1
|
Hegdahl Gundersen A, Nygaard Falch H, Bao Fredriksen A, van den Tillaar R. The Effect of Sex and Different Repetition Maximums on Kinematics and Surface Electromyography in the Last Repetition of the Barbell Back Squat. J Funct Morphol Kinesiol 2024; 9:75. [PMID: 38651433 PMCID: PMC11036245 DOI: 10.3390/jfmk9020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
During the ascent phase of a maximal barbell back squat after an initial acceleration, a deceleration region occurs as the result of different biomechanical factors. This is known as the sticking region. However, whether this region is similar in the last repetition of different repetition maximums and if sex has an impact on biomechanics of this region are not known. Therefore, this study investigated the effect of sex (men/women) and repetition maximum (1-, 3-, 6-, and 10RM) on kinematics and surface electromyography around the sticking region. Twenty-six resistance-trained individuals comprising 13 men (body mass: 82.2 ± 8.7; age: 23.6 ± 1.9; height: 181.1 ± 6.5) and 13 women (body mass: 63.6 ± 6.6; age: 23.9 ± 4.5; height: 166.0 ± 4.5) participated in the study. The main findings were that women, in comparison to men, displayed larger trunk lean and lower hip extension angles in the sticking region, possibly due to different hip/knee extensor strength ratios. Moreover, an inverse relationship was discovered between repetition range and timing from V0 to Vmax2, in which lower repetition ranges (1- and 3RM) were shorter in Vmax2 compared to higher ranges (6- and 10RM). It was concluded that this occurrence is due to more moments of inertia in lower repetition ranges. Our findings suggest that both sex and repetition range might induce different requirements during the squat ascent.
Collapse
Affiliation(s)
| | | | | | - Roland van den Tillaar
- Department of Sports Sciences, Nord University, 7600 Levanger, Norway; (A.H.G.); (H.N.F.); (A.B.F.)
| |
Collapse
|
2
|
Illmeier G, Rechberger JS. The Limitations of Anterior Knee Displacement during Different Barbell Squat Techniques: A Comprehensive Review. J Clin Med 2023; 12:2955. [PMID: 37109294 PMCID: PMC10143703 DOI: 10.3390/jcm12082955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Based on seminal research from the 1970s and 1980s, the myth that the knees should only move as far anterior during the barbell squat until they vertically align with the tips of the feet in the sagittal plane still exists today. However, the role of both the hip joint and the lumbar spine, which are exposed to high peak torques during this deliberate restriction in range of motion, has remained largely unnoticed in the traditional literature. More recent anthropometric and biomechanical studies have found disparate results regarding anterior knee displacement during barbell squatting. For a large number of athletes, it may be favorable or even necessary to allow a certain degree of anterior knee displacement in order to achieve optimal training outcomes and minimize the biomechanical stress imparted on the lumbar spine and hip. Overall, restricting this natural movement is likely not an effective strategy for healthy trained individuals. With the exception of knee rehabilitation patients, the contemporary literature suggests it should not be practiced on a general basis.
Collapse
Affiliation(s)
- Gabriel Illmeier
- Department of Strength & Conditioning, Nachwuchsleistungssportzentrum Steiermark, 8010 Graz, Austria
| | - Julian S. Rechberger
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Squat and Countermovement Vertical Jump Dynamics Using Knee Dominant or Hip Dominant Strategies. J Hum Kinet 2023; 86:63-71. [PMID: 37181272 PMCID: PMC10170540 DOI: 10.5114/jhk/159285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
This study aimed to investigate squat jump and countermovement jump kinetics in the knee dominant and hip dominant postures. Participants included 12 male sports science students. They were instructed to perform a squat jump and a countermovement jump with two squat postures: knee- and hip-dominant postures. The jumping motion and ground reaction force were recorded using a motion capture system and a force plate, respectively. A p-value of 0.05 was considered statistically significant. There was a significant interaction for the maximal knee joint extension torque, with the knee-countermovement jump being more than twice higher than that of other conditions, but not for mechanical work of the knee joint, which was significantly greater in the knee posture than in the hip posture. No significant interactions were found in mechanical work and maximal extension torque of the hip joint, both of which were significantly greater in the hip posture than in the knee posture, and in the countermovement jump than in the squat jump. This study showed that the effects of countermovement and posture were different for joints and that these effects were independent in the hip joint, but interacted in the knee joint. In the knee joint, the posture increased the effect of countermovement on extension torque, but the effect on mechanical work was small. This suggests that countermovement in the knee posture has little effect on the lifting work, but results in a great load on the knee extensors.
