1
|
Paik KE, Mooneyham GC. Concurrent Developmental Regression and Neurocognitive Decline in a Child With De Novo CHD8 Gene Mutation. Pediatr Neurol 2024; 154:1-3. [PMID: 38428335 DOI: 10.1016/j.pediatrneurol.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder. Unique ASD subtypes have been proposed based on specific genotype-phenotype combinations. The ASD subtype associated with various chromodomain helicase DNA-binding protein 8 (CHD8) mutations has been associated with an incidence of autistic regression greater than that of all-cause ASD, but the mean age of onset of this subtype remains unknown. METHODS Here we describe a patient with a known de novo CHD8 gene mutation (heterozygous c.2565del) who experienced a profound developmental regression and neurocognitive decline at age 13 years following periods of acute viral illness. RESULTS The patient developed treatment-refractory catatonia and self-injurious behaviors leading to marked facial disfigurement. Unfortunately, interventions with immunomodulatory medications, psychotropic medications, and electroconvulsive therapy did not lead to sustained symptom improvement or a full return to baseline. CONCLUSIONS Our case demonstrates a clinical scenario in which a devastating developmental regression and neurocognitive decline occurred with profound accentuation of previously identified autistic features at an age atypical for autistic regression, following sequential viral infections, thereby raising the question of whether immune dysregulation may be a contributing factor. Regression in patients with monogenic mutations in the CHD8 gene warrants further study to elucidate the mechanisms of illness and the anticipated developmental trajectory.
Collapse
Affiliation(s)
- Kyung Eun Paik
- Department of Psychiatry & Behavioral Sciences, Duke University Hospital, Durham, North Carolina; Department of Child & Adolescent Psychiatry, Kennedy Krieger Institute & The Johns Hopkins School of Medicine, Baltimore, Maryland.
| | - GenaLynne C Mooneyham
- Department of Psychiatry & Department of Pediatrics, Duke University School of Medicine, Duke Children's Hospital, Durham, North Carolina; National Institute of Mental Health, NIH, Bethesda, Maryland
| |
Collapse
|
2
|
Nisar S, Haris M. Neuroimaging genetics approaches to identify new biomarkers for the early diagnosis of autism spectrum disorder. Mol Psychiatry 2023; 28:4995-5008. [PMID: 37069342 DOI: 10.1038/s41380-023-02060-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/19/2023]
Abstract
Autism-spectrum disorders (ASDs) are developmental disabilities that manifest in early childhood and are characterized by qualitative abnormalities in social behaviors, communication skills, and restrictive or repetitive behaviors. To explore the neurobiological mechanisms in ASD, extensive research has been done to identify potential diagnostic biomarkers through a neuroimaging genetics approach. Neuroimaging genetics helps to identify ASD-risk genes that contribute to structural and functional variations in brain circuitry and validate biological changes by elucidating the mechanisms and pathways that confer genetic risk. Integrating artificial intelligence models with neuroimaging data lays the groundwork for accurate diagnosis and facilitates the identification of early diagnostic biomarkers for ASD. This review discusses the significance of neuroimaging genetics approaches to gaining a better understanding of the perturbed neurochemical system and molecular pathways in ASD and how these approaches can detect structural, functional, and metabolic changes and lead to the discovery of novel biomarkers for the early diagnosis of ASD.
Collapse
Affiliation(s)
- Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar.
