocomposite‐based Paste Electrode for Electrochemical Sensing of Imazethapyr in Rice Samples. ELECTROANAL 2022. [DOI: 10.1002/elan.202100360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Pedro Nunes Angelis
- Universidade Estadual de Londrina (UEL) Departamento de Química Centro de Ciências Exatas Rodovia Celso Garcia Cid PR 445 Km 380, CEP 86050-482 Londrina-PR Brazil
| | - Juliana Casarin
- Universidade Estadual de Londrina (UEL) Departamento de Química Centro de Ciências Exatas Rodovia Celso Garcia Cid PR 445 Km 380, CEP 86050-482 Londrina-PR Brazil
| | - Affonso Celso Gonçalves Júnior
- Universidade Estadual do Oeste do Paraná (UNIOESTE) Centro de Ciências Agrárias, CEP 85960-000 Marechal Cândido Rondon-PR Brazil
| | - Luana Rianne Rocha
- Universidade Estadual de Londrina (UEL) Departamento de Química Centro de Ciências Exatas Rodovia Celso Garcia Cid PR 445 Km 380, CEP 86050-482 Londrina-PR Brazil
| | - Maiyara Carolyne Prete
- Universidade Estadual de Londrina (UEL) Departamento de Química Centro de Ciências Exatas Rodovia Celso Garcia Cid PR 445 Km 380, CEP 86050-482 Londrina-PR Brazil
| | - César Ricardo Teixeira Tarley
- Universidade Estadual de Londrina (UEL) Departamento de Química Centro de Ciências Exatas Rodovia Celso Garcia Cid PR 445 Km 380, CEP 86050-482 Londrina-PR Brazil
- Instituto Nacional de Ciência e Tecnologia (INCT) de Bioanalítica Universidade Estadual de Campinas (UNICAMP) Instituto de Química Departamento de Química Analítica Cidade Universitária Zeferino Vaz s/n, CEP 13083-970 Campinas Brazil
| |
Collapse
|
6
|
Eie LV, Pedersen-Bjergaard S, Hansen FA. Electromembrane extraction of polar substances - Status and perspectives. J Pharm Biomed Anal 2022; 207:114407. [PMID: 34634529 DOI: 10.1016/j.jpba.2021.114407] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
In this article, the scientific literature on electromembrane extraction (EME) of polar substances (log P < 2) is reviewed. EME is an extraction technique based on electrokinetic migration of analyte ions from an aqueous sample, across an organic supported liquid membrane (SLM), and into an aqueous acceptor solution. Because extraction is based on voltage-assisted partitioning, EME is fundamentally suitable for extraction of polar and ionizable substances that are challenging in many other extraction techniques. The article provides an exhaustive overview of papers on EME of polar substances. From this, different strategies to improve the mass transfer of polar substances are reviewed and critically discussed. These strategies include different SLM chemistries, modification of supporting membranes, sorbent additives, aqueous solution chemistry, and voltage/current related strategies. Finally, the future applicability of EME for polar substances is discussed. We expect EME in the coming years to be developed towards both very selective targeted analysis, as well as untargeted analysis of polar substances in biomedical applications such as metabolomics and peptidomics.
Collapse
Affiliation(s)
- Linda Vårdal Eie
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Stig Pedersen-Bjergaard
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Frederik André Hansen
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway.
| |
Collapse
|
7
|
El-Shaheny R, Yoshida S, Fuchigami T. Graphene quantum dots as a nanoprobe for analysis of o- and p-nitrophenols in environmental water adopting conventional fluorometry and smartphone image processing-assisted paper-based analytical device. In-depth study of sensing mechanisms. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|