1
|
Alayoubi AM, Alfadhli F, Mehnaz, Albalawi AM, Ramzan K, Jelani M, Basit S. A homozygous variant in ARHGAP39 is associated with lethal cerebellar vermis hypoplasia in a consanguineous Saudi family. Sci Rep 2024; 14:25291. [PMID: 39455833 PMCID: PMC11511811 DOI: 10.1038/s41598-024-77541-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/23/2024] [Indexed: 10/28/2024] Open
Abstract
Cerebellar vermis hypoplasia refers to a varying degree of incomplete development of the cerebellum and vermis. A Saudi family with four affected individuals with cerebellar vermis hypoplasia, facial dysmorphology, visual impairment, skeletal, and cardiac abnormalities was ascertained in this study. Three out of four patients could not survive longer and had died in early infancy. Genetic analysis of the youngest affected was performed by genome-wide homozygosity mapping coupled with whole exome sequencing (WES), followed by Sanger validation. Genome-wide genotyping analysis mapped the phenotype to chromosome 8q24.3. Using an autosomal recessive model, considering deleterious variants with minor allele frequency of less than 0.001 in WES data, a homozygous missense variant (NM_025251.2; ARHGAP39; c.1301G > T; p.Cys434Phe) was selected as a potential candidate for the phenotype. The variant (c.1301G > T) in the ARHGAP39 is in the region of homozygosity on chromosome 8q24.3. ARHGAP39 is a Rho GTPase-activating protein 39 and has been known to regulate apoptosis, cell migration, neurogenesis, and cerebral and hippocampal dendritic spine morphology. Mice homozygous for arhgap39 knockouts have shown premature embryonic lethality. Our findings present the first ever human phenotype associated with ARHGAP39 alteration.
Collapse
Affiliation(s)
- Abdulfatah M Alayoubi
- Department of Basic Medical Sciences, College of Medicine, Taibah University Medina, Almadinah Almunawwarah, Saudi Arabia
| | - Fatima Alfadhli
- Department of Genetics, Madinah Maternity and Children Hospital, Almadinah Almunawwarah, Saudi Arabia
| | - Mehnaz
- Rare Disease Genetics, Centre for Omic Sciences, Islamia College Peshawar, 25120, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Alia M Albalawi
- Center for Genetics and Inherited Diseases, Taibah University Medina, Almadinah Almunawwarah, Saudi Arabia
| | - Khushnooda Ramzan
- Department of Genetics, King Faisal Specialist Hospital and Research Centre Riyadh, Riyadh, Saudi Arabia
| | - Musharraf Jelani
- Rare Disease Genetics, Centre for Omic Sciences, Islamia College Peshawar, 25120, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Sulman Basit
- Department of Basic Medical Sciences, College of Medicine, Taibah University Medina, Almadinah Almunawwarah, Saudi Arabia.
- Center for Genetics and Inherited Diseases, Taibah University Medina, Almadinah Almunawwarah, Saudi Arabia.
- Department of Basic Medical Sciences, Center for Genetics and Inherited Diseases, Taibah University Medina, Almadinah Almunawwarah, Saudi Arabia.
| |
Collapse
|
2
|
Yu X, Li W, Sun S, Li J. DDIT3 is associated with breast cancer prognosis and immune microenvironment: an integrative bioinformatic and immunohistochemical analysis. J Cancer 2024; 15:3873-3889. [PMID: 38911383 PMCID: PMC11190778 DOI: 10.7150/jca.96491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/12/2024] [Indexed: 06/25/2024] Open
Abstract
DNA damage-inducible transcript 3 (DDIT3) is a transcription factor central to apoptosis, differentiation, and stress response. DDIT3 has been extensively studied in cancer biology. However, its precise implications in breast cancer progression and its interaction with the immune microenvironment are unclear. In this study, we utilized a novel multi-omics integration strategy, combining bulk RNA sequencing, single-cell sequencing, spatial transcriptomics and immunohistochemistry, to explore the role of DDIT3 in breast cancer and establish the correlation between DDIT3 and poor prognosis in breast cancer patients. We identified a robust prognostic signature, including six genes (unc-93 homolog B1, TLR signaling regulator, anti-Mullerian hormone, DCTP pyrophosphatase 1, mitochondrial ribosomal protein L36, nuclear factor erythroid 2, and Rho GTPase activating protein 39), associated with DDIT3. This signature stratified the high-risk patient groups, characterized by increased infiltration of the regulatory T cells and M2-like macrophages and fibroblast growth factor (FGF)/FGF receptor signaling activation. Notably, the high-risk patient group demonstrated enhanced sensitivity to immunotherapy, presenting novel therapeutic opportunities. Integrating multi-omics data helped determine the spatial expression pattern of DDIT3 in the tumor microenvironment and its correlation with immune cell infiltration. This multi-dimensional analysis provided a comprehensive understanding of the intricate interplay between DDIT3 and the immune microenvironment in breast cancer. Overall, our study not only facilitates understanding the role of DDIT3 in breast cancer but also offers innovative insights for developing prognostic models and therapeutic strategies. Identifying the DDIT3-related prognostic signature and its association with the immune microenvironment provided a promising avenue for personalized breast cancer treatment.
