1
|
Piao X, Li D, Liu H, Guo Q, Yu Y. Advances in Gene and Cellular Therapeutic Approaches for Huntington's Disease. Protein Cell 2024:pwae042. [PMID: 39121016 DOI: 10.1093/procel/pwae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Indexed: 08/11/2024] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by the abnormal expansion of CAG trinucleotide repeats in the Huntingtin gene (HTT) located on chromosome 4. It is transmitted in an autosomal dominant manner and is characterized by motor dysfunction, cognitive decline, and emotional disturbances. To date, there are no curative treatments for HD have been developed; current therapeutic approaches focus on symptom relief and comprehensive care through coordinated pharmacological and non-pharmacological methods to manage the diverse phenotypes of the disease. International clinical guidelines for the treatment of HD are continually being revised in an effort to enhance care within a multidisciplinary framework. Additionally, innovative gene and cell therapy strategies are being actively researched and developed to address the complexities of the disorder and improve treatment outcomes. This review endeavours to elucidate the current and emerging gene and cell therapy strategies for HD, offering a detailed insight into the complexities of the disorder and looking forward to future treatment paradigms. Considering the complexity of the underlying mechanisms driving HD, a synergistic treatment strategy that integrates various factors-such as distinct cell types, epigenetic patterns, genetic components, and methods to improve the cerebral microenvironment-may significantly enhance therapeutic outcomes. In the future, we eagerly anticipate ongoing innovations in interdisciplinary research that will bring profound advancements and refinements in the treatment of HD.
Collapse
Affiliation(s)
- Xuejiao Piao
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Dan Li
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Hui Liu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Qing Guo
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
2
|
Tamura R, Dezawa S, Kato J, Nakata M, Kunori N, Takashima I. Transcranial direct current stimulation improves motor function in rats with 6-hydroxydopamine-induced Parkinsonism. Behav Brain Res 2024; 460:114815. [PMID: 38122905 DOI: 10.1016/j.bbr.2023.114815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Transcranial direct current stimulation (tDCS) is increasingly being used for Parkinson's disease (PD); however, the evaluation of its clinical impact remains complex owing to the heterogeneity of patients and treatments. Therefore, we used a unilateral 6-hydroxydopamine-induced PD rat model to investigate whether anodal tDCS of the primary motor cortex (M1) alleviates PD motor deficits. Before tDCS treatment, unilateral PD rats preferentially used the forelimb ipsilateral to the lesion in the exploratory cylinder test and showed reduced locomotor activity in the open field test. In addition, PD-related clumsy forelimb movements during treadmill walking were detected using deep learning-based video analysis (DeepLabCut). When the 5-day tDCS treatment began, the forelimb-use asymmetry was ameliorated gradually, and locomotor activity increased to pre-lesion levels. tDCS treatment also normalized unnatural forelimb movement during walking and restored a balanced gait. However, these therapeutic effects were rapidly lost or gradually disappeared when the tDCS treatment was terminated. Histological analysis at the end of the experiment revealed that the animals had moderately advanced PD, with 40-50% of dopamine neurons and fibers preserved on the injured side compared with those on the intact side. Although it remains a challenge to elucidate the neural mechanisms of the transient improvement in motor function induced by tDCS, the results of this study provide evidence that tDCS of the M1 produces positive behavioral outcomes in PD animals and provides the basis for further clinical research examining the application of tDCS in patients with PD.
Collapse
Affiliation(s)
- Ryota Tamura
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shinnosuke Dezawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; Faculty of Medical and Health Sciences, Tsukuba International University, Tsuchiura, Japan
| | - Junpei Kato
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Mariko Nakata
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Japan
| | - Nobuo Kunori
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Ichiro Takashima
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan; Department of Informatics and Electronics, Daiichi Institute of Technology, Tokyo, Japan.