Collapse
|
4
|
Effect of Heel Lift Insoles on Lower Extremity Muscle Activation and Joint Work during Barbell Squats. Bioengineering (Basel) 2022; 9:bioengineering9070301. [PMID: 35877352 PMCID: PMC9312299 DOI: 10.3390/bioengineering9070301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
The effect of heel elevation on the barbell squat remains controversial, and further exploration of muscle activity might help find additional evidence. Therefore, 20 healthy adult participants (10 males and 10 females) were recruited for this study to analyze the effects of heel height on lower extremity kinematics, kinetics, and muscle activity using the OpenSim individualized musculoskeletal model. One-way repeated measures ANOVA was used for statistical analysis. The results showed that when the heel was raised, the participant’s ankle dorsiflexion angle significantly decreased, and the percentage of ankle work was increased (p < 0.05). In addition, there was a significant increase in activation of the vastus lateralis, biceps femoris, and gastrocnemius muscles and a decrease in muscle activation of the anterior tibialis muscle (p < 0.05). An increase in knee moments and work done and a reduction in hip work were observed in male subjects (p < 0.05). In conclusion, heel raises affect lower extremity kinematics and kinetics during the barbell squat and alter the distribution of muscle activation and biomechanical loading of the joints in the lower extremity of participants to some extent, and there were gender differences in the results.
Collapse
|
5
|
Worcester KS, Baker PA, Bollinger LM. Effects of Inertial Load on Sagittal Plane Kinematics of the Lower Extremity During Flywheel-Based Squats. J Strength Cond Res 2022; 36:63-69. [PMID: 32084105 DOI: 10.1519/jsc.0000000000003415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
ABSTRACT Worcester, KS, Baker, PA, and Bollinger, LM. Effects of inertial load on sagittal plane kinematics of the lower extremity during flywheel-based squats. J Strength Cond Res 36(1): 63-69, 2022-Increasing load increases flexion of lower extremity joints during weighted squats; however, the effects of inertial load on lower extremity kinematics during flywheel-based resistance training (FRT) squats remain unclear. The purpose of this study was to evaluate sagittal plane kinematics of lower extremity joints during FRT squats at various inertial loads. Nine recreationally resistance-trained subjects (3M, 6F) completed a bout of FRT squats with inertial loads of 0.050, 0.075, and 0.100 kg·m2. Two-dimensional sagittal plane kinematics were monitored with retroreflective markers at a rate of 60 Hz. Joint angles and angular velocities of the knee, trunk + hip, trunk inclination, and ankle were quantified throughout concentric and eccentric actions. Effects of inertial load were determined by repeated-measures analysis of variance with α = 0.05. Average power and average vertical velocity decreased with increasing inertial load, whereas average force increased. Minimal and maximal sagittal plane joint angles of the knee, trunk + hip, trunk inclination, and ankle were not significantly different among inertial loads. However, peak joint angular velocities of the knee and trunk + hip tended to decrease with increasing inertial load. Conversely trunk inclination and ankle dorsiflexion velocities were not significantly different among inertial loads. Increasing inertial load from 0.050 to 0.100 kg·m2 significantly reduces average power during FRT squats primarily by decreasing movement velocity, which seems to be specific to the knee and hip joints. It is possible that lower concentric energy input at high inertial loads prevents increased joint flexion during FRT squats.
Collapse
Affiliation(s)
- Katherine S Worcester
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky; and
| | - Paul A Baker
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky; and
| | - Lance M Bollinger
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky; and
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
6
|
Bini R, Lock M, Hommelhoff G. Lower limb muscle and joint forces during front and back squats performed on a Smith machine. ISOKINET EXERC SCI 2021. [DOI: 10.3233/ies-202168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Comparison of knee loads on a Smith machine, which is utilised for maintenance of health and rehabilitation, has not been attempted. OBJECTIVE: This study compared lower limb muscle and knee joint forces during front and back squats performed on a Smith Machine. METHODS: Eleven participants performed front and back squats with loads at 40%, 60% and 80% of their back squat 1-RMs. Ground reaction forces and three-dimensional full body motion were collected and used for modelling lower limb muscle and knee joint forces. RESULTS: Larger loads increased tibiofemoral compressive force during back squat at 80% compared to 40% (p< 0.01; d= 1.58) and to 60% (p< 0.01; d= 1.37). Patellofemoral compressive (p= 0.96) and tibiofemoral shear forces (p= 0.55) were not influenced by external load or type of squat. Gluteus medius and minimus produced more force at 80% compared to 60% (p= 0.01; d= 1.10) and to 40% (p< 0.01; d= 1.87) without differences for other muscles (p= 0.09–0.91). CONCLUSIONS: Greater external load was associated with increase in gluteus medius and minimus force and with increased tibiofemoral compressive force without effects on tibiofemoral shear force, patellofemoral compressive force or other lower limb muscle forces.
