1
|
Wang X, Luo J, Wang J, Cao J, Hong Y, Wen Q, Zeng Y, Shi Z, Ma G, Zhang T, Huang P. Catalytically Active Metal-Organic Frameworks Elicit Robust Immune Response to Combination Chemodynamic and Checkpoint Blockade Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6442-6455. [PMID: 36700645 DOI: 10.1021/acsami.2c19476] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chemodynamic therapy (CDT) strategies rely on the generation of reactive oxygen species (ROS) to kill tumor cells, with hydroxyl radicals (•OH) serving as the key mediators of cytotoxicity in this setting. However, the efficacy of CDT approaches is often hampered by the properties of the tumor microenvironment (TME) and associated limitations to the Fenton reaction that constrains ROS generation. As such, there is a pressing need for the design of new nanoplatforms capable of improving CDT outcomes. In this study, an Fc-based metal-organic framework (MOF) vitamin k3 (Vk3)-loaded cascade catalytic nanoplatform (Vk3@Co-Fc) was developed. This platform was capable of undergoing TME-responsive degradation without impacting normal cells. After its release, Vk3 was processed by nicotinamide adenine dinucleotide hydrogen phosphate (NAD(P)H) quinone oxidoreductase-1 (NQO1), which is highly expressed in tumor cells, thereby yielding large quantities of H2O2 that in turn interact with Fe ions via the Fenton reaction to facilitate in situ cytotoxic •OH production. This process leads to immunogenic cell death (ICD) of the tumor, which then promotes dendritic cell maturation and ultimately increases T cell infiltration into the tumor site. When this nanoplatform was combined with programmed death 1 (PD-1) checkpoint blockade approaches, it was sufficient to enhance tumor-associated immune responses in breast cancer as evidenced by increases in the frequencies of CD45+ leukocytes and CD8+ cytotoxic T lymphocytes, thereby inhibiting tumor metastasis to the lungs and improving murine survival outcomes. Together, this Vk3@Co-Fc cascading catalytic nanoplatform enables potent cancer immunotherapy for breast cancer regression and metastasis prevention.
Collapse
Affiliation(s)
- Xue Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
| | - Jiali Luo
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
| | - Jing Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
| | - Jing Cao
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
| | - Yurong Hong
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
| | - Qing Wen
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
| | - Yiqing Zeng
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
| | - Zhan Shi
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
| | - Guangrong Ma
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
| | - Tao Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou310009, P. R. China
| |
Collapse
|
2
|
Xiao X, Teng F, Shi C, Chen J, Wu S, Wang B, Meng X, Essiet Imeh A, Li W. Polymeric nanoparticles—Promising carriers for cancer therapy. Front Bioeng Biotechnol 2022; 10:1024143. [PMID: 36277396 PMCID: PMC9585261 DOI: 10.3389/fbioe.2022.1024143] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/16/2022] [Indexed: 12/03/2022] Open
Abstract
Polymeric nanoparticles (NPs) play an important role in controlled cancer drug delivery. Anticancer drugs can be conjugated or encapsulated by polymeric nanocarriers, which are known as polymeric nanomedicine. Polymeric nanomedicine has shown its potential in providing sustained release of drugs with reduced cytotoxicity and modified tumor retention, but until now, few delivery systems loading drugs have been able to meet clinical demands, so more efforts are needed. This research reviews the current state of the cancer drug-loading system by exhibiting a series of published articles that highlight the novelty and functions from a variety of different architectures including micelles, liposomes, dendrimers, polymersomes, hydrogels, and metal–organic frameworks. These may contribute to the development of useful polymeric NPs to achieve different therapeutic purposes.