| |
Collapse
|
3
|
Fritsch B, Mayer M, Reis J, Gellner AK. Safety of ipsilesional anodal transcranial direct current stimulation in acute photothrombotic stroke: implications for early neurorehabilitation. Sci Rep 2024; 14:2501. [PMID: 38291061 PMCID: PMC10827716 DOI: 10.1038/s41598-024-51839-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/10/2024] [Indexed: 02/01/2024] Open
Abstract
Early rehabilitation in the acute phase of stroke, that bears unique neuroplastic properties, is the current standard to reduce disability. Anodal transcranial direct current stimulation can augment neurorehabilitation in chronic stroke. Studies in the acute phase are sparse and held back by inconclusive preclinical data pointing towards potential negative interaction of the excitability increasing tDCS modality with stroke-induced glutamate toxicity. In this present study, we aimed to evaluate structural and behavioral safety of anodal tDCS applied in the acute phase of stroke. Photothrombotic stroke including the right primary motor cortex was induced in rats. 24 h after stroke anodal tDCS was applied for 20 min ipsilesionally at one of four different current densities in freely moving animals. Effects on the infarct volume and on stroke induced neuroinflammation were assessed. Behavioral consequences were monitored. Infarct volume and the modified Neurological Severity Score were not affected by anodal tDCS. Pasta handling, a more sensitive task for sensorimotor deficits, and microglia reactivity indicated potentially harmful effects at the highest tDCS current density tested (47.8 A/m2), which is more than 60 times higher than intensities commonly used in humans. Compared to published safety limits of anodal tDCS in healthy rats, recent stroke does not increase the sensitivity of the brain to anodal tDCS, as assessed by lesion size and neuroinflammatory response. Behavioral deficits only occurred at the highest intensity, which was associated with increased neuroinflammation. When safety limits of commonly used clinical tDCS are met, augmentation of early neurorehabilitation after stroke by anodal tDCS appears to be feasible.
Collapse
Affiliation(s)
- Brita Fritsch
- Department of Neurology, University Hospital Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Marleen Mayer
- Department of Neurology, University Hospital Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Janine Reis
- Department of Neurology, University Hospital Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Anne-Kathrin Gellner
- Department of Neurology, University Hospital Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
4
|
Mattioli F, Maglianella V, D'Antonio S, Trimarco E, Caligiore D. Non-invasive brain stimulation for patients and healthy subjects: Current challenges and future perspectives. J Neurol Sci 2024; 456:122825. [PMID: 38103417 DOI: 10.1016/j.jns.2023.122825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
Non-invasive brain stimulation (NIBS) techniques have a rich historical background, yet their utilization has witnessed significant growth only recently. These techniques encompass transcranial electrical stimulation and transcranial magnetic stimulation, which were initially employed in neuroscience to explore the intricate relationship between the brain and behaviour. However, they are increasingly finding application in research contexts as a means to address various neurological, psychiatric, and neurodegenerative disorders. This article aims to fulfill two primary objectives. Firstly, it seeks to showcase the current state of the art in the clinical application of NIBS, highlighting how it can improve and complement existing treatments. Secondly, it provides a comprehensive overview of the utilization of NIBS in augmenting the brain function of healthy individuals, thereby enhancing their performance. Furthermore, the article delves into the points of convergence and divergence between these two techniques. It also addresses the existing challenges and future prospects associated with NIBS from ethical and research standpoints.
Collapse
Affiliation(s)
- Francesco Mattioli
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199 Rome, Italy; School of Computing, Electronics and Mathematics, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Valerio Maglianella
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Sara D'Antonio
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Emiliano Trimarco
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Daniele Caligiore
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199 Rome, Italy; Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy.
| |
Collapse
|
5
|
Muksuris K, Scarisbrick DM, Mahoney JJ, Cherkasova MV. Noninvasive Neuromodulation in Parkinson's Disease: Insights from Animal Models. J Clin Med 2023; 12:5448. [PMID: 37685514 PMCID: PMC10487610 DOI: 10.3390/jcm12175448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
The mainstay treatments for Parkinson's Disease (PD) have been limited to pharmacotherapy and deep brain stimulation. While these interventions are helpful, a new wave of research is investigating noninvasive neuromodulation methods as potential treatments. Some promising avenues have included transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), electroconvulsive therapy (ECT), and focused ultrasound (FUS). While these methods are being tested in PD patients, investigations in animal models of PD have sought to elucidate their therapeutic mechanisms. In this rapid review, we assess the available animal literature on these noninvasive techniques and discuss the possible mechanisms mediating their therapeutic effects based on these findings.