Collapse
|
7
|
Hughes LJ, Banyard HG, Dempsey AR, Scott BR. Using a Load-Velocity Relationship to Predict One repetition maximum in Free-Weight Exercise: A Comparison of the Different Methods. J Strength Cond Res 2019; 33:2409-2419. [PMID: 31460988 DOI: 10.1519/jsc.0000000000002550] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hughes, LJ, Banyard, HG, Dempsey, AR, and Scott, BR. Using a load-velocity relationship to predict one repetition maximum in free-weight exercise: a comparison of the different methods. J Strength Cond Res 33(9): 2409-2419, 2019-The purpose of this study was to investigate the reliability and validity of predicting 1 repetition maximum (1RM) in trained individuals using a load-velocity relationship. Twenty strength-trained men (age: 24.3 ± 2.9 years, height: 180.1 ± 5.9 cm, and body mass: 84.2 ± 10.5 kg) were recruited and visited the laboratory on 3 occasions. The load-velocity relationship was developed using the mean concentric velocity of repetitions performed at loads between 20 and 90% 1RM. Predicted 1RM was calculated using 3 different methods discussed in existing research: minimal velocity threshold 1RM (1RMMVT), load at zero velocity 1RM (1RMLD0), and force-velocity 1RM methods (1RMFV). The reliability of 1RM predictions was examined using intraclass correlation coefficient (ICC) and coefficient of variation (CV). 1RMMVT demonstrated the highest reliability (ICC = 0.92-0.96, CV = 3.6-5.0%), followed by 1RMLD0 (ICC = 0.78-0.82, CV = 8.2-8.6%) and 1RMFV (ICC = -0.28 to 0.00, CV = N/A). Both 1RMMVT and 1RMLD0 were very strongly correlated with measured 1RM (r = 0.91-0.95). The only method which was not significantly different to measured 1RM was the 1RMLD0 method. However, when analyzed on an individual basis (using Bland-Altman plots), all methods exhibited a high degree of variability. Overall, the results suggest that the 1RMMVT and 1RMLD0 predicted 1RM values could be used to monitor strength progress in trained individuals without the need for maximal testing. However, given the significant differences between 1RMMVT and measured 1RM, and the high variability associated with individual predictions performed using each method, they cannot be used interchangeably; therefore, it is recommended that predicted 1RM is not used to prescribe training loads as has been previously suggested.
Collapse
Affiliation(s)
- Liam J Hughes
- School of Psychology and Exercise Science, Murdoch University, Murdoch, Western Australia
| | - Harry G Banyard
- Center for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia
| | - Alasdair R Dempsey
- School of Psychology and Exercise Science, Murdoch University, Murdoch, Western Australia
| | - Brendan R Scott
- School of Psychology and Exercise Science, Murdoch University, Murdoch, Western Australia
| |
Collapse
|
8
|
Glassbrook DJ, Brown SR, Helms ER, Duncan S, Storey AG. The High-Bar and Low-Bar Back-Squats: A Biomechanical Analysis. J Strength Cond Res 2019; 33 Suppl 1:S1-S18. [PMID: 28195975 DOI: 10.1519/jsc.0000000000001836] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glassbrook, DJ, Brown, SR, Helms, ER, Duncan, S, and Storey, AG. The high-bar and low-bar back-squats: a biomechanical analysis. J Strength Cond Res 33(7S): S1-S18, 2019-No previous study has compared the joint angle and ground reaction force (vertical force [Fv]) differences between the high-bar back-squat (HBBS) and low-bar back-squat (LBBS) above 90% 1 repetition maximum (1RM). Six male powerlifters (POW) (height: 179.2 ± 7.8 cm; mass: 87.1 ± 8.0 kg; age: 21-33 years) of international level, 6 male Olympic weightlifters (OLY) (height: 176.7 ± 7.7 cm; mass: 83.1 ± 13 kg; age: 22-30 years) of national level, and 6 recreationally trained male athletes (height: 181.9 ± 8.7 cm; mass: 87.9 ± 15.3 kg; age: 23-33 years) performed the LBBS, HBBS, and both LBBS and HBBS (respectively) up to and including 100% 1RM. Small to moderate (d = 0.2-0.5) effect size differences were observed between the POW and OLY in joint angles and Fv, although none were statistically significant. However, significant joint angle results were observed between the experienced POW/OLY and the recreationally trained group. Our findings suggest that practitioners seeking to place emphasis on the stronger hip musculature should consider the LBBS. Also, when the goal is to lift the greatest load possible, the LBBS may be preferable. Conversely, the HBBS is more suited to replicate movements that exhibit a more upright torso position, such as the snatch and clean, or to place more emphasis on the associated musculature of the knee joint.