Collapse
Affiliation(s)
- Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Wenge Li
- Department of Oncology, Shanghai GoBroad Cancer Hospital, Shanghai, P. R. China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of general surgery, Taikang Tongji (Wuhan) Hospital, Wuhan, Hubei, P. R. China
| |
Collapse
|
3
|
Chen D, Sun YY, Zhou LY, Han X, Yang S, Hong FY, Yuan Y, Wu XH, Huang GH, Cheng YC, Huang J, Feng DF. Knockdown of Porf-2 restores visual function after optic nerve crush injury. Cell Death Dis 2023; 14:570. [PMID: 37640747 PMCID: PMC10462692 DOI: 10.1038/s41419-023-06087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Retinal ganglion cells (RGCs), the sole output neurons in the eyes, are vulnerable to diverse insults in many pathological conditions, which can lead to permanent vision dysfunction. However, the molecular and cellular mechanisms that contribute to protecting RGCs and their axons from injuries are not completely known. Here, we identify that Porf-2, a member of the Rho GTPase activating protein gene group, is upregulated in RGCs after optic nerve crush. Knockdown of Porf-2 protects RGCs from apoptosis and promotes long-distance optic nerve regeneration after crush injury in both young and aged mice in vivo. In vitro, we find that inhibition of Porf-2 induces axon growth and growth cone formation in retinal explants. Inhibition of Porf-2 provides long-term and post-injury protection to RGCs and eventually promotes the recovery of visual function after crush injury in mice. These findings reveal a neuroprotective impact of the inhibition of Porf-2 on RGC survival and axon regeneration after optic nerve injury, providing a potential therapeutic strategy for vision restoration in patients with traumatic optic neuropathy.
Collapse
Affiliation(s)
- Di Chen
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China
| | - Yi-Yu Sun
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Lai-Yang Zhou
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Xu Han
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200030, China
| | - Shuo Yang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Fei-Yang Hong
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuan Yuan
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiao-Hua Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guo-Hui Huang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China
| | - Yuan-Chi Cheng
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Ju Huang
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Dong-Fu Feng
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China.
| |
Collapse
|
4
|
Yao L, Li Y, Li S, Wang M, Cao H, Xu L, Xu Y. ARHGAP39 is a prognostic biomarker involved in immune infiltration in breast cancer. BMC Cancer 2023; 23:440. [PMID: 37189064 DOI: 10.1186/s12885-023-10904-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Current studies on the role of ARHGAP39 mainly focused on its effect on neurodevelopment. However, there are few studies on the comprehensive analysis of ARHGAP39 in breast cancer. METHODS ARHGAP39 expression level was analyzed based on the Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression Project (GTEx), and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database and validated by qPCR in various cell lines and tumor tissues. The prognostic value was analyzed using Kaplan-Meier curve analysis. CCK-8 and transwell assays were conducted to identify the biological function of ARHGAP39 in tumorigenesis. Signaling pathways related to ARHGAP39 expression were identified by the GO and KEGG enrichment analysis and gene set enrichment analysis (GSEA). The correlations between ARHGAP39 and cancer immune infiltrates were investigated via TIMER, CIBERSORT, ESTIMATE and tumor-immune system interactions database (TISIDB). RESULTS ARHGAP39 was overexpressed in breast cancer and associated with poor survival outcomes. In vitro experiments revealed that ARHGAP39 could facilitate the proliferation, migration, and invasion capability of breast cancer cells. GSEA analysis showed that the main enrichment pathways of ARHGAP39 was immunity-related pathways. Considering the immune infiltration level, ARHGAP39 was negatively associated with infiltrating levels of CD8 + T cell and macrophage, and positively associated with CD4 + T cell. Furthermore, ARHGAP39 was significantly negatively correlated with immune score, stromal score, and ESTIMATE score. CONCLUSIONS Our findings suggested that ARHGAP39 can be used as a potential therapeutic target and prognostic biomarker in breast cancer. ARHGAP39 was indeed a determinant factor of immune infiltration.