Collapse
Affiliation(s)
- Katherine Muksuris
- Department of Psychology, West Virginia University, Morgantown, WV 26506, USA
| | - David M. Scarisbrick
- Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - James J. Mahoney
- Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Mariya V. Cherkasova
- Department of Psychology, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
6
|
Anderson KA, Whitehead BJ, Petersen ED, Kemme MR, Wedster A, Hochgeschwender U, Sandstrom MI. Behavioral context improves optogenetic stimulation of transplanted dopaminergic cells in unilateral 6-OHDA rats. Behav Brain Res 2023; 441:114279. [PMID: 36586489 DOI: 10.1016/j.bbr.2022.114279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Stem cell therapy has long been a popular method of treatment for Parkinson's disease currently being researched in both preclinical and clinical settings. While early clinical results are based upon fetal tissue transplants rather than stem cell transplants, the lack of successful integration in some patients and gradual loss of effect in others suggests a more robust protocol is needed. We propose a two-front approach, one where transplants are directly stimulated in coordination with host activity elicited by behavioral tasks, which we refer to as behavioral context. After a pilot with unilateral 6-OHDA rats transplanted with dopaminergic cells differentiated from mesenchymal stem cells that were optogenetically stimulated during a swim task, we discovered that early stimulation predicted lasting reduction of motor deficits, even in the absence of later stimulation. This led to a follow-up with n = 21 rats split into three groups: one stimulated while performing a swim task (Stim-Swim; St-Sw), one not stimulated while swimming (NoStim-Swim; NSt-Sw), and one stimulated while stationary in a bowl (Stim-NoSwim; St-NSw). After initial stimulation (or lack thereof), all rats were retested two and seven days later with the swim task in the absence of stimulation. The St-Sw group gradually achieved and maintained symmetrical limb use, whereas the NSt-Sw group showed persistent asymmetry and the St-NSw group showed mixed results. This supports the notion that stem cell therapy should integrate targeted stimulation of the transplant with behavioral stimulation of the host tissue to encourage proper functional integration of the graft.
Collapse
Affiliation(s)
- Kevin A Anderson
- Central Michigan University, Department of Psychology, Mt. Pleasant, MI, USA
| | - Bailey J Whitehead
- Central Michigan University, Department of Psychology, Mt. Pleasant, MI, USA; West Virginia University, Rockefeller Neuroscience Institute, College of Medicine, Morgantown, WV, USA
| | - Eric D Petersen
- Central Michigan University, Program in Neuroscience, Mt. Pleasant, MI, USA; Central Michigan University, College of Medicine, Mt. Pleasant, MI, USA; Central Michigan University, Biochemistry, Cell, and Molecular Biology Program, Mt. Pleasant, MI, USA
| | - Madison R Kemme
- Central Michigan University, Department of Psychology, Mt. Pleasant, MI, USA; Michigan State University, College of Human Medicine, East Lansing, MI, USA
| | - Anna Wedster
- Central Michigan University, Program in Neuroscience, Mt. Pleasant, MI, USA
| | - Ute Hochgeschwender
- Central Michigan University, Program in Neuroscience, Mt. Pleasant, MI, USA; Central Michigan University, College of Medicine, Mt. Pleasant, MI, USA; Central Michigan University, Biochemistry, Cell, and Molecular Biology Program, Mt. Pleasant, MI, USA
| | - Michael I Sandstrom
- Central Michigan University, Department of Psychology, Mt. Pleasant, MI, USA; Central Michigan University, Program in Neuroscience, Mt. Pleasant, MI, USA.
| |
Collapse
|
7
|
Neuropathology of the Basal Ganglia in SNCA Transgenic Rat Model of Parkinson's Disease: Involvement of Parvalbuminergic Interneurons and Glial-Derived Neurotropic Factor. Int J Mol Sci 2022; 23:ijms231710126. [PMID: 36077524 PMCID: PMC9456397 DOI: 10.3390/ijms231710126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease characterized by the accumulation of alpha-synuclein, encoded by the SNCA gene. The main neuropathological hallmark of PD is the degeneration of dopaminergic neurons leading to striatal dopamine depletion. Trophic support by a neurotrophin called glial-derived neurotrophic factor (GDNF) is also lacking in PD. We performed immunohistochemical studies to investigate neuropathological changes in the basal ganglia of a rat transgenic model of PD overexpressing alfa-synuclein. We observed that neuronal loss also occurs in the dorsolateral part of the striatum in the advanced stages of the disease. Moreover, along with the degeneration of the medium spiny projection neurons, we found a dramatic loss of parvalbumin interneurons. A marked decrease in GDNF, which is produced by parvalbumin interneurons, was observed in the striatum and in the substantia nigra of these animals. This confirmed the involvement of the striatum in the pathophysiology of PD and the importance of GDNF in maintaining the health of the substantia nigra.