Collapse
Affiliation(s)
- Daniel J Glassbrook
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Scott R Brown
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Eric R Helms
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Scott Duncan
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Adam G Storey
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.,High Performance Sport New Zealand (HPSNZ), Auckland, New Zealand
| |
Collapse
|
9
|
Crowe MA, Bampouras TM, Walker-Small K, Howe LP. Restricted Unilateral Ankle Dorsiflexion Movement Increases Interlimb Vertical Force Asymmetries in Bilateral Bodyweight Squatting. J Strength Cond Res 2019; 34:332-336. [PMID: 31425458 DOI: 10.1519/jsc.0000000000003345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Crowe, MA, Bampouras, TM, Small, K, and Howe, LP. Restricted unilateral ankle dorsiflexion movement increases interlimb vertical force asymmetries in bilateral bodyweight squatting. J Strength Cond Res 34(2): 332-336, 2020-The purpose of this study was to investigate the effect of unilateral restrictions in ankle-dorsiflexion range of motion (DF-ROM) on interlimb vertical ground reaction force (vGRF) asymmetries. Twenty healthy and physically active volunteers (age 23 ± 3 years; height 1.72 ± 0.1 m; mass 74.9 ± 20.3 kg) performed 3 barefoot bodyweight squats (control condition) and with a 10° custom-built forefoot wedge under the right foot to artificially imitate ankle DF-ROM restriction (wedge condition). Force data were used to calculate the mean asymmetry index score for the upper descent phase, lower descent phase, lower ascent phase, and upper ascent phase during the bilateral squat. Significant differences were found for comparisons for each phase between conditions, with effect sizes ranging between 0.7 and 1.1. Asymmetry index scores indicated that for all phases, the unrestricted limb in the wedge condition produced greater vGRF. Therefore, interlimb differences in ankle DF-ROM can cause interlimb asymmetries in vGRF during bilateral squatting. As such, athletes with asymmetrical squat mechanics should be screened for interlimb differences in ankle DF-ROM to ascertain whether it is a contributing factor.