Collapse
Affiliation(s)
- Litong Yao
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Yuwei Li
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Siyuan Li
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Mozhi Wang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Hongyi Cao
- Department of Pathology, the First Hospital of China Medical University and College of Basic Medical Sciences, Shenyang, Liaoning, China
| | - Ling Xu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China
| | - Yingying Xu
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
5
|
Ding Y, Gong Y, Zeng H, Zhou X, Yu Z, Pan J, Zhou M, Liu S, Lai W. Biological function analysis of ARHGAP39 as an independent prognostic biomarker in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:2631-2666. [PMID: 37059586 PMCID: PMC10120899 DOI: 10.18632/aging.204635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/11/2023] [Indexed: 04/16/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common subtype of liver cancer, with a high morbidity and low survival rate. Rho GTPase activating protein 39 (ARHGAP39) is a crucial activating protein of Rho GTPases, a novel target in cancer therapy, and it was identified as a hub gene for gastric cancer. However, the expression and role of ARHGAP39 in hepatocellular carcinoma remain unclear. Accordingly, the cancer genome atlas (TCGA) data were used to analyze the expression and clinical value of ARHGAP39 in hepatocellular carcinoma. Further, the LinkedOmics tool suggested functional enrichment pathways for ARHGAP39. To investigate in depth the possible role of ARHGAP39 on immune infiltration, we analyzed the relationship between ARHGAP39 and chemokines in HCCLM3 cells. Finally, the GSCA website was used to explore drug resistance in patients with high ARHGAP39 expression. Studies have shown that ARHGAP39 is highly expressed in hepatocellular carcinoma and relevant to clinicopathological features. In addition, the overexpression of ARHGAP39 leads to a poor prognosis. Besides, co-expressed genes and enrichment analysis showed a correlation with the cell cycle. Notably, ARHGAP39 may worsen the survival of hepatocellular carcinoma patients by increasing the level of immune infiltration through chemokines. Moreover, N6-methyladenosine (m6A) modification-related factors and drug sensitivity were also found to be associated with ARHGAP39. In brief, ARHGAP39 is a promising prognostic factor for hepatocellular carcinoma patients that is closely related to cell cycle, immune infiltration, m6A modification, and drug resistance.
Collapse
Affiliation(s)
- Yongqi Ding
- Department of Health Management Medical, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yiyang Gong
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Hong Zeng
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Xuanrui Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Zichuan Yu
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Jingying Pan
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Minqin Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Shiwen Liu
- Emergency Intensive Care Unit, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Lai
- Department of Health Management Medical, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Kim D, Jo YS, Jo HS, Bae S, Kwon YW, Oh YS, Yoon JH. Comparative Phosphoproteomics of Neuro-2a Cells under Insulin Resistance Reveals New Molecular Signatures of Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23021006. [PMID: 35055191 PMCID: PMC8781554 DOI: 10.3390/ijms23021006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/29/2022] Open
Abstract
Insulin in the brain is a well-known critical factor in neuro-development and regulation of adult neurogenesis in the hippocampus. The abnormality of brain insulin signaling is associated with the aging process and altered brain plasticity, and could promote neurodegeneration in the late stage of Alzheimer’s disease (AD). The precise molecular mechanism of the relationship between insulin resistance and AD remains unclear. The development of phosphoproteomics has advanced our knowledge of phosphorylation-mediated signaling networks and could elucidate the molecular mechanisms of certain pathological conditions. Here, we applied a reliable phosphoproteomic approach to Neuro2a (N2a) cells to identify their molecular features under two different insulin-resistant conditions with clinical relevance: inflammation and dyslipidemia. Despite significant difference in overall phosphoproteome profiles, we found molecular signatures and biological pathways in common between two insulin-resistant conditions. These include the integrin and adenosine monophosphate-activated protein kinase pathways, and we further verified these molecular targets by subsequent biochemical analysis. Among them, the phosphorylation levels of acetyl-CoA carboxylase and Src were reduced in the brain from rodent AD model 5xFAD mice. This study provides new molecular signatures for insulin resistance in N2a cells and possible links between the molecular features of insulin resistance and AD.
