Feng C, Chen P, Zhang W, Luo B, Du G, Liao T, Zheng C. A evidence-based approach to selecting post-exercise cryostimulation techniques for improving exercise performance and fatigue recovery: A systematic review and meta-analysis.
Heliyon 2024;
10:e32196. [PMID:
38933969 PMCID:
PMC11200300 DOI:
10.1016/j.heliyon.2024.e32196]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Rationale
Cryostimulation involves using water environments and low temperatures as intervention mediums, with main methods including CWI (cold water immersion), CWT (contrast water therapy), and WBC (whole-body cryostimulation). Previous systematic reviews focused on the effect of cryostimulation on muscle fatigue and sports performance. However, studies on the selection of different cryostimulation methods and their intervention effects present inconsistent results.
Introduction
To systematically review and methodologically appraise the quality and effectiveness of existing intervention studies that the effects of various cryostimulation methods, including CWI, CWT, and WBC, on exercise performance and fatigue recovery.
Methods
Following PRISMA guidelines, we conducted searches in PubMed, Embase, The Cochrane Library, Web of Science, and EBSCO databases to gather randomized controlled trials or self-controlled trials involving CWI/CWT/WBC and their effects on exercise performance or fatigue recovery. The search period ranged from November 2013 to November 2, 2023. Literature screening was performed using EndNote X9.1, and the quality of included studies was assessed using the Cochrane risk of bias assessment tool. Meta-analysis was conducted using RevMan 5.3 software.
Results
This study included a total of 18 articles, included a total of 499 healthy participants, comprising 479 males and 20 females. Among them, participants underwent cryostimulation, including 102 using CWT, using CWI, and 58 using WBC. Compared to the control group, cryostimulation can significantly alleviate muscle pain intensity (SMD -0.45, 95% CL -0.82 to 0.09, P = 0.01). Specifically, CWI significantly reduced muscle pain intensity (SMD = -0.45, 95% CI: 0.820.09, P = 0.01), WBC significantly decreased C-reactive protein levels (SMD = -1.36, 95% CI: 2.350.36, P = 0.008). While, CWT showed no significant differences from the control group in exercise performance and fatigue recovery indicators (P > 0.05).
Conclusion
Cryostimulation can significantly reduce muscle pain intensity and perceived fatigue. Specifically, CWI significantly alleviates muscle pain intensity, WBC significantly lowers markers of inflammation caused by fatigue after exercise, in contrast, CWT does not significantly improve exercise performance and fatigue recovery. After exercise, compared with rest, using cryostimulation may have more noticeable benefits for muscle fatigue and muscle pain, with recommendations prioritizing WBC and CWI particularly for addressing inflammation and muscle pain. However, all cryostimulation may have no significant influence on exercise performance.
Collapse