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
3
|
Web-accessible application for identifying pathogenic transcripts with RNA-seq: Increased sensitivity in diagnosis of neurodevelopmental disorders. Am J Hum Genet 2023; 110:251-272. [PMID: 36669495 PMCID: PMC9943747 DOI: 10.1016/j.ajhg.2022.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023] Open
Abstract
For neurodevelopmental disorders (NDDs), a molecular diagnosis is key for management, predicting outcome, and counseling. Often, routine DNA-based tests fail to establish a genetic diagnosis in NDDs. Transcriptome analysis (RNA sequencing [RNA-seq]) promises to improve the diagnostic yield but has not been applied to NDDs in routine diagnostics. Here, we explored the diagnostic potential of RNA-seq in 96 individuals including 67 undiagnosed subjects with NDDs. We performed RNA-seq on single individuals' cultured skin fibroblasts, with and without cycloheximide treatment, and used modified OUTRIDER Z scores to detect gene expression outliers and mis-splicing by exonic and intronic outliers. Analysis was performed by a user-friendly web application, and candidate pathogenic transcriptional events were confirmed by secondary assays. We identified intragenic deletions, monoallelic expression, and pseudoexonic insertions but also synonymous and non-synonymous variants with deleterious effects on transcription, increasing the diagnostic yield for NDDs by 13%. We found that cycloheximide treatment and exonic/intronic Z score analysis increased detection and resolution of aberrant splicing. Importantly, in one individual mis-splicing was found in a candidate gene nearly matching the individual's specific phenotype. However, pathogenic splicing occurred in another neuronal-expressed gene and provided a molecular diagnosis, stressing the need to customize RNA-seq. Lastly, our web browser application allowed custom analysis settings that facilitate diagnostic application and ranked pathogenic transcripts as top candidates. Our results demonstrate that RNA-seq is a complementary method in the genomic diagnosis of NDDs and, by providing accessible analysis with improved sensitivity, our transcriptome analysis approach facilitates wider implementation of RNA-seq in routine genome diagnostics.
Collapse
|
4
|
Singh M, Agarwal V, Jindal D, Pancham P, Agarwal S, Mani S, Tiwari RK, Das K, Alghamdi BS, Abujamel TS, Ashraf GM, Jha SK. Recent Updates on Corticosteroid-Induced Neuropsychiatric Disorders and Theranostic Advancements through Gene Editing Tools. Diagnostics (Basel) 2023; 13:diagnostics13030337. [PMID: 36766442 PMCID: PMC9914305 DOI: 10.3390/diagnostics13030337] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/28/2022] [Accepted: 10/16/2022] [Indexed: 01/19/2023] Open
Abstract
The vast use of corticosteroids (CCSs) globally has led to an increase in CCS-induced neuropsychiatric disorders (NPDs), a very common manifestation in patients after CCS consumption. These neuropsychiatric disorders range from depression, insomnia, and bipolar disorders to panic attacks, overt psychosis, and many other cognitive changes in such subjects. Though their therapeutic importance in treating and improving many clinical symptoms overrides the complications that arise after their consumption, still, there has been an alarming rise in NPD cases in recent years, and they are seen as the greatest public health challenge globally; therefore, these potential side effects cannot be ignored. It has also been observed that many of the neuronal functional activities are regulated and controlled by genomic variants with epigenetic factors (DNA methylation, non-coding RNA, and histone modeling, etc.), and any alterations in these regulatory mechanisms affect normal cerebral development and functioning. This study explores a general overview of emerging concerns of CCS-induced NPDs, the effective molecular biology approaches that can revitalize NPD therapy in an extremely specialized, reliable, and effective manner, and the possible gene-editing-based therapeutic strategies to either prevent or cure NPDs in the future.
Collapse
Affiliation(s)
- Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
- Correspondence: (M.S.); (S.K.J.)
| | - Vinayak Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Divya Jindal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Pranav Pancham
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Shriya Agarwal
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Raj Kumar Tiwari
- School of Health Sciences, Pharmaceutical Sciences, UPES, Dehradun 248007, India
| | - Koushik Das
- School of Health Sciences, Pharmaceutical Sciences, UPES, Dehradun 248007, India
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tukri S. Abujamel
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ghulam Md. Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
- Correspondence: (M.S.); (S.K.J.)