Collapse
|
8
|
Mojaverrostami S, Khadivi F, Zarini D, Mohammadi A. Combination effects of mesenchymal stem cells transplantation and anodal transcranial direct current stimulation on a cuprizone-induced mouse model of multiple sclerosis. J Mol Histol 2022; 53:817-831. [PMID: 35947228 DOI: 10.1007/s10735-022-10092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022]
Abstract
Multiple sclerosis (MS) has no absolute treatment, and researchers are still exploring to introduce promising therapy for MS. Transcranial direct current stimulation (tDCS), is a safe, non-invasive procedure for brain stimulating which can enhance working memory, cognitive neurohabitation and motor recovery. Here, we evaluated the effects of tDCS treatment and Mesenchymal stem cells (MSCs) transplantation on remyelination ability of a Cuprizone (CPZ)-induced demyelination mouse model. tDCS significantly increased the motor coordination and balance abilities in CPZ + tDCS and CPZ + tDCS + MSCs mice in comparison to the CPZ mice. Luxol fast blue (LFB) staining showed that tDCS and MSCs transplantation could increase remyelination capacity in CPZ + tDCS and CPZ + MSCs mice compared to the CPZ mice. But, the effect of tDCS with MSCs transplantation on remyelination process was larger than each of treatment alone. Immunofluorescence technique indicated that the numbers of Olig2+ cells were increased by tDCS and MSCs transplantation in CPZ + tDCS and CPZ + MSCs mice compared to the CPZ mice. Interestingly, the combination effect of tDCS and MSCs was larger than each of treatment alone on Oligodendrocytes population. MSCs transplantation significantly decreased the TUNEL+ cells in CPZ + MSCs and CPZ + tDCS + MSCs mice in comparison to the CPZ mice. Also, the combination effects of tDCS and MSCs transplantation was much larger than each of treatment alone on increasing the mRNA expression of BDNF and Sox2, while decreasing P53 as compared to CPZ mice. It can be concluded that the combination usage of tDCS and MSCs transplantation enhance remyelination process in CPZ-treated mice by increasing transplanted stem cell homing, oligodendrocyte generation and decreasing apoptosis.
Collapse
Affiliation(s)
- Sina Mojaverrostami
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Khadivi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Zarini
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mohammadi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Direct current stimulation enhances neuronal alpha-synuclein degradation in vitro. Sci Rep 2021; 11:2197. [PMID: 33500442 PMCID: PMC7838399 DOI: 10.1038/s41598-021-81693-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
Despite transcranial Direct Current Stimulation (DCS) is currently proposed as a symptomatic treatment in Parkinson's disease, the intracellular and molecular mechanisms elicited by this technique are still unknown, and its disease-modifying potential unexplored. Aim of this study was to elucidate the on-line and off-line effects of DCS on the expression, aggregation and degradation of alpha-synuclein (asyn) in a human neuroblastoma cell line under basal conditions and in presence of pharmachologically-induced increased asyn levels. Following DCS, gene and protein expression of asyn and its main autophagic catabolic pathways were assessed by real-time PCR and Western blot, extracellular asyn levels by Dot blot. We found that, under standard conditions, DCS increased monomeric and reduced oligomeric asyn forms, with a concomitant down-regulation of both macroautophagy and chaperone-mediated autophagy. Differently, in presence of rotenone-induced increased asyn, DCS efficiently counteracted asyn accumulation, not acting on its gene transcription, but potentiating its degradation. DCS also reduced intracellular and extracellular asyn levels, increased following lysosomal inhibition, independently from autophagic degradation, suggesting that other mechanisms are also involved. Collectively, these findings suggest that DCS exerts on-line and off-line effects on the expression, aggregation and autophagic degradation of asyn, indicating a till unknown neuroprotective role of tDCS.
Collapse
|
10
|
Mozneb M, Mirtaheri E, Sanabria AO, Li CZ. Bioelectronic properties of DNA, protein, cells and their applications for diagnostic medical devices. Biosens Bioelectron 2020; 167:112441. [PMID: 32763825 DOI: 10.1016/j.bios.2020.112441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 01/25/2023]
Abstract
From a couple of centuries ago, understanding physical properties of biological material, their interference with their natural host and their potential manipulation for employment as a conductor in medical devices, has gathered substantial interest in the field of bioelectronics. With the fast-emerging technologies for fabrication of diagnostic modalities, wearable biosensors and implantable devices, which electrical components are of essential importance, a need for developing novel conductors within such devices has evolved over the past decades. As the possibility of electron transport within small biological molecules, such as DNA and proteins, as well as larger elements such as cells was established, several discoveries of the modern charge characterization technologies were evolved. Development of Electrochemical Scanning Tunneling Microscopy and Nuclear Magnetic Resonance among many other techniques were of vital importance, following the discoveries made in sub-micron scales of biological material. This review covers the most recent understandings of electronic properties within different scale of biological material starting from nanometer range to millimeter-sized organs. We also discuss the state-of-the-art technology that's been made taking advantage of electronic properties of biological material for addressing diseases like Parkinson's Disease and Epilepsy.
