1
|
Yang N, Li J, Yu S, Xia G, Li D, Yuan L, Wang Q, Ding L, Fan Z, Li J. Application of Nanomaterial-Based Sonodynamic Therapy in Tumor Therapy. Pharmaceutics 2024; 16:603. [PMID: 38794265 PMCID: PMC11125068 DOI: 10.3390/pharmaceutics16050603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Sonodynamic therapy (SDT) has attracted significant attention in recent years as it is an innovative approach to tumor treatment. It involves the utilization of sound waves or ultrasound (US) to activate acoustic sensitizers, enabling targeted drug release for precise tumor treatment. This review aims to provide a comprehensive overview of SDT, encompassing its underlying principles and therapeutic mechanisms, the applications of nanomaterials, and potential synergies with combination therapies. The review begins by introducing the fundamental principle of SDT and delving into the intricate mechanisms through which it facilitates tumor treatment. A detailed analysis is presented, outlining how SDT effectively destroys tumor cells by modulating drug release mechanisms. Subsequently, this review explores the diverse range of nanomaterials utilized in SDT applications and highlights their specific contributions to enhancing treatment outcomes. Furthermore, the potential to combine SDT with other therapeutic modalities such as photothermal therapy (PTT) and chemotherapy is discussed. These combined approaches aim to synergistically improve therapeutic efficacy while mitigating side effects. In conclusion, SDT emerges as a promising frontier in tumor treatment that offers personalized and effective treatment options with the potential to revolutionize patient care. As research progresses, SDT is poised to play a pivotal role in shaping the future landscape of oncology by providing patients with a broader spectrum of efficacious and tailored treatment options.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhongxiong Fan
- School of Pharmaceutical Sciences, Institute of Materia Medica, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Jinyao Li
- School of Pharmaceutical Sciences, Institute of Materia Medica, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
2
|
Wang T, Peng W, Du M, Chen Z. Immunogenic sonodynamic therapy for inducing immunogenic cell death and activating antitumor immunity. Front Oncol 2023; 13:1167105. [PMID: 37168380 PMCID: PMC10166230 DOI: 10.3389/fonc.2023.1167105] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
Immunotherapy is widely regarded as a promising treatment for cancer. However, the immune effector phase suppression of tumor microenvironment (TME) and the generation of immune-related adverse events limit its application. Research indicates that sonodynamic therapy (SDT) can effectively activate antitumor immunity while killing tumor cells. SDT produces cytotoxic substances of tumors, and then cell apoptosis and immunogenic death occur by selectively activating the sonosensitizer under ultrasound. In recent years, various SDT alone as well as SDT in combination with other therapies have been developed to induce immunogenic cell death (ICD) and enhance immunotherapy. This paper overviews the research progress of SDT and nanotechnology in recent years, including the strategies involving SDT alone, SDT-based synergistic induction of antitumor immunity, and immunotherapy based on SDT for multimodal immunotherapy. Finally, the prospects and challenges of these SDT-based therapies in cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Ting Wang
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Wangrui Peng
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Meng Du
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Meng Du, ; Zhiyi Chen,
| | - Zhiyi Chen
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
- *Correspondence: Meng Du, ; Zhiyi Chen,
| |
Collapse
|
3
|
Wang X, Shi Z, Luo J, Zeng Y, He L, Chen L, Yao J, Zhang T, Huang P. Ultrasound improved immune adjuvant delivery to induce DC maturation and T cell activation. J Control Release 2022; 349:18-31. [PMID: 35780954 DOI: 10.1016/j.jconrel.2022.06.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 01/04/2023]
Abstract
Tumor immunotherapy has emerged as a promising approach to tumor treatment. Currently, immune adjuvant-based therapeutic modalities are rarely curative in solid tumors owing to challenges including the low permeability and extremely poor water solubility of these adjuvants, limiting their ability to effectively promote dendritic cell (DC) maturation. Herein, we employed ultrasound-mediated cavitation (UMC) to promote the delivery of Toll-like receptor agonist (R837)-loaded pH-responsive liposomes (PEOz-Lip@R837) to tumors. The tumor-associated antigens (TAAs) produced by UMC treatment exhibited vaccinal activity, particularly in the presence of immune adjuvants, together promoting the maturation of DC and inducing cytokine production. Importantly, UMC can down-regulate immune checkpoint molecules, like Cd274, Foxp3 and Ctla4, synergistically stimulating the activation and proliferation of T cells in the body to facilitate tumor treatment. This UMC-enhanced PEOz-Lip@R837 approach was able to induce a robust antitumor immune response capable of arresting primary and distant tumor growth, while also developing immunological memory, protecting against tumor rechallenge following initial tumor clearance. Overall, these results highlight a promising UMC- and pH-sensitive immune adjuvant delivery-based treatment for tumors with the potential for clinical application.