| |
Collapse
|
5
|
The autism risk factor CHD8 is a chromatin activator in human neurons and functionally dependent on the ERK-MAPK pathway effector ELK1. Sci Rep 2022; 12:22425. [PMID: 36575212 PMCID: PMC9794786 DOI: 10.1038/s41598-022-23614-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/02/2022] [Indexed: 12/28/2022] Open
Abstract
The chromodomain helicase DNA-binding protein CHD8 is the most frequently mutated gene in autism spectrum disorder. Despite its prominent disease involvement, little is known about its molecular function in the human brain. CHD8 is a chromatin regulator which binds to the promoters of actively transcribed genes through genomic targeting mechanisms which have yet to be fully defined. By generating a conditional loss-of-function and an endogenously tagged allele in human pluripotent stem cells, we investigated the molecular function and the interaction of CHD8 with chromatin in human neurons. Chromatin accessibility analysis and transcriptional profiling revealed that CHD8 functions as a transcriptional activator at its target genes in human neurons. Furthermore, we found that CHD8 chromatin targeting is cell context-dependent. In human neurons, CHD8 preferentially binds at ETS motif-enriched promoters. This enrichment is particularly prominent on the promoters of genes whose expression significantly changes upon the loss of CHD8. Indeed, among the ETS transcription factors, we identified ELK1 as being most highly correlated with CHD8 expression in primary human fetal and adult cortical neurons and most highly expressed in our stem cell-derived neurons. Remarkably, ELK1 was necessary to recruit CHD8 specifically to ETS motif-containing sites. These findings imply that ELK1 and CHD8 functionally cooperate to regulate gene expression and chromatin states at MAPK/ERK target genes in human neurons. Our results suggest that the MAPK/ERK/ELK1 axis potentially contributes to the pathogenesis caused by CHD8 mutations in human neurodevelopmental disorders.
Collapse
|
6
|
Diamanti T, Prete R, Battista N, Corsetti A, De Jaco A. Exposure to Antibiotics and Neurodevelopmental Disorders: Could Probiotics Modulate the Gut-Brain Axis? Antibiotics (Basel) 2022; 11:1767. [PMID: 36551423 PMCID: PMC9774196 DOI: 10.3390/antibiotics11121767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
In order to develop properly, the brain requires the intricate interconnection of genetic factors and pre-and postnatal environmental events. The gut-brain axis has recently raised considerable interest for its involvement in regulating the development and functioning of the brain. Consequently, alterations in the gut microbiota composition, due to antibiotic administration, could favor the onset of neurodevelopmental disorders. Literature data suggest that the modulation of gut microbiota is often altered in individuals affected by neurodevelopmental disorders. It has been shown in animal studies that metabolites released by an imbalanced gut-brain axis, leads to alterations in brain function and deficits in social behavior. Here, we report the potential effects of antibiotic administration, before and after birth, in relation to the risk of developing neurodevelopmental disorders. We also review the potential role of probiotics in treating gastrointestinal disorders associated with gut dysbiosis after antibiotic administration, and their possible effect in ameliorating neurodevelopmental disorder symptoms.