Collapse
Affiliation(s)
- Maedeh Mozneb
- Florida International University, Biomedical Engineering Department, 10555 West Flagler Street, Miami, FL, 33174, USA.
| | - Elnaz Mirtaheri
- Florida International University, Biomedical Engineering Department, 10555 West Flagler Street, Miami, FL, 33174, USA.
| | - Arianna Ortega Sanabria
- Florida International University, Biomedical Engineering Department, 10555 West Flagler Street, Miami, FL, 33174, USA.
| | - Chen-Zhong Li
- Florida International University, Biomedical Engineering Department, 10555 West Flagler Street, Miami, FL, 33174, USA.
| |
Collapse
|
11
|
Madrid J, Benninger DH. Non-invasive brain stimulation for Parkinson's disease: Clinical evidence, latest concepts and future goals: A systematic review. J Neurosci Methods 2020; 347:108957. [PMID: 33017643 DOI: 10.1016/j.jneumeth.2020.108957] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/27/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is becoming a major public-health issue in an aging population. Available approaches to treat advanced PD still have limitations; new therapies are needed. The non-invasive brain stimulation (NIBS) may offer a complementary approach to treat advanced PD by personalized stimulation. Although NIBS is not as effective as the gold-standard levodopa, recent randomized controlled trials show promising outcomes in the treatment of PD symptoms. Nevertheless, only a few NIBS-stimulation paradigms have shown to improve PD's symptoms. Current clinical recommendations based on the level of evidence are reported in Table 1 through Table 3. Furthermore, novel technological advances hold promise and may soon enable the non-invasive stimulation of deeper brain structures for longer periods.
Collapse
Affiliation(s)
- Julian Madrid
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| | - David H Benninger
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| |
Collapse
|
12
|
Memory and Cognition-Related Neuroplasticity Enhancement by Transcranial Direct Current Stimulation in Rodents: A Systematic Review. Neural Plast 2020; 2020:4795267. [PMID: 32211039 PMCID: PMC7061127 DOI: 10.1155/2020/4795267] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/27/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
Brain stimulation techniques, including transcranial direct current stimulation (tDCS), were identified as promising therapeutic tools to modulate synaptic plasticity abnormalities and minimize memory and learning deficits in many neuropsychiatric diseases. Here, we revised the effect of tDCS on the modulation of neuroplasticity and cognition in several animal disease models of brain diseases affecting plasticity and cognition. Studies included in this review were searched following the terms (“transcranial direct current stimulation”) AND (mice OR mouse OR animal) and according to the PRISMA statement requirements. Overall, the studies collected suggest that tDCS was able to modulate brain plasticity due to synaptic modifications within the stimulated area. Changes in plasticity-related mechanisms were achieved through induction of long-term potentiation (LTP) and upregulation of neuroplasticity-related proteins, such as c-fos, brain-derived neurotrophic factor (BDNF), or N-methyl-D-aspartate receptors (NMDARs). Taken into account all revised studies, tDCS is a safe, easy, and noninvasive brain stimulation technique, therapeutically reliable, and with promising potential to promote cognitive enhancement and neuroplasticity. Since the use of tDCS has increased as a novel therapeutic approach in humans, animal studies are important to better understand its mechanisms as well as to help improve the stimulation protocols and their potential role in different neuropathologies.