Collapse
Affiliation(s)
- Martyn A Crowe
- Medical and Sport Sciences, University of Cumbria, Carlisle, United Kingdom
| | | | - Katie Walker-Small
- Medical and Sport Sciences, University of Cumbria, Carlisle, United Kingdom
| | - Louis P Howe
- Medical and Sport Sciences, University of Cumbria, Lancaster, United Kingdom
| |
Collapse
|
10
|
Effects of Water Immersion on Squat and Split Squat Kinematics in Older Adults. J Aging Phys Act 2019; 27:398-405. [DOI: 10.1123/japa.2018-0166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Lane CL, Hardwick D, Janus TP, Chen H, Lu Y, Mayer JM. Comparison of the firefighter candidate physical ability test to weight lifting exercises using electromyography. Work 2019; 62:459-467. [DOI: 10.3233/wor-192880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Charity L. Lane
- U.S. Spine & Sport Foundation, San Diego, CA, USA
- Excellcior LLC, Tampa, FL, USA
| | - Dustin Hardwick
- School of Physical Therapy & Rehabilitation Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Thomas P. Janus
- School of Physical Therapy & Rehabilitation Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Henian Chen
- Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Yuanyuan Lu
- Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL, USA
| | - John M. Mayer
- U.S. Spine & Sport Foundation, San Diego, CA, USA
- Excellcior LLC, Tampa, FL, USA
| |
Collapse
|
12
|
Glassbrook DJ, Helms ER, Brown SR, Storey AG. A Review of the Biomechanical Differences Between the High-Bar and Low-Bar Back-Squat. J Strength Cond Res 2018; 31:2618-2634. [PMID: 28570490 DOI: 10.1519/jsc.0000000000002007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glassbrook, DJ, Helms, ER, Brown, SR, and Storey, AG. A review of the biomechanical differences between the high-bar and low-bar back-squat. J Strength Cond Res 31(9): 2618-2634, 2017-The back-squat is a common exercise in strength and conditioning for a variety of sports. It is widely regarded as a fundamental movement to increase and measure lower-body and trunk function, as well as an effective injury rehabilitation exercise. There are typically 2 different bar positions used when performing the back-squat: the traditional "high-bar" back-squat (HBBS) and the "low-bar" back-squat (LBBS). Different movement strategies are used to ensure that the center of mass remains in the base of support for balance during the execution of these lifts. These movement strategies manifest as differences in (a) joint angles, (b) vertical ground reaction forces, and (c) the activity of key muscles. This review showed that the HBBS is characterized by greater knee flexion, lesser hip flexion, a more upright torso, and a deeper squat. The LBBS is characterized by greater hip flexion and, therefore, a greater forward lean. However, there are limited differences in vertical ground reaction forces between the HBBS and LBBS. The LBBS can also be characterized by a greater muscle activity of the erector spinae, adductors, and gluteal muscles, whereas the HBBS can be characterized by greater quadriceps muscle activity. Practitioners seeking to develop the posterior-chain hip musculature (i.e., gluteal, hamstring, and erector muscle groups) may seek to use the LBBS. In comparison, those seeking to replicate movements with a more upright torso and contribution from the quadriceps may rather seek to use the HBBS in training.
Collapse
Affiliation(s)
- Daniel J Glassbrook
- 1Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand; and 2High Performance Sport New Zealand (HPSNZ), Auckland, New Zealand
| | | | | | | |
Collapse
|
13
|
Severin AC, Burkett BJ, McKean MR, Wiegand AN, Sayers MGL. Limb symmetry during double-leg squats and single-leg squats on land and in water in adults with long-standing unilateral anterior knee pain; a cross sectional study. BMC Sports Sci Med Rehabil 2017; 9:20. [PMID: 29238596 PMCID: PMC5725812 DOI: 10.1186/s13102-017-0085-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/29/2017] [Indexed: 11/21/2022]
Abstract
Background The presence of pain during movement typically results in changes in technique. However, the physical properties of water, such as flotation, means that water-based exercise may not only reduce compensatory movement patterns but also allow pain sufferers to complete exercises that they are unable to perform on land. The purpose of this study was to assess bilateral kinematics during double-leg squats and single-leg squats on land and in water in individuals with unilateral anterior knee pain. A secondary aim was to quantify bilateral asymmetry in both environments in affected and unaffected individuals using a symmetry index. Methods Twenty individuals with unilateral knee pain and twenty healthy, matched controls performed body weight double- and single-leg squats in both environments while inertial sensors (100 Hz) recorded trunk and lower body kinematics. Repeated-measures statistics tested for environmental effects on movement depths and peak angles within the anterior knee pain group. Differences in their inter-limb symmetry in each environments was compared to the control group using analysis of variance tests. Results Water immersion allowed for greater movement depths during both exercises (double-leg squat: +7 cm, p = 0.032, single-leg squat: +9 cm, p = 0.002) for the knee pain group. The double-leg squat was symmetrical on land but water immersion revealed asymmetries in the lower body frontal plane movements. The single-leg squat revealed decreased hip flexion and frontal plane shank motions on the affected limb in both environments. Water immersion also affected the degree of lower limb asymmetry in both groups, with differences also showing between groups. Conclusions Individuals with anterior knee pain achieved increased squat depth during both exercises whilst in water. Kinematic differences between the affected and unaffected limbs were often increased in water. Individuals with unilateral anterior knee pain appear to utilise different kinematics in the affected and unaffected limb in both environments.
