1
|
Zimering MB. A Serotonin 2A-Receptor Decoy Peptide Potently Lowers Blood Pressure in Male Zucker Diabetic, Fatty, Hypertensive Rats. ENDOCRINOLOGY, DIABETES AND METABOLISM JOURNAL 2021; 5:10.31038/edmj.2021523. [PMID: 35035793 PMCID: PMC8759716 DOI: 10.31038/edmj.2021523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
AIMS To test whether a novel 5-hydroxytryptamine 2A decoy receptor peptide, SN..8 (Sertuercept), administered via intraperitoneal injection, acutely lowers arterial blood pressure in obese, hypertensive male Zucker diabetic rats (ZDF). To examine the safety, tolerability and possible reno-protective effects following chronic alternate daily administration of Sertuercept (for 10 weeks) in the male ZDF rat. METHODS Systolic and diastolic blood pressure were determined at baseline and regular intervals for up to 48 hours after a single IP administration of either Sertuercept (2 mg/kg), vehicle (saline) or an identical concentration of a scrambled sequence of the decoy receptor peptide, LN…8, in male ZDF and Zucker lean rats using tail cuff plethysmography. Plasma autoantibodies were obtained in thirteen male ZDF rats for determination of 5-hydroxytryptamine 2A receptor-mediated neurotoxicity using an acute neurite retraction assay in mouse neuroblastoma cells. Rats were sacrificed at 25-weeks of age, the kidneys were perfused, fixed and sections were stained using Masson's trichrome for semi-quantitative determination of glomerular and interstitial fibrosis. RESULTS Sertuercept (2 mg/kg IP) potently lowered systolic and diastolic blood pressure in both 11-week-old and 25-week-old male ZDF rats and in a subset of hypertensive Zucker lean rats. There was no significant blood pressure-lowering effect of vehicle (saline) or scrambled peptide sequence (LN.8). Blood pressure-lowering was rapid in onset (15-30 minutes following IP injection) and sustained for at least 24 hours. Alternate daily IP administration of 2 mg/kg dose of Sertuercept vs. scrambled peptide (for 10 weeks) was safe, well-tolerated and associated with a significant decrease in glomerulosclerosis in 25-week-old male ZDF rats. Plasma autoantibody-induced neurotoxicity correlated significantly with the global index of renal fibrosis severity in 25-week-old male ZDF rats. CONCLUSIONS These data indicate potent arterial blood pressure-lowering efficacy from a decoy receptor peptide comprised of a second extracellular loop region of the human 5-hydroxytryptamine receptor. Chronic administration of the decoy receptor peptide (10 weeks) was safe, well-tolerated and protected against renal glomerulosclerosis in the male ZDF rat.
Collapse
Affiliation(s)
- Mark B. Zimering
- Endocrine Section, Veterans Affair New Jersey Healthcare System, East Orange, New Jersey, USA
- Endocrinology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
2
|
Zimering MB, Delic V, Citron BA. Gene Expression Changes in a Model Neuron Cell Line Exposed to Autoantibodies from Patients with Traumatic Brain Injury and/or Type 2 Diabetes. Mol Neurobiol 2021; 58:4365-4375. [PMID: 34013450 PMCID: PMC8487420 DOI: 10.1007/s12035-021-02428-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/11/2021] [Indexed: 11/24/2022]
Abstract
Traumatic brain injury and adult type 2 diabetes mellitus are each associated with the late occurrence of accelerated cognitive decline and Parkinson’s disease through unknown mechanisms. Previously, we reported increased circulating agonist autoantibodies targeting the 5-hydroxytryptamine 2A receptor in plasma from subsets of Parkinson’s disease, dementia, and diabetic patients suffering with microvascular complications. Here, we use a model neuron, mouse neuroblastoma (N2A) cell line, to test messenger RNA expression changes following brief exposure to traumatic brain injury and/or type 2 diabetes mellitus plasma harboring agonist 5-hydroxytryptamine 2A receptor autoantibodies. We now report involvement of the mitochondrial dysfunction pathway and Parkinson’s disease pathways in autoantibody-induced gene expression changes occurring in neuroblastoma cells. Functional gene categories upregulated significantly included cell death, cytoskeleton-microtubule function, actin polymerization or depolymerization, regulation of cell oxidative stress, mitochondrial function, immune function, protein metabolism, and vesicle function. Gene categories significantly downregulated included microtubule function, cell adhesion, neurotransmitter release, dopamine metabolism synaptic plasticity, maintenance of neuronal differentiation, mitochondrial function, and cell signaling. Taken together, these results suggest that agonist 5-hydroxytryptamine receptor autoantibodies (which increase in Parkinson’s disease and other forms of neurodegeneration) mediate a coordinating program of gene expression changes in a model neuron which predispose to neuro-apoptosis and are linked to human neurodegenerative diseases pathways.