Collapse
|
13
|
Feng XJ, Huang YT, Huang YZ, Kuo CW, Peng CW, Rotenberg A, Juan CH, Pei YC, Chen YH, Chen KY, Chiang YH, Liu HH, Wu JX, Hsieh TH. Early transcranial direct current stimulation treatment exerts neuroprotective effects on 6-OHDA-induced Parkinsonism in rats. Brain Stimul 2020; 13:655-663. [PMID: 32289694 DOI: 10.1016/j.brs.2020.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has been proven to be able to modulate motor cortical plasticity might have potential as an alternative, adjunctive therapy for Parkinson's disease (PD). However, the efficacy of tDCS in PD is still uncertain. A disease animal model may be useful to clarify the existence of a treatment effect and to explore an effective therapeutic strategy using tDCS protocols. OBJECTIVE The current study was designed to identify the comprehensive therapeutic effects of tDCS in 6-hydroxydopamine (6-OHDA)-lesioned PD rats. METHODS Following early and long-term tDCS application (starting 24 h after PD lesion, 300 μA anodal tDCS, 20 min/day, 5 days/week) in awake PD animals for a total of 4 weeks, the effects of tDCS on motor and non-motor behaviors as well as dopaminergic neuron degeneration levels, were identified. RESULTS We found that the 4-week tDCS intervention significantly alleviated 6-OHDA-induced motor deficits in locomotor activity, akinesia, gait pattern and anxiety-like behavior, but not in apomorphine-induced rotations, recognition memory and depression-like behavior. Immunohistochemically, tyrosine hydroxylase (TH)-positive neurons in the substantia nigra were significantly preserved in the tDCS intervention group. CONCLUSIONS These results suggest that early and long-term tDCS could exert neuroprotective effects and reduce the aggravation of motor dysfunctions in a 6-OHDA-induced PD rat model. Furthermore, this preclinical model may enhance the promising possibility of the potential use of tDCS and serve as a translational platform to further identify the therapeutic mechanism of tDCS for PD or other neurological disorders.
Collapse
Affiliation(s)
- Xiao-Jun Feng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University and The Second Clinical Institute of Anhui Medical University, Hefei, China
| | - Yu-Ting Huang
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Zu Huang
- Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Wei Kuo
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan; Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Alexander Rotenberg
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan; Brain Research Center, National Central University, Taoyuan, Taiwan
| | - Yu-Cheng Pei
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yuan-Hao Chen
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kai-Yun Chen
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hsiao Chiang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Hua Liu
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jian-Xian Wu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University and The Second Clinical Institute of Anhui Medical University, Hefei, China.
| | - Tsung-Hsun Hsieh
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
14
|
Kade AK, Kravchenko SV, Trofimenko AI, Chaplygina KY, Ananeva EI, Poliakov PP, Lipatova AS. [The efficacy of tes-therapy for treatment of anxiety-like behavior and motor disorders in rats with an experimental model of parkinsonism]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:91-96. [PMID: 31626224 DOI: 10.17116/jnevro201911909191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AIM To assess the efficacy of transcranial electrostimulation TES for treatmnet of anxiety-like behavior and motor disorders in rats with rotenone-induced parkinsonism. MATERIAL AND METHODS The study was performed on 30 mature male-rats. Animals were divided into following groups: control, intact rats (group 1); rats with an experimental model of parkinsonism without treatment (group 2); rats with an experimental model of parkinsonism, which had 7 sessions of TES-therapy (group 3), the number of rats in each group was 10. The parkinsonism model was achieved by daily rotenone administration for 28 days. Parkinsonism's markers were assessed using 3-point scale; anxiety-like behavior and motor activity were assessed in the open-field test. TES was performed using TRANSAIR-stimulator for 7 days. Substantia nigra slices were stained with hematoxylin and Lillie's staining for neuromelanin. RESULTS The rats of group 3 show less neurological deficits, less anxiety-like behavior and less neurodegeneration in the substantia nigra. There are a decrease in individual total scores of motor disorders by 50%, a decrease in the level of anxiety-like behavior or the absence of its increase in the open-field test. CONCLUSION TES-therapy may be used as an additional non-pharmacological treatment of motor and related non-motor damage in Parkinson's disease.
Collapse
Affiliation(s)
- A Kh Kade
- Kuban State Medical University, Krasnodar, Russia
| | | | - A I Trofimenko
- Scientific Research Institute - Ochapovsky Regional Clinical Hospital #1, Krasnodar, Russia
| | | | - E I Ananeva
- Kuban State Medical University, Krasnodar, Russia
| | - P P Poliakov
- Kuban State Medical University, Krasnodar, Russia
| | - A S Lipatova
- Kuban State Medical University, Krasnodar, Russia
| |
Collapse
|
15
|
Halje P, Brys I, Mariman JJ, da Cunha C, Fuentes R, Petersson P. Oscillations in cortico-basal ganglia circuits: implications for Parkinson’s disease and other neurologic and psychiatric conditions. J Neurophysiol 2019; 122:203-231. [DOI: 10.1152/jn.00590.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cortico-basal ganglia circuits are thought to play a crucial role in the selection and control of motor behaviors and have also been implicated in the processing of motivational content and in higher cognitive functions. During the last two decades, electrophysiological recordings in basal ganglia circuits have shown that several disease conditions are associated with specific changes in the temporal patterns of neuronal activity. In particular, synchronized oscillations have been a frequent finding suggesting that excessive synchronization of neuronal activity may be a pathophysiological mechanism involved in a wide range of neurologic and psychiatric conditions. We here review the experimental support for this hypothesis primarily in relation to Parkinson’s disease but also in relation to dystonia, essential tremor, epilepsy, and psychosis/schizophrenia.