Collapse
Affiliation(s)
- Anna C Severin
- School of Health and Sports Sciences, University of the Sunshine Coast, Sippy Downs Drive 90, Sippy Downs, QLD 4556 Australia
| | - Brendan J Burkett
- School of Health and Sports Sciences, University of the Sunshine Coast, Sippy Downs Drive 90, Sippy Downs, QLD 4556 Australia
| | - Mark R McKean
- School of Health and Sports Sciences, University of the Sunshine Coast, Sippy Downs Drive 90, Sippy Downs, QLD 4556 Australia
| | - Aaron N Wiegand
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs Drive 90, Sippy Downs, QLD 4556 Australia
| | - Mark G L Sayers
- School of Health and Sports Sciences, University of the Sunshine Coast, Sippy Downs Drive 90, Sippy Downs, QLD 4556 Australia
| |
Collapse
|
14
|
da Silva JJ, Schoenfeld BJ, Marchetti PN, Pecoraro SL, Greve JMD, Marchetti PH. Muscle Activation Differs Between Partial and Full Back Squat Exercise With External Load Equated. J Strength Cond Res 2017; 31:1688-1693. [PMID: 28538321 DOI: 10.1519/jsc.0000000000001713] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Changes in range of motion affect the magnitude of the load during the squat exercise and, consequently, may influence muscle activation. The purpose of this study was to evaluate muscle activation between the partial and full back squat exercise with external load equated on a relative basis between conditions. Fifteen young, healthy, resistance-trained men (age: 26 ± 5 years, height: 173 ± 6 cm) performed a back squat at their 10 repetition maximum (10RM) using 2 different ranges of motion (partial and full) in a randomized, counterbalanced fashion. Surface electromyography was used to measure muscle activation of the vastus lateralis, vastus medialis, rectus femoris, biceps femoris (BF), semitendinosus, erector spinae, soleus (SL), and gluteus maximus (GM). In general, muscle activity was highest during the partial back squat for GM (p = 0.004), BF (p = 0.009), and SL (p = 0.031) when compared with full-back squat. There was no significant difference for rating of perceived exertion between partial and full back squat exercise at 10RM (8 ± 1 and 9 ± 1, respectively). In conclusion, the range of motion in the back squat alters muscle activation of the prime mover (GM) and stabilizers (SL and BF) when performed with the load equated on a relative basis. Thus, the partial back squat maximizes the level of muscle activation of the GM and associated stabilizer muscles.
Collapse
Affiliation(s)
- Josinaldo J da Silva
- 1Department of Human Movement Sciences, Graduate Program in Science of Human Movement, College of Health Science (FACIS), Methodist University of Piracicaba, Piracicaba, São Paulo, Brazil; 2Department of Health Sciences, Program of Exercise Science, CUNY Lehman College, Bronx, New York; and 3Laboratory of Kinesiology, Institute of Orthopedics and Traumatology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Severin AC, Burkett BJ, McKean MR, Wiegand AN, Sayers MGL. Quantifying kinematic differences between land and water during squats, split squats, and single-leg squats in a healthy population. PLoS One 2017; 12:e0182320. [PMID: 28767683 PMCID: PMC5540590 DOI: 10.1371/journal.pone.0182320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/16/2017] [Indexed: 11/18/2022] Open
Abstract
Aquatic exercises can be used in clinical and sporting disciplines for both rehabilitation and sports training. However, there is limited knowledge on the influence of water immersion on the kinematics of exercises commonly used in rehabilitation and fitness programs. The aim of this study was to use inertial sensors to quantify differences in kinematics and movement variability of bodyweight squats, split squats, and single-leg squats performed on dry land and whilst immersed to the level of the greater trochanter. During two separate testing sessions, 25 active healthy university students (22.3±2.9 yr.) performed ten repetitions of each exercise, whilst tri-axial inertial sensors (100 Hz) recorded their trunk and lower body kinematics. Repeated-measures statistics tested for differences in segment orientation and speed, movement variability, and waveform patterns between environments, while coefficient of variance was used to assess differences in movement variability. Between-environment differences in segment orientation and speed were portrayed by plotting the mean difference ±95% confidence intervals (CI) throughout the tasks. The results showed that the depth of the squat and split squat were unaffected by the changed environment while water immersion allowed for a deeper single leg squat. The different environments had significant effects on the sagittal plane orientations and speeds for all segments. Water immersion increased the degree of movement variability of the segments in all exercises, except for the shank in the frontal plane, which showed more variability on land. Without compromising movement depth, the aquatic environment induces more upright trunk and shank postures during squats and split squats. The aquatic environment allows for increased squat depth during the single-leg squat, and increased shank motions in the frontal plane. Our observations therefore support the use of water-based squat tasks for rehabilitation as they appear to improve the technique without compromising movement depth.
