1
|
Wu X, Lei Z, Wu Y, Jiang M, Luo H, Chen X, Ruan J. Dynamics of Cerebral Function in Patients with Acute Cerebellar Infarction. CEREBELLUM (LONDON, ENGLAND) 2024; 23:374-382. [PMID: 36810748 DOI: 10.1007/s12311-023-01534-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Few studies were devoted to investigating cerebral functional changes after acute cerebellar infarction (CI). The purpose of this study was to examine the brain functional dynamics of CI using electroencephalographic (EEG) microstate analysis. And the possible heterogenicity in neural dynamics between CI with vertigo and CI with dizziness was explored. Thirty-four CI patients and 37 age- and gender-matched healthy controls(HC) were included in the study. Each included subject underwent a 19-channel video EEG examination. Five 10-s resting-state EEG epochs were extracted after data preprocessing. Then, microstate analysis and source localization were performed using the LORETA-KEY tool. Microstate parameters such as duration, coverage, occurrence, and transition probability are all extracted. The current study showed that the duration, coverage, and occurrence of microstate(Ms) B significantly increased in CI patients, but the duration and coverage of MsA and MsD decreased. Compared CI with vertigo to dizziness, finding a decreased trend in the coverage of MsD and the transition from MsA and MsB to MsD. Taken together, our study sheds new light on the dynamics of cerebral function after CI, mainly reflecting increased activity in functional networks involved in MsB and decreased activity in functional networks involved in MsA and MsD. Vertigo and dizziness post-CI may be suggested by cerebral functional dynamics. Further longitudinal studies are needed to validate and explore the alterations in brain dynamics to what extent depict the clinical traits and their potential applications in the recovery of CI.
Collapse
Affiliation(s)
- Xin Wu
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Ziye Lei
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Yusi Wu
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Mingqing Jiang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Hua Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Xiu Chen
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Jianghai Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China.
| |
Collapse
|
2
|
Flanagan SD, Dunn-Lewis C, Comstock BA, Maresh CM, Volek JS, Denegar CR, Kraemer WJ. Cortical Activity during a Highly-Trained Resistance Exercise Movement Emphasizing Force, Power or Volume. Brain Sci 2012; 2:649-66. [PMID: 24961265 PMCID: PMC4061814 DOI: 10.3390/brainsci2040649] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/10/2012] [Accepted: 11/13/2012] [Indexed: 11/17/2022] Open
Abstract
Cortical activity is thought to reflect the biomechanical properties of movement (e.g., force or velocity of movement), but fatigue and movement familiarity are important factors that require additional consideration in electrophysiological research. The purpose of this within-group quantitative electroencephalogram (EEG) investigation was to examine changes in cortical activity amplitude and location during four resistance exercise movement protocols emphasizing rate (PWR), magnitude (FOR), or volume (VOL) of force production, while accounting for movement familiarity and fatigue. EEG signals were recorded during each complete repetition and were then grouped by functional region, processed to eliminate artifacts, and averaged to compare overall differences in the magnitude and location of cortical activity between protocols over the course of six sets. Biomechanical, biochemical, and exertional data were collected to contextualize electrophysiological data. The most fatiguing protocols were accompanied by the greatest increases in cortical activity. Furthermore, despite non-incremental loading and lower force levels, VOL displayed the largest increases in cortical activity over time and greatest motor and sensory activity overall. Our findings suggest that cortical activity is strongly related to aspects of fatigue during a high intensity resistance exercise movement.
Collapse
Affiliation(s)
- Shawn D Flanagan
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA.
| | - Courtenay Dunn-Lewis
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA.
| | - Brett A Comstock
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA.
| | - Carl M Maresh
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA.
| | - Jeff S Volek
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA.
| | - Craig R Denegar
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA.
| | - William J Kraemer
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|