Collapse
Affiliation(s)
- Dayea Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Korea;
| | - Yeon Suk Jo
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Korea; (Y.S.J.); (H.-S.J.); (S.B.); (Y.W.K.)
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Han-Seul Jo
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Korea; (Y.S.J.); (H.-S.J.); (S.B.); (Y.W.K.)
| | - Sungwon Bae
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Korea; (Y.S.J.); (H.-S.J.); (S.B.); (Y.W.K.)
| | - Yang Woo Kwon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Korea; (Y.S.J.); (H.-S.J.); (S.B.); (Y.W.K.)
| | - Yong-Seok Oh
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Correspondence: (Y.-S.O.); (J.H.Y.); Tel.: +82-53-785-6114 (Y.-S.O.); +82-53-980-8341 (J.H.Y.)
| | - Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Korea; (Y.S.J.); (H.-S.J.); (S.B.); (Y.W.K.)
- Correspondence: (Y.-S.O.); (J.H.Y.); Tel.: +82-53-785-6114 (Y.-S.O.); +82-53-980-8341 (J.H.Y.)
| |
Collapse
|
7
|
Jensen M, Tyryshkina A, Pizzo L, Smolen C, Das M, Huber E, Krishnan A, Girirajan S. Combinatorial patterns of gene expression changes contribute to variable expressivity of the developmental delay-associated 16p12.1 deletion. Genome Med 2021; 13:163. [PMID: 34657631 PMCID: PMC8522054 DOI: 10.1186/s13073-021-00982-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recent studies have suggested that individual variants do not sufficiently explain the variable expressivity of phenotypes observed in complex disorders. For example, the 16p12.1 deletion is associated with developmental delay and neuropsychiatric features in affected individuals, but is inherited in > 90% of cases from a mildly-affected parent. While children with the deletion are more likely to carry additional "second-hit" variants than their parents, the mechanisms for how these variants contribute to phenotypic variability are unknown. METHODS We performed detailed clinical assessments, whole-genome sequencing, and RNA sequencing of lymphoblastoid cell lines for 32 individuals in five large families with multiple members carrying the 16p12.1 deletion. We identified contributions of the 16p12.1 deletion and "second-hit" variants towards a range of expression changes in deletion carriers and their family members, including differential expression, outlier expression, alternative splicing, allele-specific expression, and expression quantitative trait loci analyses. RESULTS We found that the deletion dysregulates multiple autism and brain development genes such as FOXP1, ANK3, and MEF2. Carrier children also showed an average of 5323 gene expression changes compared with one or both parents, which matched with 33/39 observed developmental phenotypes. We identified significant enrichments for 13/25 classes of "second-hit" variants in genes with expression changes, where 4/25 variant classes were only enriched when inherited from the noncarrier parent, including loss-of-function SNVs and large duplications. In 11 instances, including for ZEB2 and SYNJ1, gene expression was synergistically altered by both the deletion and inherited "second-hits" in carrier children. Finally, brain-specific interaction network analysis showed strong connectivity between genes carrying "second-hits" and genes with transcriptome alterations in deletion carriers. CONCLUSIONS Our results suggest a potential mechanism for how "second-hit" variants modulate expressivity of complex disorders such as the 16p12.1 deletion through transcriptomic perturbation of gene networks important for early development. Our work further shows that family-based assessments of transcriptome data are highly relevant towards understanding the genetic mechanisms associated with complex disorders.
Collapse
Affiliation(s)
- Matthew Jensen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, PA, 16802, University Park, USA
- Bioinformatics and Genomics Program, Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Anastasia Tyryshkina
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, PA, 16802, University Park, USA
- Neuroscience Program, Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Lucilla Pizzo
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, PA, 16802, University Park, USA
| | - Corrine Smolen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, PA, 16802, University Park, USA
- Bioinformatics and Genomics Program, Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Maitreya Das
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, PA, 16802, University Park, USA
| | - Emily Huber
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, PA, 16802, University Park, USA
| | - Arjun Krishnan
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, PA, 16802, University Park, USA.
