1
|
Stanisavljević Ilić A, Filipović D. Mapping of c-Fos Expression in Rat Brain Sub/Regions Following Chronic Social Isolation: Effective Treatments of Olanzapine, Clozapine or Fluoxetine. Pharmaceuticals (Basel) 2024; 17:1527. [PMID: 39598437 PMCID: PMC11597560 DOI: 10.3390/ph17111527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
The c-Fos as a marker of cell activation is used to identify brain regions involved in stimuli processing. This review summarizes a pattern of c-Fos immunoreactivity and the overlapping brain sub/regions which may provide hints for the identification of neural circuits that underlie depressive- and anxiety-like behaviors of adult male rats following three and six weeks of chronic social isolation (CSIS), relative to controls, as well as the antipsychotic-like effects of olanzapine (Olz), and clozapine (Clz), and the antidepressant-like effect of fluoxetine (Flx) in CSIS relative to CSIS alone. Additionally, drug-treated controls relative to control rats were also characterized. The overlapping rat brain sub/regions with increased expression of c-Fos immunoreactivity following three or six weeks of CSIS were the retrosplenial granular cortex, c subregion, retrosplenial dysgranular cortex, dorsal dentate gyrus, paraventricular nucleus of the thalamus (posterior part, PVP), lateral/basolateral (LA/BL) complex of the amygdala, caudate putamen, and nucleus accumbens shell. Increased activity of the nucleus accumbens core following exposure of CSIS rats either to Olz, Clz, and Flx treatments was found, whereas these treatments in controls activated the LA/BL complex of the amygdala and PVP. We also outline sub/regions that might represent potential neuroanatomical targets for the aforementioned antipsychotics or antidepressant treatments.
Collapse
Affiliation(s)
| | - Dragana Filipović
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
2
|
Extra-forebrain impact of antipsychotics indicated by c-Fos or FosB/ΔFosB expression: A minireview. Endocr Regul 2021; 55:120-130. [PMID: 34020528 DOI: 10.2478/enr-2021-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
It is apparent that the c-Fos and FosB/ΔFosB immunohistochemistry has generally become a useful tool for determining the different antipsychotic (AP) drugs activities in the brain. It is also noteworthy that there are no spatial limits, while to the extent of their identification over the whole brain axis. In addition, they can be in a parallel manner utilized in the unmasking of the brain cell phenotype character activated by APs and by this way also to identify the possible brain circuits underwent to the APs action. However, up to date, the number of APs involved in the extra-striatal studies is still limited, what prevents the possibility to fully understand their extra-striatal effects as a complex as well as differentiate their extra-striatal impact in qualitative and quantitative dimensions. Actually, it is very believable that more and more anatomical/functional knowledge might bring new insights into the APs extra-striatal actions by identifying new region-specific activities of APs as well as novel cellular targets affected by APs, which might reveal more details of their possible side effects of the extra-striatal origin.
Collapse
|
3
|
Pham BN, Luo J, Anand H, Kola O, Salcedo P, Nguyen C, Gaunt S, Zhong H, Garfinkel A, Tillakaratne N, Edgerton VR. Redundancy and multifunctionality among spinal locomotor networks. J Neurophysiol 2020; 124:1469-1479. [PMID: 32966757 PMCID: PMC8356786 DOI: 10.1152/jn.00338.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/26/2020] [Accepted: 09/13/2020] [Indexed: 02/08/2023] Open
Abstract
c-Fos is used to identify system-wide neural activation with cellular resolution in vivo. However, c-Fos can only capture neural activation of one event. Targeted recombination in active populations (TRAP) allows the capture of two different c-Fos activation patterns in the same animal. So far, TRAP has only been used to examine brain circuits. This study uses TRAP to investigate spinal circuit activation during resting and stepping, giving novel insights of network activation during these events. The level of colabeled (c-Fos+ and TRAP+) neurons observed after performing two bouts of stepping suggests that there is a probabilistic-like phenomenon that can recruit many combinations of neural populations (synapses) when repetitively generating many step cycles. Between two 30-min bouts of stepping, each consisting of thousands of steps, only ∼20% of the neurons activated from the first bout of stepping were also activated by the second bout. We also show colabeling of interneurons that have been active during stepping and resting. The use of the FosTRAP methodology in the spinal cord provides a new tool to compare the engagement of different populations of spinal interneurons in vivo under different motor tasks or under different conditions.NEW & NOTEWORTHY The results are consistent with there being an extensive amount of redundancy among spinal locomotor circuits. Using the newly developed FosTRAP mouse model, only ∼20% of neurons that were active (labeled by Fos-linked tdTomato expression) during a first bout of 30-min stepping were also labeled for c-Fos during a second bout of stepping. This finding suggests variability of neural networks that enables selection of many combinations of neurons (synapses) when generating each step cycle.
Collapse
Affiliation(s)
- Bau N. Pham
- Department of Bioengineering, University of California, Los Angeles, California
| | - Jiangyuan Luo
- Department of Neuroscience, University of California, Los Angeles, California
| | - Harnadar Anand
- Institute for Society and Genetics, University of California, Los Angeles, California
| | - Olivia Kola
- Department of Neuroscience, University of California, Los Angeles, California
| | - Pia Salcedo
- Department of Psychobiology, University of California, Los Angeles, California
| | - Connie Nguyen
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California
| | - Sarah Gaunt
- Department of Molecular Cellular and Developmental Biology, University of California, Los Angeles, California
| | - Hui Zhong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Alan Garfinkel
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Niranjala Tillakaratne
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
- Brain Research Institute, University of California, Los Angeles, California
| | - V. Reggie Edgerton
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
- Brain Research Institute, University of California, Los Angeles, California
- Department of Neurobiology, University of California, Los Angeles, California
- Department of Neurosurgery, University of California, Los Angeles, California
- Institut Guttmann, Hospital de Neurorehabilitació, Universitat Autònoma de Barcelona, Badalona, Spain
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|