1
|
Xenofondos A, Papavasileiou A, Bassa E, Vrabas IS, Patikas DA. Postactivation Potentiation and the Asynchronous Action of Muscular and Neural Responses. Int J Sports Physiol Perform 2023:1-9. [PMID: 37295786 DOI: 10.1123/ijspp.2022-0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE This study examined the underlying mechanisms of postactivation potentiation and the time course of muscular- and neural-related variables. METHODS Fourteen trained males executed 4 sets of six 6-second maximum isometric conditioning plantar flexions, with 15 seconds and 2 minutes of interval between the contractions and sets, respectively. Peak twitch torque (TT), rate of torque development, time to peak torque, half relaxation time, and the neural-related variables of H-reflex and electromyogram, normalized to the maximum M-wave (H/M and RMS/M, respectively), were evaluated, as well as the level of the voluntary activation, assessed by the twitch interpolation technique. All neural-related variables were analyzed for the trial within each set when TT was maximal and for the trial within each set when the neural-related variable itself was maximal. RESULTS Compared with the baseline measures, TT and rate of torque development significantly increased in all sets (P < .001), whereas time to peak torque and half relaxation time significantly decreased in sets 1 to 4 and 2 to 4, respectively (P < .001). However, H/M and the RMS/M did not change for the repetition of each set for which the TT was maximal (P > .05). Interestingly, the within-set maximum H/M ratio of the lateral gastrocnemius muscle revealed a significant increase in all sets (P < .05), compared with the baseline measures. CONCLUSION One set of 4 contractions with 6-second duration is sufficient to cause postactivation potentiation for most participants, whereas peak TT augmentation does not coincide with changes in the examined neural-related variables. Further experiments should consider the time lag on their maximal values and their inherent between-participants variability.
Collapse
Affiliation(s)
- Anthi Xenofondos
- Physical Education and Sport Sciences, Frederick University, Nicosia,Cyprus
- Faculty of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, Thessaloniki,Greece
| | - Anastasia Papavasileiou
- Faculty of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, Thessaloniki,Greece
| | - Eleni Bassa
- Faculty of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, Thessaloniki,Greece
| | - Ioannis S Vrabas
- Faculty of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, Thessaloniki,Greece
| | - Dimitrios A Patikas
- Faculty of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, Thessaloniki,Greece
| |
Collapse
|
2
|
Bremer N, Peoples G, Hasler B, Litzenburg R, Johnson A, Malek MH. Repeated Incremental Workbouts Separated by 1 Hour Increase the Electromyographic Fatigue Threshold. J Strength Cond Res 2021; 35:1397-1402. [PMID: 30664112 DOI: 10.1519/jsc.0000000000002919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Bremer, N, Peoples, G, Hasler, B, Litzenburg, R, Johnson, A, and Malek, MH. Repeated incremental workbouts separated by 1 hour increase the electromyographic fatigue threshold. J Strength Cond Res 35(5): 1397-1402, 2021-Studies examining the influence of priming, for continuous exercise, have mainly focused on improved exercise capacity related to oxygen uptake kinetics rather than on neuromuscular fatigue of the muscle. The purpose of this study, therefore, was to determine whether or not the electromyographic fatigue threshold (EMGFT) could be modulated by having subjects perform 2 incremental tests separated by 1 hour. We hypothesized that the EMGFT determined from the second incremental test would be higher than the EMGFT determined from the first incremental test. Nine healthy college-aged men (mean ± SEM: age: 23.8 ± 0.6 years; body mass: 79.5 ± 3.3 kg; height: 1.78 ± 0.02 m) were recruited from the university population. Each subject visited the laboratory on 1 occasion and performed 2 incremental single-leg knee-extensor ergometry to voluntary fatigue separated by 1 hour. The EMGFT was determined for each trial and statistically compared using paired-samples t-test. The results indicated significant mean differences between the EMGFT for the 2 trials (trial 1: 27 ± 1 W vs. trial 2: 34 ± 2 W; p = 0.001), whereas there were no significant mean differences for maximal power output (trial 1: 53 ± 2 W vs. trial 2: 57 ± 2; p = 0.09). These findings suggest that postactivation potentiation may, in part, explain the differences in EMGFT because the exercise mode used in the current study minimizes the cardiorespiratory responses to exercise.
Collapse
Affiliation(s)
- Nate Bremer
- Department of Health Care Sciences, Physical Therapy Program, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan; and
- Department of Health Care Sciences, Integrative Physiology of Exercise Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Gavin Peoples
- Department of Health Care Sciences, Physical Therapy Program, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan; and
- Department of Health Care Sciences, Integrative Physiology of Exercise Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Brent Hasler
- Department of Health Care Sciences, Physical Therapy Program, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan; and
- Department of Health Care Sciences, Integrative Physiology of Exercise Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Robert Litzenburg
- Department of Health Care Sciences, Physical Therapy Program, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan; and
- Department of Health Care Sciences, Integrative Physiology of Exercise Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Andrew Johnson
- Department of Health Care Sciences, Physical Therapy Program, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan; and
- Department of Health Care Sciences, Integrative Physiology of Exercise Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Moh H Malek
- Department of Health Care Sciences, Physical Therapy Program, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan; and
- Department of Health Care Sciences, Integrative Physiology of Exercise Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
3
|
Acute Effects of Single- Versus Double-Leg Postactivation Potentiation on Postural Balance of Older Women: An Age-Matched Controlled Study. J Aging Phys Act 2020; 29:200-206. [PMID: 32820137 DOI: 10.1123/japa.2019-0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/24/2020] [Accepted: 05/29/2020] [Indexed: 11/18/2022]
Abstract
AIMS To compare the postactivation potentiation effects of isometric contraction until failure in double- and single-leg tasks on older women's balance. METHODS The one-legged balance test was performed before and immediately after a rise-to-toes task until the task failure. Older women were divided into two groups: a group performed the task with double leg (n = 43) and the other group with single-leg support (n = 55). RESULTS The single-leg group showed slower velocity of sway post rise-to-toes task (pre = 4.02 ± 1; post = 3.78 ± 1.15 m/s; p = .04) without differences for the center of pressure path length (pre = 79 ± 21; post = 75 ± 23 cm; p = .08). In the double-leg group, faster velocity of sway (pre = 4 ± 1.22; post = 4.25 ± 1.13; p = .03) and increased center of pressure path length (pre = 80 ± 24; post = 85 ± 23 cm; p = .03) were observed after the task. CONCLUSIONS The single-leg group showed improved balance outcomes due to postactivation potentiation, while the double-leg group showed worsened balance consistent with muscle fatigue.