- Bioinformatics and Genomics Program, Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
- Neuroscience Program, Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Anthropology, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
8
|
Zheng Y, Cheng Y, Zhang C, Fu S, He G, Cai L, Qiu L, Huang K, Chen Q, Xie W, Chen T, Huang M, Bai Y, Pan M. Co-amplification of genes in chromosome 8q24: a robust prognostic marker in hepatocellular carcinoma. J Gastrointest Oncol 2021; 12:1086-1100. [PMID: 34295559 DOI: 10.21037/jgo-21-205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/06/2021] [Indexed: 01/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a leading cause of tumor-associated death worldwide, owing to its high 5-year postoperative recurrence rate and inter-individual heterogeneity. Thus, a prognostic model is urgently needed for patients with HCC. Several researches have reported that copy number amplification of the 8q24 chromosomal region is associated with low survival in many cancers. In the present work, we set out to construct a multi-gene model for prognostic prediction in HCC. Methods RNA sequencing and copy number variant data of tumor tissue samples of HCC from The Cancer Genome Atlas (n=328) were used to identify differentially expressed messenger RNAs of genes located on the chromosomal 8q24 region by the Wilcox test. Univariate Cox and Lasso-Cox regression analyses were carried out for the screening and construction of a prognostic multi-gene signature in The Cancer Genome Atlas cohort (n=119). The multi-gene signature was validated in a cohort from the International Cancer Genome Consortium (n=240). A nomogram for prognostic prediction was built, and the underpinning molecular mechanisms were studied by Gene Set Enrichment Analysis. Results We successfully established a 7-gene prognostic signature model to predict the prognosis of patients with HCC. Using the model, we divided individuals into high-risk and low-risk sets, which showed a significant difference in overall survival in the training dataset (HR =0.17, 95% CI: 0.1-0.28; P<0.001) and in the testing dataset (HR = 0.42, 95% CI: 0.23-0.74; P=0.002). Multivariate Cox regression analysis showed the signature to be an independent prognostic factor of HCC survival. A nomogram including the prognostic signature was constructed and showed a better predictive performance in short-term (1 and 3 years) than in long-term (5 years) survival. Furthermore, Gene Set Enrichment Analysis identified several pathways of significance, which may aid in explaining the underlying molecular mechanism. Conclusions Our 7-gene signature is a reliable prognostic marker for HCC, which may provide meaningful information for therapeutic customization and treatment-related decision making.
Collapse
Affiliation(s)
- Yongjian Zheng
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yuan Cheng
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Cheng Zhang
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Shunjun Fu
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Guolin He
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Lei Cai
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Ling Qiu
- Second Department of Surgery, Dongfeng People's Hospital, Guangzhou, China
| | - Kunhua Huang
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qunhui Chen
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Wenzhuan Xie
- The Research and Development Center of Precision Medicine, 3D Medicines Inc., Shanghai, China
| | - Tingting Chen
- The Research and Development Center of Precision Medicine, 3D Medicines Inc., Shanghai, China
| | - Mengli Huang
- The Research and Development Center of Precision Medicine, 3D Medicines Inc., Shanghai, China
| | - Yuezong Bai
- The Research and Development Center of Precision Medicine, 3D Medicines Inc., Shanghai, China
| | - Mingxin Pan
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Li C, Yu H, Sun Y, Zeng X, Zhang W. Identification of the hub genes in gastric cancer through weighted gene co-expression network analysis. PeerJ 2021; 9:e10682. [PMID: 33717664 PMCID: PMC7938783 DOI: 10.7717/peerj.10682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/09/2020] [Indexed: 02/05/2023] Open
Abstract
Background Gastric cancer is one of the most lethal tumors and is characterized by poor prognosis and lack of effective diagnostic or therapeutic biomarkers. The aim of this study was to find hub genes serving as biomarkers in gastric cancer diagnosis and therapy. Methods GSE66229 from Gene Expression Omnibus (GEO) was used as training set. Genes bearing the top 25% standard deviations among all the samples in training set were performed to systematic weighted gene co-expression network analysis (WGCNA) to find candidate genes. Then, hub genes were further screened by using the “least absolute shrinkage and selection operator” (LASSO) logistic regression. Finally, hub genes were validated in the GSE54129 dataset from GEO by supervised learning method artificial neural network (ANN) algorithm. Results Twelve modules with strong preservation were identified by using WGCNA methods in training set. Of which, five modules significantly related to gastric cancer were selected as clinically significant modules, and 713 candidate genes were identified from these five modules. Then, ADIPOQ, ARHGAP39, ATAD3A, C1orf95, CWH43, GRIK3, INHBA, RDH12, SCNN1G, SIGLEC11 and LYVE1 were screened as the hub genes. These hub genes successfully differentiated the tumor samples from the healthy tissues in an independent testing set through artificial neural network algorithm with the area under the receiver operating characteristic curve at 0.946. Conclusions These hub genes bearing diagnostic and therapeutic values, and our results may provide a novel prospect for the diagnosis and treatment of gastric cancer in the future.