Collapse
Affiliation(s)
- Anna C. Severin
- School of Health and Sports Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- * E-mail:
| | - Brendan J. Burkett
- School of Health and Sports Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Mark R. McKean
- School of Health and Sports Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Aaron N. Wiegand
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Mark G. L. Sayers
- School of Health and Sports Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
16
|
Charlton JM, Hammond CA, Cochrane CK, Hatfield GL, Hunt MA. The Effects of a Heel Wedge on Hip, Pelvis and Trunk Biomechanics During Squatting in Resistance Trained Individuals. J Strength Cond Res 2017; 31:1678-1687. [DOI: 10.1519/jsc.0000000000001655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Todoroff M. Dynamic Deep Squat: Lower-Body Kinematics and Considerations Regarding Squat Technique, Load Position, and Heel Height. Strength Cond J 2017. [DOI: 10.1519/ssc.0000000000000278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Legg HS, Glaister M, Cleather DJ, Goodwin JE. The effect of weightlifting shoes on the kinetics and kinematics of the back squat. J Sports Sci 2016; 35:508-515. [PMID: 27096286 DOI: 10.1080/02640414.2016.1175652] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Weightlifting shoes (WS) are often used by athletes to facilitate their squat technique; however, the nature of these benefits is not well understood. In this study, the effects of footwear and load on the mechanics of squatting were assessed for 32 participants (age: 25.4 ± 4.4 years; mass 72.87 ± 11.35 kg) grouped by sex and experience. Participants completed loaded and unloaded back squats wearing both WS and athletic shoes (AS). Data were collected utilising a 3D motion capture system synchronised with a force platform and used to calculate kinematic and kinetic descriptors of squatting. For both load conditions, WS gave significantly (P < 0.05) reduced ankle flexion and increased knee flexion than AS, as well as a more upright trunk and greater knee moment for the unloaded condition. In addition, the experienced group experienced a significantly greater increase in knee and hip flexion with WS than the novices when unloaded. These results are consistent with the idea that WS permit a more knee flexed, upright posture during squatting, and provide preliminary evidence that experienced squatters are more able to exploit this effect. Decisions about footwear should recognise the effect of footwear on movement and reflect an athlete's movement capabilities and training objectives.
Collapse
Affiliation(s)
- Hayley S Legg
- a School of Sport, Health and Applied Science , St Mary's University , Twickenham , London , UK
| | - Mark Glaister
- a School of Sport, Health and Applied Science , St Mary's University , Twickenham , London , UK
| | - Daniel J Cleather
- a School of Sport, Health and Applied Science , St Mary's University , Twickenham , London , UK
| | - Jon E Goodwin
- a School of Sport, Health and Applied Science , St Mary's University , Twickenham , London , UK
| |
Collapse
|
19
|
List R, Gülay T, Stoop M, Lorenzetti S. Kinematics of the trunk and the lower extremities during restricted and unrestricted squats. J Strength Cond Res 2014; 27:1529-38. [PMID: 22990570 DOI: 10.1519/jsc.0b013e3182736034] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Squatting is a common strength training exercise used for rehabilitation, fitness training, and in preparation for competition. Knowledge about the loading and the motion of the back during the squat exercise is crucial to avoid overuse or injury. The aim of this study was the measurement and comparison of the kinematics of the lower leg, trunk, and spine during unrestricted and restricted (knees are not allowed beyond toes) squats. A total of 30 subjects performed unrestricted and restricted barbell squats with an extra load of 0, 25, and 50% bodyweight. Motion was tracked using a 12-camera Vicon system. A newly developed marker set with 24 trunk and 7 pelvic markers allowed us to measure 3D segmental kinematics between the pelvic and the lumbar regions, between the lumbar and the thoracic segments, and the sagittal curvatures of the lumbar and the thoracic spine. In an unrestricted squat, the angle of the knee is larger and the range of motion (ROM) between the lumbar and the thoracic segments is significantly smaller compared with a restricted squat (p < 0.05). The studied subjects showed significantly increased ROM for thoracic curvature during restricted squats. The unrestricted execution of a squat leads to a larger ROM in the knee and smaller changes in the curvature of the thoracic spine and the range of smaller segmental motions within the trunk. This execution in turn leads to lower stresses in the back. To strengthen the muscles of the leg, the unrestricted squat may be the best option for most people. Thus, practitioners should not be overly strict in coaching against anterior knee displacement during performance of the squat.