Collapse
Affiliation(s)
- Pär Halje
- Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ivani Brys
- Federal University of Vale do São Francisco, Petrolina, Brazil
| | - Juan J. Mariman
- Research and Development Direction, Universidad Tecnológica de Chile, Inacap, Santiago, Chile
- Department of Physical Therapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Physical Therapy, Faculty of Arts and Physical Education, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Claudio da Cunha
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Programas de Pós-Graduação em Farmacologia e Bioquímica, Universidade Federal do Paraná, Curitiba, Brazil
| | - Romulo Fuentes
- Department of Neurocience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Per Petersson
- Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
16
|
de Souza Nicolau E, de Alvarenga KAF, Tenza-Ferrer H, Nogueira MCA, Rezende FD, Nicolau NF, Collodetti M, de Miranda DM, Magno LAV, Romano-Silva MA. Transcranial Direct Current Stimulation (tDCS) in Mice. J Vis Exp 2018. [PMID: 30295664 DOI: 10.3791/58517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique proposed as an alternative or complementary treatment for several neuropsychiatric diseases. The biological effects of tDCS are not fully understood, which is in part explained due to the difficulty in obtaining human brain tissue. This protocol describes a tDCS mouse model that uses a chronically implanted electrode allowing the study of the long-lasting biological effects of tDCS. In this experimental model, tDCS changes the cortical gene expression and offers a prominent contribution to the understanding of the rationale for its therapeutic use.
Collapse
Affiliation(s)
- Eduardo de Souza Nicolau
- Centro de Tecnologia em Medicina Molecular (CTMM), Faculdade de Medicina, Universidade Federal de Minas Gerais
| | | | - Helia Tenza-Ferrer
- Centro de Tecnologia em Medicina Molecular (CTMM), Faculdade de Medicina, Universidade Federal de Minas Gerais
| | | | - Fernanda Donizete Rezende
- Centro de Tecnologia em Medicina Molecular (CTMM), Faculdade de Medicina, Universidade Federal de Minas Gerais
| | - Nycolle Ferreira Nicolau
- Centro de Tecnologia em Medicina Molecular (CTMM), Faculdade de Medicina, Universidade Federal de Minas Gerais
| | - Mélcar Collodetti
- Centro de Tecnologia em Medicina Molecular (CTMM), Faculdade de Medicina, Universidade Federal de Minas Gerais
| | - Débora Marques de Miranda
- Centro de Tecnologia em Medicina Molecular (CTMM), Faculdade de Medicina, Universidade Federal de Minas Gerais
| | - Luiz Alexandre Viana Magno
- Centro de Tecnologia em Medicina Molecular (CTMM), Faculdade de Medicina, Universidade Federal de Minas Gerais
| | - Marco Aurélio Romano-Silva
- Centro de Tecnologia em Medicina Molecular (CTMM), Faculdade de Medicina, Universidade Federal de Minas Gerais;
| |
Collapse
|
17
|
Sánchez-León CA, Sánchez-López Á, Ammann C, Cordones I, Carretero-Guillén A, Márquez-Ruiz J. Exploring new transcranial electrical stimulation strategies to modulate brain function in animal models. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 8:7-13. [PMID: 30272042 DOI: 10.1016/j.cobme.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Transcranial electrical stimulation (tES) refers to a group of non-invasive brain stimulation techniques to induce changes in the excitability of cortical neurons in humans. In recent years, studies in animal models have been shown to be essential for disentangling the neuromodulatory effects of tES, defining safety limits, and exploring potential therapeutic applications in neurological and neuropsychiatric disorders. Testing in animal models is valuable for the development of new unconventional protocols intended to improve tES administration and optimize the desired effects by increasing its focality and enabling deep-brain stimulation. Successful and controlled application of tES in humans relies on the knowledge acquired from studies meticulously performed in animal models.