Collapse
Affiliation(s)
- Tamara Diamanti
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, 00185 Rome, Italy
| | - Roberta Prete
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Natalia Battista
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Aldo Corsetti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Antonella De Jaco
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
7
|
The phenotypic spectrum and genotype-phenotype correlations in 106 patients with variants in major autism gene CHD8. Transl Psychiatry 2022; 12:421. [PMID: 36182950 PMCID: PMC9526704 DOI: 10.1038/s41398-022-02189-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 12/08/2022] Open
Abstract
CHD8, a major autism gene, functions in chromatin remodelling and has various roles involving several biological pathways. Therefore, unsurprisingly, previous studies have shown that intellectual developmental disorder with autism and macrocephaly (IDDAM), the syndrome caused by pathogenic variants in CHD8, consists of a broad range of phenotypic abnormalities. We collected and reviewed 106 individuals with IDDAM, including 36 individuals not previously published, thus enabling thorough genotype-phenotype analyses, involving the CHD8 mutation spectrum, characterization of the CHD8 DNA methylation episignature, and the systematic analysis of phenotypes collected in Human Phenotype Ontology (HPO). We identified 29 unique nonsense, 25 frameshift, 24 missense, and 12 splice site variants. Furthermore, two unique inframe deletions, one larger deletion (exons 26-28), and one translocation were observed. Methylation analysis was performed for 13 patients, 11 of which showed the previously established episignature for IDDAM (85%) associated with CHD8 haploinsufficiency, one analysis was inconclusive, and one showing a possible gain-of-function signature instead of the expected haploinsufficiency signature was observed. Consistent with previous studies, phenotypical abnormalities affected multiple organ systems. Many neurological abnormalities, like intellectual disability (68%) and hypotonia (29%) were observed, as well as a wide variety of behavioural abnormalities (88%). Most frequently observed behavioural problems included autism spectrum disorder (76%), short attention span (32%), abnormal social behaviour (31%), sleep disturbance (29%) and impaired social interactions (28%). Furthermore, abnormalities in the digestive (53%), musculoskeletal (79%) and genitourinary systems (18%) were noted. Although no significant difference in severity was observed between males and females, individuals with a missense variant were less severely affected. Our study provides an extensive review of all phenotypic abnormalities in patients with IDDAM and provides clinical recommendations, which will be of significant value to individuals with a pathogenic variant in CHD8, their families, and clinicians as it gives a more refined insight into the clinical and molecular spectrum of IDDAM, which is essential for accurate care and counselling.
Collapse
|
8
|
Iyshwarya B, Vajagathali M, Ramakrishnan V. Investigation of Genetic Polymorphism in Autism Spectrum Disorder: a Pathogenesis of the Neurodevelopmental Disorder. ADVANCES IN NEURODEVELOPMENTAL DISORDERS 2022; 6:136-146. [DOI: 10.1007/s41252-022-00251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/12/2022] [Indexed: 12/07/2023]
|
9
|
da Costa GE, Fernandes GL, Rodrigues JCG, da V. B. Leal DF, Pastana LF, Pereira EEB, Assumpção PP, Burbano RMR, dos Santos SEB, Guerreiro JF, Fernandes MR, dos Santos NPC. Exome Evaluation of Autism-Associated Genes in Amazon American Populations. Genes (Basel) 2022; 13:368. [PMID: 35205412 PMCID: PMC8871861 DOI: 10.3390/genes13020368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorder is a neurodevelopmental disorder, affecting one in 160 children worldwide. The causes of autism are still poorly understood, but research shows the relevance of genetic factors in its pathophysiology, including the CHD8, SCN2A, FOXP1 and SYNGAP1 genes. Information about the genetic influence on various diseases, including autism, in the Amerindian population from Amazon, is still scarce. We investigated 35 variants of the CHD8, SCN2A, FOXP1, and SYNGAP1 gene in Amazonian Amerindians in comparison with publicly available population frequencies from the 1000 Genomes Project database. Our study identified 16 variants in the Amerindian population of the Amazon with frequencies significantly different from the other populations. Among them, the SCN2A (rs17183814, rs75109281, and rs150453735), FOXP1 (rs56850311 and rs939845), and SYNGAP1 (rs9394145 and rs115441992) variants presented higher frequency than all other populations analyzed. In addition, nine variants were found with lower frequency among the Amerindians: CHD8 (rs35057134 and rs10467770), SCN2A (rs3769951, rs2304014, rs1838846, and rs7593568), FOXP1 (rs112773801 and rs56850311), and SYNGAP1 (rs453590). These data show the unique genetic profile of the indigenous population of the Brazilian Amazon. Knowledge of these variants can help to understand the pathophysiology and diagnosis of autism among Amerindians, Brazilians, and in admixed populations that have contributions from this ethnic group.