Collapse
Affiliation(s)
- Chunyang Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Cheng, China.,Medical Big Data Center, Sichuan University, Chengdu, China
| | - Haopeng Yu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Cheng, China.,Medical Big Data Center, Sichuan University, Chengdu, China
| | - Yajing Sun
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Cheng, China.,Medical Big Data Center, Sichuan University, Chengdu, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Cheng, China.,Medical Big Data Center, Sichuan University, Chengdu, China
| | - Wei Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Cheng, China.,Medical Big Data Center, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Li XY, Huang GH, Liu QK, Yang XT, Wang K, Luo WZ, Liang TS, Yuan SP, Zhen YW, Yan DM. Porf-2 Inhibits Tumor Cell Migration Through the MMP-2/9 Signaling Pathway in Neuroblastoma and Glioma. Front Oncol 2020; 10:975. [PMID: 32676454 PMCID: PMC7333564 DOI: 10.3389/fonc.2020.00975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
Tumor migration and invasion are key pathological processes that contribute to cell metastasis as well as treatment failure in patients with malignant tumors. However, the mechanisms governing tumor cell migration remain poorly understood. By analyzing the tumor-related database and tumor cell lines, we found that preoptic regulatory factor-2 (Porf-2) is downexpressed in both neuroblastoma and glioma. Using in vitro assays, our data demonstrated that the expression of Porf-2 inhibits tumor cell migration both in neuroblastoma and glioma cell lines. Domain-mutated Porf-2 plasmids were then constructed, and it was found that the GAP domain, which plays a role in the inactivation of Rac1, is the functional domain for inhibiting tumor cell migration. Furthermore, by screening potential downstream effectors, we found that Porf-2 can reduce MMP-2 and MMP-9 expression. Overexpression of MMP-2 blocked the inhibitory effect of Porf-2 in tumor cell migration both in vitro and in vivo. Taken together, we show for the first time that Porf-2 is capable of suppressing tumor cell migration via its GAP domain and the downregulation of MMP-2/9, suggesting that targeting Porf-2 could be a promising therapeutic strategy for nervous system tumors.
Collapse
Affiliation(s)
- Xue-Yuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guo-Hui Huang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Qian-Kun Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xi-Tao Yang
- Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wen-Zheng Luo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tian-Song Liang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shan-Peng Yuan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying-Wei Zhen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dong-Ming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Disease-associated synaptic scaffold protein CNK2 modulates PSD size and influences localisation of the regulatory kinase TNIK. Sci Rep 2020; 10:5709. [PMID: 32235845 PMCID: PMC7109135 DOI: 10.1038/s41598-020-62207-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/05/2020] [Indexed: 01/13/2023] Open
Abstract
Scaffold proteins are responsible for structural organisation within cells; they form complexes with other proteins to facilitate signalling pathways and catalytic reactions. The scaffold protein connector enhancer of kinase suppressor of Ras 2 (CNK2) is predominantly expressed in neural tissues and was recently implicated in X-linked intellectual disability (ID). We have investigated the role of CNK2 in neurons in order to contribute to our understanding of how CNK2 alterations might cause developmental defects, and we have elucidated a functional role for CNK2 in the molecular processes that govern morphology of the postsynaptic density (PSD). We have also identified novel CNK2 interaction partners and explored their functional interdependency with CNK2. We focussed on the novel interaction partner TRAF2- and NCK-interacting kinase TNIK, which is also associated with ID. Both CNK2 and TNIK are expressed in neuronal dendrites and concentrated in dendritic spines, and staining with synaptic markers indicates a clear postsynaptic localisation. Importantly, our data highlight that CNK2 plays a role in directing TNIK subcellular localisation, and in neurons, CNK2 participates in ensuring that this multifunctional kinase is present in the correct place at desirable levels. In summary, our data indicate that CNK2 expression is critical for modulating PSD morphology; moreover, our study highlights that CNK2 functions as a scaffold with the potential to direct the localisation of regulatory proteins within the cell. Importantly, we describe a novel link between CNK2 and the regulatory kinase TNIK, and provide evidence supporting the idea that alterations in CNK2 localisation and expression have the potential to influence the behaviour of TNIK and other important regulatory molecules in neurons.
Collapse
|