Collapse
Affiliation(s)
- Xue Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China
| | - Zhan Shi
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China
| | - Jiali Luo
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China
| | - Yiqing Zeng
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China
| | - Liangcan He
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, PR China
| | - Libin Chen
- Department of Ultrasound in Medicine, Ningbo First Hospital, Ningbo 315010, PR China
| | - Jianting Yao
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China
| | - Tao Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China.
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China.
| |
Collapse
|
4
|
Chen J, Feng L, Jin P, Shen J, Lu J, Song Y, Wang G, Chen Q, Huang D, Zhang Y, Zhang C, Xu Y, Huang P. Cavitation assisted endoplasmic reticulum targeted sonodynamic droplets to enhanced anti-PD-L1 immunotherapy in pancreatic cancer. J Nanobiotechnology 2022; 20:283. [PMID: 35710424 PMCID: PMC9202099 DOI: 10.1186/s12951-022-01459-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/08/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Sonodynamic therapy (SDT) induces immunogenic cell death (ICD) in tumors and promises to play an assistive role in immunotherapy in pancreatic cancer. However, the short half-life and limited diffusion distance of reactive oxygen species (ROS) impair ICD induction, especially in tumors with relatively poor blood perfusion and dense stroma. RESULTS To address this problem, we fabricated cavitation-assisted endoplasmic reticulum (ER) targeted sonodynamic nanodroplets (PMPS NDs, 329 nm). The good sonodynamic effect and precise endoplasmic reticulum target effect was verified. After intravenous injection, the cRGD peptide modified nanodroplets initially aggregated around the tumor vascular endothelial cells. Stimulated by ultrasound, the liquid-to-gas bubbles began to oscillate and cavitate. This acoustic droplet evaporation strategy facilitated transport of the nanoparticle across the vessel, with deep penetration. This loosened the tumor stroma and facilitated accumulation and penetration of loaded sonosensitizer after 6 h. The modified sonosensitizer can selectively accumulate in the ER to generate a large amount of ROS in situ, inducing potent ER stress, amplified ICD and dendritic cell maturation in vitro and in vivo. Furthermore, the elevated antitumor effect of SDT plus anti-PD-L1 immunotherapy was verified using an orthotopic tumor model. CONCLUSIONS This study reports a cavitation assisted ER targeted sonodynamic therapy that can enhance the effect of anti-PD-L1 immunotherapy effectively in orthotopic and distant pancreatic cancer.
Collapse
Affiliation(s)
- Jifan Chen
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Liting Feng
- Department of Ultrasound, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Peile Jin
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jiaxin Shen
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jiayue Lu
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yue Song
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Guowei Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310000, China.
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Qin Chen
- Department of Ultrasound, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Deyi Huang
- Department of Ultrasound, Yuhuan People's Hospital, Taizhou, 317600, China
| | - Ying Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Chao Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Youfeng Xu
- Department of Ultrasound, Ningbo First Hospital, Ningbo, 315000, China.
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310000, China.