Collapse
Affiliation(s)
- Mark B Zimering
- Endocrine and Diabetes Section, Medical Service, VA New Jersey Healthcare System, 385 Tremont Ave, East Orange, NJ, 07018, USA. .,Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| | - Vedad Delic
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research & Development (Mailstop 15), 385 Tremont Ave, East Orange, NJ, 07018, USA
| | - Bruce A Citron
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research & Development (Mailstop 15), 385 Tremont Ave, East Orange, NJ, 07018, USA.,Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
3
|
Zimering MB. Severe COVID-19 Pneumonia is Associated with Increased Plasma Immunoglobulin G Agonist Autoantibodies Targeting the 5-Hydroxytryptamine 2A Receptor. ENDOCRINOLOGY, DIABETES AND METABOLISM JOURNAL 2021; 5:1-9. [PMID: 33680365 DOI: 10.31038/edmj.2021511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aims To test whether plasma autoantibodies targeting the 5-hydroxytryptamine 2A receptor increase in COVID-19 infection; and to characterize the pharmacologic specificity, and signaling pathway activation occurring downstream of receptor binding in mouse neuroblastoma N2A cells and cell toxicity of the autoantibodies. Methods Plasma obtained from nineteen, older COVID-19 patients having mild or severe infection was subjected to protein-A affinity chromatography to obtain immunoglobulin G fraction. One-fortieth dilution of the protein-A eluate was tested for binding to a linear synthetic peptide QN.18 corresponding to the second extracellular loop of the human 5-hydroxytryptamine 2A receptor. Mouse neuroblastoma N2A cells were incubated with COVID-19 IgG autoantibodies in the presence or absence of selective inhibitors of G-protein coupled receptors, signaling pathway antagonists, or a novel decoy receptor peptide. Results 5-hydroxytryptamine 2A receptor autoantibody binding occurred in 17 of 19 (89%) patients with acute COVID-19 infection and increased level was significantly correlated with increased severity of COVID-19 infection. The agonist autoantibodies mediated acute neurite retraction in mouse neuroblastoma cells by a mechanism involving Gq11/PLC/IP3R/Ca2+ activation and RhoA/Rho kinase pathway signaling occurring downstream of receptor binding which had pharmacologic specificity consistent with binding to the 5-HT2A receptor. A novel synthetic peptide 5-HT2AR fragment, SN..8, dose-dependently blocked autoantibody-induced neurotoxicity. The COVID-19 autoantibodies displayed acute toxicity in bovine pulmonary artery endothelial cells (stress fiber formation, contraction) and modulated proliferation in a manner consistent with known 'biased agonism' on the 5-HT2A receptor. Conclusion These data suggest that 5-HT2AR targeting autoantibodies are highly prevalent may contribute to pathophysiology in acute, severe COVID-19 infection.