Collapse
Affiliation(s)
- Xiao Xiao
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Fei Teng
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Changkuo Shi
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Junyu Chen
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Shuqing Wu
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Bao Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
| | - Xiang Meng
- School of Pharmacy, Jilin Medical University, Jilin, China
| | | | - Wenliang Li
- School of Pharmacy, Jilin Medical University, Jilin, China
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
- *Correspondence: Wenliang Li,
| |
Collapse
|
3
|
Saw PE, Xu X, Kim S, Jon S. Biomedical Applications of a Novel Class of High-Affinity Peptides. Acc Chem Res 2021; 54:3576-3592. [PMID: 34406761 DOI: 10.1021/acs.accounts.1c00239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most therapeutic peptides available on the market today are naturally occurring hormones or protein fragments that were serendipitously discovered to possess therapeutic effects. However, the limited repertoire of available natural resources presents difficulties for the development of new peptide drug candidates. Traditional peptides possess several shortcomings that must be addressed for biomedical applications, including relatively low affinity or specificity toward biological targets compared to antibody- and protein scaffold-based affinity molecules, poor in vivo stability owing to rapid enzymatic degradation, and rapid clearance from circulation owing to their small size. Going forward, it will be increasingly important for scientists to develop novel classes of high-affinity and -specificity peptides against desired targets that mitigate these limitations while remaining compatible with pharmaceutical manufacturing processes. Recently, several highly constrained, artificial cyclic peptides have emerged as platforms capable of generating high-affinity peptide binders against various disease-associated protein targets by combining with phage or mRNA display method, some of which have entered clinical trials. In contrast, although linear peptides are relatively easy to synthesize cost-effectively and modify site-specifically at either N- or C-termini compared to cyclic peptides, there have been few linear peptide-based platforms that can provide high-affinity and -specificity peptide binders.In this Account, we describe the creation and development of a novel class of high-affinity peptides, termed "aptide"-from the Latin word "aptus" meaning "to fit" and "peptide"-and summarize their biomedical applications. In the first part, we consider the design and creation of aptides, with a focus on their unique structural features and binding mode, and address screening and identification of target protein-specific aptides. We also discuss advantages of the aptide platform over ordinary linear peptides lacking preorganized structures in terms of the affinity and specificity of identified peptide binders against target molecules. In the second part, we describe the potential biomedical applications of various target-specific aptides, ranging from imaging and therapy to theranostics, according to the types of aptides and diseases. We show that certain aptides can not only bind to a target protein but also inhibit its biological function, thereby showing potential as therapeutics per se. Further, aptides specific for cancer-associated protein antigens can be used as escort molecules or targeting ligands for delivery of chemotherapeutics, cytokine proteins, and nanomedicines, such as liposomes and magnetic particles, to tumors, thereby substantially improving therapeutic effects. Finally, we present a strategy capable of overcoming the critical issue of short blood circulation time associated with most peptides by constructing a hybrid system between an aptide and a hapten cotinine-specific antibody.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, P.R. China
- Biomedical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, P.R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, P.R. China
- Biomedical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, P.R. China
| | - Sunghyun Kim
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering and Technology (KICET), Cheongju-si 28160, Republic of Korea
| | - Sangyong Jon
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, South Korea
| |
Collapse
|
4
|
Deng Y, Huang R, Huang S, Xiong M. Nanoparticles Enable Efficient Delivery of Antimicrobial Peptides for the Treatment of Deep Infections. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2021-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract Antimicrobial peptides (AMPs) have emerged as promising alternatives of traditional antibiotics against drug-resistant bacteria owing to their broad-spectrum antimicrobial properties and low tendency to drug resistance. However, their therapeutic efficacy in vivo,
especially for infections in deep organs, is limited owing to their systemic toxicity and low bioavailability. Nanoparticles-based delivery systems offer a strategy to increase the therapeutic index of AMPs by preventing proteolysis, increasing the accumulation at infection sites, and reducing
toxicity. Herein, we will discuss the current progress of using nanoparticles as delivery vehicles for AMPs for the treatment of deep infections.Statement of significanceAntimicrobial peptides (AMPs) are rarely directly used to treat deep infections due to their systemic toxicity
and low bioavailability. This review summarizes recent progress that researchers employed nanoparticles-based delivery systems to deliver AMPs for the treatment of deep infections. Nanoparticles-based delivery systems offer a strategy to increase the therapeutic index of AMPs by preventing
proteolysis, increasing the accumulation at infection sites, and reducing toxicity. Especially, the development of intelligent nanocarriers can achieve selective activation and active target in the infectious sites, thus improving the therapeutic efficacy against bacterial infection and reducing
the toxicity against normal tissues.
Collapse
Affiliation(s)
- Yingxue Deng
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 510006, P. R. China
| | - Rui Huang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 510006, P. R. China
| | - Songyin Huang
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P. R. China
| | - Menghua Xiong
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|