Collapse
Affiliation(s)
- Carlos A Sánchez-León
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, 41013-Seville, Spain
| | - Álvaro Sánchez-López
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, 41013-Seville, Spain
| | - Claudia Ammann
- CINAC, University Hospital HM Puerta del Sur, CEU - San Pablo University, 28938-Móstoles, Madrid, Spain
| | - Isabel Cordones
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, 41013-Seville, Spain
| | | | - Javier Márquez-Ruiz
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, 41013-Seville, Spain
| |
Collapse
|
18
|
Chronic Electrical Stimulation Promotes the Excitability and Plasticity of ESC-derived Neurons following Glutamate-induced Inhibition In vitro. Sci Rep 2018; 8:10957. [PMID: 30026496 PMCID: PMC6053382 DOI: 10.1038/s41598-018-29069-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/02/2018] [Indexed: 01/07/2023] Open
Abstract
Functional electrical stimulation (FES) is rapidly gaining traction as a therapeutic tool for mediating the repair and recovery of the injured central nervous system (CNS). However, the underlying mechanisms and impact of these stimulation paradigms at a molecular, cellular and network level remain largely unknown. In this study, we used embryonic stem cell (ESC)-derived neuron and glial co-cultures to investigate network maturation following acute administration of L-glutamate, which is a known mediator of excitotoxicity following CNS injury. We then modulated network maturation using chronic low frequency stimulation (LFS) and direct current stimulation (DCS) protocols. We demonstrated that L-glutamate impaired the rate of maturation of ESC-derived neurons and glia immediately and over a week following acute treatment. The administration of chronic LFS and DCS protocols individually following L-glutamate infusion significantly promoted the excitability of neurons as well as network synchrony, while the combination of LFS/DCS did not. qRT-PCR analysis revealed that LFS and DCS alone significantly up-regulated the expression of excitability and plasticity-related transcripts encoding N-methyl-D-aspartate (NMDA) receptor subunit (NR2A), brain-derived neurotrophic factor (BDNF) and Ras-related protein (RAB3A). In contrast, the simultaneous administration of LFS/DCS down-regulated BDNF and RAB3A expression. Our results demonstrate that LFS and DCS stimulation can modulate network maturation excitability and synchrony following the acute administration of an inhibitory dose of L-glutamate, and upregulate NR2A, BDNF and RAB3A gene expression. Our study also provides a novel framework for investigating the effects of electrical stimulation on neuronal responses and network formation and repair after traumatic brain injury.
Collapse
|
19
|
Sánchez-León CA, Ammann C, Medina JF, Márquez-Ruiz J. Using animal models to improve the design and application of transcranial electrical stimulation in humans. Curr Behav Neurosci Rep 2018; 5:125-135. [PMID: 30013890 DOI: 10.1007/s40473-018-0149-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Purpose of Review Transcranial electrical stimulation (tES) is a non-invasive stimulation technique used for modulating brain function in humans. To help tES reach its full therapeutic potential, it is necessary to address a number of critical gaps in our knowledge. Here, we review studies that have taken advantage of animal models to provide invaluable insight about the basic science behind tES. Recent Findings Animal studies are playing a key role in elucidating the mechanisms implicated in tES, defining safety limits, validating computational models, inspiring new stimulation protocols, enhancing brain function and exploring new therapeutic applications. Summary Animal models provide a wealth of information that can facilitate the successful utilization of tES for clinical interventions in human subjects. To this end, tES experiments in animals should be carefully designed to maximize opportunities for applying discoveries to the treatment of human disease.
Collapse
Affiliation(s)
| | - Claudia Ammann
- CINAC, University Hospital HM Puerta del Sur, CEU - San Pablo University, 28938-Móstoles, Madrid, Spain
| | - Javier F Medina
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Javier Márquez-Ruiz
- Division of Neurosciences, Pablo de Olavide University, 41013-Seville, Spain
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW This review aims to survey recent trends in electrical forms of neuromodulation, with a specific application to Parkinson's disease (PD). Emerging trends are identified, highlighting synergies in state-of-the-art neuromodulation strategies, with directions for future improvements in stimulation efficacy suggested. RECENT FINDINGS Deep brain stimulation remains the most common and effective form of electrical stimulation for the treatment of PD. Evidence suggests that transcranial direct current stimulation (tDCS) most likely impacts the motor symptoms of the disease, with the most prominent results relating to rehabilitation. However, utility is limited due to its weak effects and high variability, with medication state a key confound for efficacy level. Recent innovations in transcranial alternating current stimulation (tACS) offer new areas for investigation. SUMMARY Our understanding of the mechanistic foundations of electrical current stimulation is advancing and as it does so, trends emerge which steer future clinical trials towards greater efficacy.
Collapse
Affiliation(s)
- John-Stuart Brittain
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Hayriye Cagnan
- Institute of Neurology, University College London, London, UK
| |
Collapse
|