Collapse
Affiliation(s)
- Mark B Zimering
- Veterans Affairs New Jersey Healthcare System, East Orange NJ, USA.,Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
4
|
Zimering MB, Pulikeyil AT, Myers CE, Pang KC. Serotonin 2A Receptor Autoantibodies Increase in Adult Traumatic Brain Injury In Association with Neurodegeneration. JOURNAL OF ENDOCRINOLOGY AND DIABETES 2020; 7:1-8. [PMID: 32671201 PMCID: PMC7362960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
OBJECTIVE Traumatic brain injury (TBI) is associated with an increased risk of late neurodegenerative complications via unknown mechanisms. Circulating neurotoxic 5-hydroxytryptamine 2A receptor (5-HT2AR) autoantibodies were reported to increase in subsets of obese type 2 diabetes having microvascular complications. We tested whether 5-HT2AR autoantibodies increase in adults following traumatic brain injury in association with neurodegenerative complications. METHODS Plasma from thirty-five middle-aged and older adult veterans (mean 65 years old) who had suffered traumatic brain injury was subjected to protein-A affinity chromatography. The resulting immunoglobulin (Ig) G fraction was tested for neurotoxicity (acute neurite retraction, and accelerated cell death) in mouse N2A neuroblastoma cells or for binding to a linear synthetic peptide corresponding to the second extracellular loop region of the human 5-HT2A receptor. RESULTS Nearly two-thirds of traumatic brain injured-patients harbored 5-HT2AR autoantibodies in their circulation. Active TBI autoantibodies caused neurite retraction in mouse N2A neuroblastoma cells and accelerated N2A cell loss which was substantially prevented by co-incubation with a two hundred and fifty nanomolar concentration of M100907, a highly selective 5-HT2AR antagonist. Antagonists of RhoA/Rho kinase and Gq11/phospholipase C/inositol triphosphate receptor signaling pathways blocked TBI autoantibody-induced neurite retraction. Following traumatic brain injury, autoantibody binding to a 5-HT2A receptor peptide was significantly increased in patients having co-morbid Parkinson's disease (n=3), dementia (n=5), and painful neuropathy (n=8) compared to TBI subsets without neurologic or microvascular complication (n=20). Autoantibody titer was significantly elevated in TBI subsets experiencing multiple neurotraumatic exposures vs. single TBI. Plasma white blood cell, a marker of systemic inflammation, correlated significantly (correlation coefficient r =0.52; P < 0.01) with, 5-HT2A receptor peptide binding of the TBI-autoantibody. CONCLUSION These data suggest that circulating neurotoxic 5-hydroxytryptamine 2A receptor agonist autoantibodies increase in adults following traumatic brain injury in association with late neurodegenerative complications.
Collapse
Affiliation(s)
- Mark B. Zimering
- Veterans Affairs New Jersey Healthcare System, East Orange, NJ
- Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ
| | | | - Catherine E. Myers
- Veterans Affairs New Jersey Healthcare System, East Orange, NJ
- Rutgers-New Jersey Medical School, Newark, NJ
| | - Kevin C. Pang
- Veterans Affairs New Jersey Healthcare System, East Orange, NJ
- Rutgers-New Jersey Medical School, Newark, NJ
| |
Collapse
|
5
|
Qu L, Pan C, He SM, Lang B, Gao GD, Wang XL, Wang Y. The Ras Superfamily of Small GTPases in Non-neoplastic Cerebral Diseases. Front Mol Neurosci 2019; 12:121. [PMID: 31213978 PMCID: PMC6555388 DOI: 10.3389/fnmol.2019.00121] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
The small GTPases from the Ras superfamily play crucial roles in basic cellular processes during practically the entire process of neurodevelopment, including neurogenesis, differentiation, gene expression, membrane and protein traffic, vesicular trafficking, and synaptic plasticity. Small GTPases are key signal transducing enzymes that link extracellular cues to the neuronal responses required for the construction of neuronal networks, as well as for synaptic function and plasticity. Different subfamilies of small GTPases have been linked to a number of non-neoplastic cerebral diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), intellectual disability, epilepsy, drug addiction, Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS) and a large number of idiopathic cerebral diseases. Here, we attempted to make a clearer illustration of the relationship between Ras superfamily GTPases and non-neoplastic cerebral diseases, as well as their roles in the neural system. In future studies, potential treatments for non-neoplastic cerebral diseases which are based on small GTPase related signaling pathways should be explored further. In this paper, we review all the available literature in support of this possibility.
Collapse
Affiliation(s)
- Liang Qu
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Chao Pan
- Beijing Institute of Biotechnology, Beijing, China
| | - Shi-Ming He
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China.,Department of Neurosurgery, Xi'an International Medical Center, Xi'an, China
| | - Bing Lang
- The School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Dong Gao
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Xue-Lian Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Yuan Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|