Collapse
Affiliation(s)
- Renate List
- Institute for Biomechanics, ETH Zurich, Switzerland
| | | | | | | |
Collapse
|
20
|
Hartmann H, Wirth K, Klusemann M. Analysis of the Load on the Knee Joint and Vertebral Column with Changes in Squatting Depth and Weight Load. Sports Med 2013; 43:993-1008. [DOI: 10.1007/s40279-013-0073-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Lynn SK, Noffal GJ. Lower Extremity Biomechanics During a Regular and Counterbalanced Squat. J Strength Cond Res 2012; 26:2417-25. [DOI: 10.1519/jsc.0b013e31823f8c2d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Mulcahey MK, Monchik KO, Yongpravat C, Badger GJ, Fadale PD, Hulstyn MJ, Fleming BC. Effects of single-bundle and double-bundle ACL reconstruction on tibiofemoral compressive stresses and joint kinematics during simulated squatting. Knee 2012; 19:469-76. [PMID: 21696962 PMCID: PMC3193548 DOI: 10.1016/j.knee.2011.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 04/08/2011] [Accepted: 05/23/2011] [Indexed: 02/02/2023]
Abstract
The purpose of this study was to compare tibiofemoral (TF) kinematics and TF compressive stresses between single bundle- (SB-) and double bundle-ACL reconstruction (DB-ACLR) during simulated squatting. Twelve matched pairs of fresh frozen cadaver knees were utilized. A simulated squat through 100° of knee flexion was performed in the ACL-intact joint. The ACL was transected and SB- and DB-ACLR procedures were performed in one knee of each pair. The squat was repeated. Knee kinematics were measured using a motion tracking system and the TF compressive forces were measured using thin film pressure sensors. The posterior shifts of the tibia for SB- and DB-ACLR knees were significantly greater than the ACL-intact condition for knee flexion angles 0° to 40° (p<.05). However, there was no difference between the SB- and DB-ACLR knees at any flexion angle (0° to 100°; p=.37). SB- and DB-ACLR knees had greater IE rotation than intact knees from 90° through 50° of flexion (p<.05), but not between 40° and full extension. There was no difference between SB- and DB-ACLR knees (p=.68). The TF compressive stresses of the DB-ACLR were significantly lower than intact for all angles except 10° (p=.06), whereas SB-ACLR knees did not differ from intact at flexion angles between 30° and 50° (p>.32). There were no significant differences between the two reconstruction conditions (p=.74). This study showed that there was no difference in the TF kinematics or compressive stresses between SB- and DB-ACLR, and only minor differences when compared to the intact state.
Collapse
Affiliation(s)
- Mary K Mulcahey
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Coro West, Suite 404, 1 Hoppin Street, Providence, RI 02903, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Quantitative MRI of vastus medialis, vastus lateralis and gluteus medius muscle workload after squat exercise: comparison between squatting with hip adduction and hip abduction. J Hum Kinet 2012; 33:5-14. [PMID: 23486653 PMCID: PMC3588673 DOI: 10.2478/v10078-012-0039-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to evaluate the use MRI to quantify the workload of gluteus medius (GM), vastus medialis (VM) and vastus lateralis (VL) muscles in different types of squat exercises. Fourteen female volunteers were evaluated, average age of 22 ± 2 years, sedentary, without clinical symptoms, and without history of previous lower limb injuries. Quantitative MRI was used to analyze VM, VL and GM muscles before and after squat exercise, squat associated with isometric hip adduction and squat associated with isometric hip abduction. Multi echo images were acquired to calculate the transversal relaxation times (T2) before and after exercise. Mixed Effects Model statistical analysis was used to compare images before and after the exercise (ΔT2) to normalize the variability between subjects. Imaging post processing was performed in Matlab software. GM muscle was the least active during the squat associated with isometric hip adduction and VM the least active during the squat associated with isometric hip abduction, while VL was the most active during squat associated with isometric hip adduction. Our data suggests that isometric hip adduction during the squat does not increase the workload of VM, but decreases the GM muscle workload. Squat associated with isometric hip abduction does not increase VL workload.
Collapse
|