Collapse
|
4
|
Blazevich AJ, Babault N. Post-activation Potentiation Versus Post-activation Performance Enhancement in Humans: Historical Perspective, Underlying Mechanisms, and Current Issues. Front Physiol 2019; 10:1359. [PMID: 31736781 PMCID: PMC6838751 DOI: 10.3389/fphys.2019.01359] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022] Open
Abstract
Post-activation potentiation (PAP) is a well-described phenomenon with a short half-life (~28 s) that enhances muscle force production at submaximal levels of calcium saturation (i.e., submaximal levels of muscle activation). It has been largely explained by an increased myosin light chain phosphorylation occurring in type II muscle fibers, and its effects have been quantified in humans by measuring muscle twitch force responses to a bout of muscular activity. However, enhancements in (sometimes maximal) voluntary force production detected several minutes after high-intensity muscle contractions are also observed, which are also most prominent in muscles with a high proportion of type II fibers. This effect has been considered to reflect PAP. Nonetheless, the time course of myosin light chain phosphorylation (underpinning “classic” PAP) rarely matches that of voluntary force enhancement and, unlike PAP, changes in muscle temperature, muscle/cellular water content, and muscle activation may at least partly underpin voluntary force enhancement; this enhancement has thus recently been called post-activation performance enhancement (PAPE) to distinguish it from “classical” PAP. In fact, since PAPE is often undetectable at time points where PAP is maximal (or substantial), some researchers have questioned whether PAP contributes to PAPE under most conditions in vivo in humans. Equally, minimal evidence has been presented that PAP is of significant practical importance in cases where multiple physiological processes have already been upregulated by a preceding, comprehensive, active muscle warm-up. Given that confusion exists with respect to the mechanisms leading to acute enhancement of both electrically evoked (twitch force; PAP) and voluntary (PAPE) muscle function in humans after acute muscle activity, the first purpose of the present narrative review is to recount the history of PAP/PAPE research to locate definitions and determine whether they are the same phenomena. To further investigate the possibility of these phenomena being distinct as well as to better understand their potential functional benefits, possible mechanisms underpinning their effects will be examined in detail. Finally, research design issues will be addressed which might contribute to confusion relating to PAP/PAPE effects, before the contexts in which these phenomena may (or may not) benefit voluntary muscle function are considered.
Collapse
Affiliation(s)
- Anthony J Blazevich
- School of Medical and Health Science, Centre for Exercise and Sports Science Research (CESSR), Edith Cowan University, Joondalup, WA, Australia
| | - Nicolas Babault
- Faculty of Sport Sciences, French National Institute of Health and Medical Research (INSERM), Unit 1093 Cognition, Action and Sensorimotor Plasticity, Centre for Performance Expertise, University of Burgundy and Franche-Comté, Dijon, France
| |
Collapse
|
5
|
What are the best isometric exercises of muscle potentiation? Eur J Appl Physiol 2019; 119:1029-1039. [PMID: 30734104 DOI: 10.1007/s00421-019-04092-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE The aim of this study was to follow post-activation potentiation (PAP), low-frequency fatigue (LFF), metabolic-induced fatigue and post-contractile depression (PCD) in response to different isometric muscle contraction modalities. METHODS Young healthy men (N = 120) were randomly assigned to one of ten exercise modality groups which differed in contraction duration (5-60 s), activation pattern (intermittent or continuous contractions), activation mode (voluntary or stimulated), and intensity [maximal or submaximal (50%)]. Isometric maximal voluntary contraction (MVC), and electrically induced knee extension torque were measured at baseline and at regular intervals for 60 min after exercise. RESULTS Muscle contraction modalities involving 5 s MVC were the most effective for PAP, whereas the lowest PAP effectiveness was found after the 12 × 5-MVC modality. After all of the 5-15 s MVC and 6 × 5-MVC protocols, the potentiation of the twitch rate was significantly higher than that recorded after continuous 30-60 s protocols (P < 0.001). Tetanic maximal torque (100 Hz) potentiation occurred 5 min after 15-30 s repetitive MVC modalities and after modality involving 15 electrical stimuli (P < 0.05). CONCLUSIONS The findings demonstrate that post-activation potentiation was most effective after brief duration continuous and repetitive MVC protocols. To understand the resultant warm-up of motor performance, it is necessary to recognize the coexistence of muscle PAP, tetanic maximal force potentiation, rapid recovery of metabolic muscle, and central muscle activation processes, as well as prolonged LFF and prolonged PCD.
Collapse
|