Collapse
Affiliation(s)
- Giovana E. da Costa
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66075-110, Brazil; (G.E.d.C.); (G.L.F.); (J.C.G.R.); (D.F.d.V.B.L.); (L.F.P.); (R.M.R.B.); (S.E.B.d.S.); (N.P.C.d.S.)
| | - Giordane L. Fernandes
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66075-110, Brazil; (G.E.d.C.); (G.L.F.); (J.C.G.R.); (D.F.d.V.B.L.); (L.F.P.); (R.M.R.B.); (S.E.B.d.S.); (N.P.C.d.S.)
| | - Juliana C. G. Rodrigues
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66075-110, Brazil; (G.E.d.C.); (G.L.F.); (J.C.G.R.); (D.F.d.V.B.L.); (L.F.P.); (R.M.R.B.); (S.E.B.d.S.); (N.P.C.d.S.)
| | - Diana F. da V. B. Leal
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66075-110, Brazil; (G.E.d.C.); (G.L.F.); (J.C.G.R.); (D.F.d.V.B.L.); (L.F.P.); (R.M.R.B.); (S.E.B.d.S.); (N.P.C.d.S.)
| | - Lucas F. Pastana
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66075-110, Brazil; (G.E.d.C.); (G.L.F.); (J.C.G.R.); (D.F.d.V.B.L.); (L.F.P.); (R.M.R.B.); (S.E.B.d.S.); (N.P.C.d.S.)
| | - Esdras E. B. Pereira
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (E.E.B.P.); (P.P.A.); (J.F.G.)
| | - Paulo P. Assumpção
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (E.E.B.P.); (P.P.A.); (J.F.G.)
| | - Rommel M. R. Burbano
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66075-110, Brazil; (G.E.d.C.); (G.L.F.); (J.C.G.R.); (D.F.d.V.B.L.); (L.F.P.); (R.M.R.B.); (S.E.B.d.S.); (N.P.C.d.S.)
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (E.E.B.P.); (P.P.A.); (J.F.G.)
| | - Sidney E. B. dos Santos
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66075-110, Brazil; (G.E.d.C.); (G.L.F.); (J.C.G.R.); (D.F.d.V.B.L.); (L.F.P.); (R.M.R.B.); (S.E.B.d.S.); (N.P.C.d.S.)
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (E.E.B.P.); (P.P.A.); (J.F.G.)
| | - João F. Guerreiro
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (E.E.B.P.); (P.P.A.); (J.F.G.)
| | - Marianne R. Fernandes
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66075-110, Brazil; (G.E.d.C.); (G.L.F.); (J.C.G.R.); (D.F.d.V.B.L.); (L.F.P.); (R.M.R.B.); (S.E.B.d.S.); (N.P.C.d.S.)
| | - Ney P. C. dos Santos
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66075-110, Brazil; (G.E.d.C.); (G.L.F.); (J.C.G.R.); (D.F.d.V.B.L.); (L.F.P.); (R.M.R.B.); (S.E.B.d.S.); (N.P.C.d.S.)
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (E.E.B.P.); (P.P.A.); (J.F.G.)
| |
Collapse
|
10
|
Frewer V, Gilchrist CP, Collins SE, Williams K, Seal ML, Leventer RJ, Amor DJ. A systematic review of brain MRI findings in monogenic disorders strongly associated with autism spectrum disorder. J Child Psychol Psychiatry 2021; 62:1339-1352. [PMID: 34426966 DOI: 10.1111/jcpp.13510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Research on monogenic forms of autism spectrum disorder (autism) can inform our understanding of genetic contributions to the autism phenotype; yet, there is much to be learned about the pathways from gene to brain structure to behavior. This systematic review summarizes and evaluates research on brain magnetic resonance imaging (MRI) findings in monogenic conditions that have strong association with autism. This will improve understanding of the impact of genetic variability on brain structure and related behavioral traits in autism. METHODS The search strategy for this systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Risk of bias (ROB) assessment was completed on included studies using the Newcastle-Ottawa Scales. RESULTS Of 4,287 studies screened, 69 were included pertaining to 13 of the top 20 genes with the strongest association with autism. The greatest number of studies related to individuals with PTEN variants and autism. Brain MRI abnormalities were reported for 12 of the 13 genes studied, and in 51.7% of participants across all 13 genes, including 100% of participants with ARID1B variants. Specific MRI findings were highly variable, with no clear patterns emerging within or between the 13 genes, although white matter abnormalities were the most common. Few studies reported specific details about methods for acquisition and processing of brain MRI, and descriptors for brain abnormalities were variable. ROB assessment indicated high ROB for all studies, largely due to small sample sizes and lack of comparison groups. CONCLUSIONS Brain abnormalities are common in this population of individuals, in particular, children; however, a range of different brain abnormalities were reported within and between genes. Directions for future neuroimaging research in monogenic autism are suggested.