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
5
|
Saha P, Bose S, Javed MN, Srivastava AK. Clinical potential of nanotechnlogy as smart therapeutics: A step toward targeted drug delivery. ADVANCES IN NANOTECHNOLOGY-BASED DRUG DELIVERY SYSTEMS 2022:133-154. [DOI: 10.1016/b978-0-323-88450-1.00024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
6
|
Zhou X, Wang Y, Li Y, Zhao Y, Shan T, Gong X, Li F, Tang MX, Wang Z. Acoustic beam mapping for guiding HIFU therapy in vivo using sub-therapeutic sound pulse and passive beamforming. IEEE Trans Biomed Eng 2021; 69:1663-1673. [PMID: 34752379 DOI: 10.1109/tbme.2021.3126734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Although HIFU has been successfully applied in various clinical applications in the past two decades for the ablation of many types of tumors, one bottleneck in its wider applications is the lack of a reliable and affordable strategy to guide the therapy. This study aims at estimating the therapeutic beam path at the pre-treatment stage to guide the therapeutic procedure. METHODS An incident beam mapping technique using passive beamforming was proposed based on a clinical HIFU system and an ultrasound imaging research system. An optimization model was created to map the cross-like beam pattern by maximizing the total energy within the mapped area. This beam mapping technique was validated by comparing the estimated focal region with the HIFU-induced actual focal region (damaged region) through simulation, in-vitro, ex-vivo and in-vivo experiments. RESULTS The results of this study showed that the proposed technique was, to a large extent, tolerant of sound speed inhomogeneities, being able to estimate the focal location with errors of 0.15 mm and 0.93 mm under in-vitro and ex-vivo situations respectively, and slightly over 1 mm under the in-vivo situation. It should be noted that the corresponding errors were 6.8 mm, 3.2 mm, and 9.9 mm respectively when the conventional geometrical method was used. CONCLUSION This beam mapping technique can be very helpful in guiding the HIFU therapy and can be easily applied in clinical environments with an ultrasound-guided HIFU system. SIGNIFICANCE The technique is non-invasive and can potentially be adapted to other ultrasound-related beam manipulating applications.
Collapse
|
7
|
Sun Y, Cao J, Wang X, Zhang C, Luo J, Zeng Y, Zhang C, Li Q, Zhang Y, Xu W, Zhang T, Huang P. Hypoxia-Adapted Sono-chemodynamic Treatment of Orthotopic Pancreatic Carcinoma Using Copper Metal-Organic Frameworks Loaded with an Ultrasound-Induced Free Radical Initiator. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38114-38126. [PMID: 34357760 DOI: 10.1021/acsami.1c11017] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The efficacy of sonodynamic therapy (SDT) is largely dependent upon oxygen availability to generate deleterious reactive oxygen species, and as such, hypoxic microenvironments greatly constrain the efficacy of SDT. Development of free radical generators that are not dependent on oxygen and related combination treatment strategies thus have the potential to enhance the antitumor potential of SDT. Combined treatment strategies are expected to improve the efficacy of sonodynamic antitumor therapy. As metal-organic framework (MOF) platforms are highly amenable to integration with other therapeutic approaches, we herein report the development of tumor microenvironment (TME)-responsive nanoparticles constructed by embedding the azo initiator 2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride (AIPH) into hypoxia-triggered copper metal-organic framework (Cu-MOF) nanovectors to achieve synergistic sono-chemodynamic therapy in an orthotopic murine pancreatic carcinoma model system. When exposed to hypoxic conditions within the TME, this Cu-MOF structure underwent degradation, leading to the release of Cu2+ and AIPH. Cu2+ was then able to deplete local glutathione stores, resulting in the reduction of Cu2+ to Cu+, which then reacts with endogenous H2O2 in a Fenton-like reaction to yield cytotoxic hydroxyl radicals (•OH) for chemodynamic therapy. When exposed to ultrasound irradiation, AIPH further degraded in an oxygen-independent manner to yield nitrogen bubbles and alkyl radicals, the former of which enhanced the ability of these nanoparticles to penetrate deeply into the tumor. The resultant radicals induced substantial DNA damage and apoptotic cell death within target tumors under different levels of oxygen availability. As such, this hypoxic TME-responsive synergistic sono-chemodynamic approach offers an ideal means of achieving oxygen-independent free radical generation and enhanced treatment efficacy.
Collapse
Affiliation(s)
- Yu Sun
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, P.R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Jing Cao
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, P.R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Xue Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, P.R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Cong Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, P.R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Jiali Luo
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, P.R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Yiqing Zeng
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, P.R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Chao Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, P.R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Qunying Li
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, P.R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Ying Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, P.R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Wen Xu
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, P.R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Tao Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, P.R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, P.R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| |
Collapse
|