Collapse
Affiliation(s)
- Veronica Frewer
- Murdoch Children's Research Institute, Parkville, Vic., Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Vic., Australia
| | - Courtney P Gilchrist
- Murdoch Children's Research Institute, Parkville, Vic., Australia.,Neurodevelopment in Health and Disease, RMIT University, Bundoora, Vic., Australia
| | - Simonne E Collins
- Murdoch Children's Research Institute, Parkville, Vic., Australia.,School of Psychological Sciences, Turner Institute for Brain & Mental Health, Monash University, Melbourne, Vic., Australia
| | - Katrina Williams
- Monash University, Melbourne, Vic., Australia.,Monash Children's Hospital, Melbourne, Vic., Australia
| | - Marc L Seal
- Murdoch Children's Research Institute, Parkville, Vic., Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Vic., Australia
| | - Richard J Leventer
- Murdoch Children's Research Institute, Parkville, Vic., Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Vic., Australia.,Royal Children's Hospital, Parkville, Vic., Australia
| | - David J Amor
- Murdoch Children's Research Institute, Parkville, Vic., Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Vic., Australia.,Royal Children's Hospital, Parkville, Vic., Australia
| |
Collapse
|
11
|
Oxytocin ameliorates impaired social behavior in a Chd8 haploinsufficiency mouse model of autism. BMC Neurosci 2021; 22:32. [PMID: 33933000 PMCID: PMC8088024 DOI: 10.1186/s12868-021-00631-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 03/24/2021] [Indexed: 11/18/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is characterized by the core symptoms of impaired social interactions. Increasing evidence suggests that ASD has a strong genetic link with mutations in chromodomain helicase DNA binding protein 8 (CHD8), a gene encoding a chromatin remodeler. It has previously been shown that Chd8 haplodeficient male mice manifest ASD-like behavioral characteristics such as anxiety and altered social behavior. Along with that, oxytocin (OT) is one of the main neuropeptides involved in social behavior. Administration of OT has shown improvement of social behavior in genetic animal models of ASD. The present study was undertaken to further explore behavioral abnormalities of Chd8 haplodeficient mice of both sexes, their link with OT, and possible effects of OT administration. First, we performed a battery of behavioral tests on wild-type and Chd8+/∆SL female and male mice. Next, we measured plasma OT levels and finally studied the effects of intraperitoneal OT injection on observed behavioral deficits. Results We showed general anxiety phenotype in Chd8+/∆SL mice regardless of sex, the depressive phenotype in Chd8+/∆SL female mice only and bidirectional social deficit in female and male mice. We observed decreased level of OT in Chd+/∆SL mice, possibly driven by males. Mice injected by OT demonstrated recovery of social behavior, while reduced anxiety was observed only in male mice. Conclusions Here, we demonstrated that abnormal social behaviors were observed in both male and female Chd8+/∆SL mice. The ability of peripheral OT administration to affect such behaviors along with altered plasma OT levels indicated a possible link between Chd8 + /∆SL and OT in the pathogenesis of ASD as well as the possible usefulness of OT as a therapeutic tool for ASD patients with CHD8 mutations. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-021-00631-6.
Collapse
|